1.Research progress of Eubacterium and its metabolite short-chain fatty acids in regulating type 2 diabetes mellitus.
Wei Dong LI ; Li Sha LI ; Mei Jun LYU ; Qiong Ying HU ; Da Qian XIONG
Chinese Journal of Preventive Medicine 2023;57(1):120-124
Intestinal flora and its metabolites are closely related to the progression of type 2 diabetes mellitus(T2DM). Eubacterium is one of the dominant intestinal flora, and its metabolites short-chain fatty acids (SCFAs) play a leading role in regulating intestinal metabolic balance. It has been reported that SCFAs can regulate the secretion of glucagon-like peptide-1, improve the function of pancreatic β cells, participate in bile acids metabolism and regulate the production of inflammatory factors in T2DM. Based on the above research background, this article mainly reviews the relationship between Eubacterium and its metabolite SCFAs and T2DM and its regulatory mechanism.
Humans
;
Diabetes Mellitus, Type 2
;
Eubacterium/metabolism*
;
Fatty Acids, Volatile/metabolism*
;
Gastrointestinal Microbiome
2.Metagenomic and targeted metabolomic analyses reveal distinct phenotypes of the gut microbiota in patients with colorectal cancer and type 2 diabetes mellitus.
Yong YANG ; Zihan HAN ; Zhaoya GAO ; Jiajia CHEN ; Can SONG ; Jingxuan XU ; Hanyang WANG ; An HUANG ; Jingyi SHI ; Jin GU
Chinese Medical Journal 2023;136(23):2847-2856
BACKGROUND:
Type 2 diabetes mellitus (T2DM) is an independent risk factor for colorectal cancer (CRC), and the patients with CRC and T2DM have worse survival. The human gut microbiota (GM) is linked to the development of CRC and T2DM, respectively. However, the GM characteristics in patients with CRC and T2DM remain unclear.
METHODS:
We performed fecal metagenomic and targeted metabolomics studies on 36 samples from CRC patients with T2DM (DCRC group, n = 12), CRC patients without diabetes (CRC group, n = 12), and healthy controls (Health group, n = 12). We analyzed the fecal microbiomes, characterized the composition and function based on the metagenomics of DCRC patients, and detected the short-chain fatty acids (SCFAs) and bile acids (BAs) levels in all fecal samples. Finally, we performed a correlation analysis of the differential bacteria and metabolites between different groups.
RESULTS:
Compared with the CRC group, LefSe analysis showed that there is a specific GM community in DCRC group, including an increased abundance of Eggerthella , Hungatella , Peptostreptococcus , and Parvimonas , and decreased Butyricicoccus , Lactobacillus , and Paraprevotella . The metabolomics analysis results revealed that the butyric acid level was lower but the deoxycholic acid and 12-keto-lithocholic acid levels were higher in the DCRC group than other groups ( P < 0.05). The correlation analysis showed that the dominant bacterial abundance in the DCRC group ( Parvimonas , Desulfurispora , Sebaldella , and Veillonellales , among others) was negatively correlated with butyric acid, hyodeoxycholic acid, ursodeoxycholic acid, glycochenodeoxycholic acid, chenodeoxycholic acid, cholic acid and glycocholate. However, the abundance of mostly inferior bacteria was positively correlated with these metabolic acid levels, including Faecalibacterium , Thermococci , and Cellulophaga .
CONCLUSIONS
Unique fecal microbiome signatures exist in CRC patients with T2DM compared to those with non-diabetic CRC. Alterations in GM composition and SCFAs and secondary BAs levels may promote CRC development.
Humans
;
Gastrointestinal Microbiome