1.Effects of metformin on gut microbiota and short-/medium-chain fatty acids in high-fat diet rats.
Ying SHI ; Lin XING ; Shanyu WU ; Fangzhi YUE ; Tianqiong HE ; Jing ZHANG ; Lingxuan OUYANG ; Suisui GAO ; Dongmei ZHANG ; Zhijun ZHOU
Journal of Central South University(Medical Sciences) 2025;50(5):851-863
OBJECTIVES:
Recent evidence suggests that the gut may be a primary site of metformin action. However, studies on the effects of metformin on gut microbiota remain limited, and its impact on gut microbial metabolites such as short-/medium-chain fatty acids is unclear. This study aims to investigate the effects of metformin on gut microbiota, short-/medium-chain fatty acids, and associated metabolic benefits in high-fat diet rats.
METHODS:
Twenty-four Sprague-Dawley rats were randomly divided into 3 groups: 1) Normal diet group (ND group), fed standard chow; 2) high-fat diet group (HFD group), fed a high-fat diet; 3) high-fat diet + metformin treatment group (HFD+Met group), fed a high-fat diet for 8 weeks, followed by daily intragastric administration of metformin solution (150 mg/kg body weight) starting in week 9. At the end of the experiment, all rats were sacrificed, and serum, liver, and colonic contents were collected for assessment of glucose and lipid metabolism, liver pathology, gut microbiota composition, and the concentrations of short-/medium-chain fatty acids.
RESULTS:
Metformin significantly improved HFD-induced glucose and lipid metabolic disorders and liver injury. Compared with the HFD group, the HFD+Met group showed reduced abundance of Blautia, Romboutsia, Bilophila, and Bacteroides, while Lactobacillus abundance significantly increased (all P<0.05). Colonic contents of butyric acid, 2-methyl butyric acid, valeric acid, octanoic acid, and lauric acid were significantly elevated (all P<0.05), whereas acetic acid, isoheptanoic acid, and nonanoic acid levels were significantly decreased (all P<0.05). Spearman correlation analysis revealed that Lactobacillus abundance was negatively correlated with body weight gain and insulin resistance, while butyrate and valerate levels were negatively correlated with insulin resistance and liver injury (all P<0.05).
CONCLUSIONS
Metformin significantly increases the abundance of beneficial bacteria such as Lactobacillus and promotes the production of short-/medium-chain fatty acids including butyric, valeric, and lauric acid in the colonic contents of HFD rats, suggesting that metformin may regulate host metabolism through modulation of the gut microbiota.
Animals
;
Metformin/pharmacology*
;
Rats, Sprague-Dawley
;
Diet, High-Fat/adverse effects*
;
Rats
;
Gastrointestinal Microbiome/drug effects*
;
Male
;
Fatty Acids, Volatile/metabolism*
;
Fatty Acids/metabolism*
2.Jujubae Fructus alleviates intestinal injury caused by toxic medicinals in Shizao Decoction based on correlation between intestinal flora and host metabolism.
Xiao-Qin GAO ; Jin-di XU ; Shi-Kang ZHOU ; Yi ZHANG ; Li ZHANG
China Journal of Chinese Materia Medica 2023;48(10):2792-2802
Genkwa Fols, Kansui Radix, and Euphorbiae Pekinensis Radix in Shizao Decoction(SZD) are toxic to intestinal tract. Jujubae Fructus in this prescription can alleviate the toxicity, but the mechanism is still unclear. Therefore, this study aims to explore the mechanism. To be specific, 40 normal Sprague-Dawley(SD) rats were classified into the normal group, high-dose and low-dose SZD groups, and high-dose and low-dose SZD without Jujubae Fructus(SZD-JF) groups. The SZD groups were given(ig) SZD, while SZD-JF groups received the decoction without Jujubae Fructus. The variation of body weight and spleen index were recorded. The patho-logical changes of intestinal tissue were observed based on hematoxylin and eosin(HE) staining. The content of malondialdehyde(MDA) and glutathione(GSH) and activity of superoxide dismutase(SOD) in intestinal tissue were measured to evaluate the intestinal injury. Fresh feces of rats were collected to detect intestinal flora structure by 16S ribosomal RNA gene(16S rDNA) sequencing technology. The content of fecal short chain fatty acids and fecal metabolites was determined by gas chromatography-mass spectrometer(GC-MS) and liquid chromatography-mass spectrometer ultra-fast liquid chromatography-quadrupole-time-of-flight mass spectrometer(UFLC-Q-TOF-MS), separately. Spearman's correlation analysis was employed to analyze the differential bacteria genera and differential metabolites. RESULTS:: showed that high-dose and low-dose SZD-JF groups had high content of MDA in intestinal tissue, low GSH content and SOD activity, short intestinal villi(P<0.05), low diversity and abundance of intestinal flora, variation in the intestinal flora structure, and low content of short chain fatty acids(P<0.05) compared with the normal group. Compared with high-dose and low-dose SZD-JF groups, high-dose and low-dose SZD groups displayed low content of MDA in intestinal tissue, high GSH content and SOD activity, recovery of the length of intestinal villi, increased abundance and diversity of intestinal flora, alleviation of dysbacteria, and recovery of the content of short chain fatty acids(P<0.05). According to the variation of intestinal flora and fecal metabolites after the addition of Jujubae Fructus, 6 differential bacterial genera(Lactobacillus, Butyricimonas, Clostridia_UCG-014, Prevotella, Escherichia-Shigella, Alistipes),4 differential short chain fatty acids(such as acetic acid, propionic acid, butyric acid, valeric acid) and 18 differential metabolites(such as urolithin A, lithocholic acid, and creatinine) were screened out. Beneficial bacteria such as Lactobacillus were in positive correlation with butyric acid and urolithin A(P<0.05). The pathogenic bacteria such as Escherichia-Shigella were in negative correlation with propionic acid and urolithin A(P<0.05). In summary, SZD-JF caused obvious intestinal injury to normal rats, which could lead to intestinal flora disorder. The addition of Jujubae Fructus can alleviate the disorder and relieve the injury by regulating intestinal flora and the metabolites. This study discusses the effect of Jujubae Fructus in relieving the intestinal injury caused by SZD and the mechanism from the perspective of intestinal flora-host metabolism, which is expected to serve as a reference for clinical application of this prescription.
Rats
;
Animals
;
Rats, Sprague-Dawley
;
Propionates/pharmacology*
;
Gastrointestinal Microbiome
;
Fatty Acids, Volatile/pharmacology*
;
Butyrates/pharmacology*
3.Short-chain fatty acid butyrate acid attenuates atherosclerotic plaque formation in apolipoprotein E-knockout mice and the underlying mechanism.
Hong-Bo BAI ; Ping YANG ; Han-Bin ZHANG ; Yu-Lin LIU ; Shu-Xiang FANG ; Xiao-Yang XU
Acta Physiologica Sinica 2021;73(1):42-50
This study was designed to evaluate the role of short-chain fatty acid butyrate acid on intestinal morphology and function, and atherosclerotic plaque formation in apolipoprotein E-knockout (ApoE
Animals
;
Apolipoproteins E/genetics*
;
Atherosclerosis/prevention & control*
;
Butyrates/pharmacology*
;
Caco-2 Cells
;
Diet, High-Fat/adverse effects*
;
Fatty Acids, Volatile
;
Humans
;
Mice
;
Mice, Inbred C57BL
;
Mice, Knockout
;
Plaque, Atherosclerotic
4.Effects of clenbuterol on the hepatic flux of nitrogen, VFA and glucose in sheep.
Yuan-Lin ZHENG ; Zheng-Kang HAN ; Jie CHEN ; Xiao-Jie AI
Chinese Journal of Applied Physiology 2002;18(1):93-97
AIMTo examine the liver mechanism with which clenbuterol (CL) is explained how to affect growth metabolism.
METHODSThe technique of chronic poly catheter was used to study the effects of CL (0.8 mg/kg b w) on the hepatic flux of nitrogen, VFA and glucose in 4 sheep.
RESULTSThe urea-nitrogen flux in CL-treated period always was lower than that in control during 24 h. The average flux of urea-nitrogen in hepatic and portal vein were decreased by 16.86% (P < 0.01) and 15.51% (P < 0.05), respectively, compared with that of control. The peptide level in hepatic vein was decreased with the treatment of CL, average flux of peptide was decreased by 38.71% (P < 0.01). But the peptide level of portal vein in CL treatment period was similar to control. Moreover, VFA level in the portal vein was enhanced by CL, the average flux of acetate in portal vein was increased by 19.49% (P < 0.01). No difference of VFA level in hepatic vein was noted between CL-treated period and control. In addition, the glucose flux in hepatic vein was obviously increased with CL treatment, the average flux of glucose was increased by 25.96% (P < 0.01). And glucose flux in portal vein was also elevated during CL-treated period.
CONCLUSIONCL can affect growth metabolism of animal with increasing nitrogen deposition, improving absorption and utilization of VFA and enhancing glucose synthesis in sheep liver.
Animals ; Clenbuterol ; pharmacology ; Fatty Acids, Volatile ; metabolism ; Glucose ; metabolism ; Liver ; drug effects ; metabolism ; Sheep

Result Analysis
Print
Save
E-mail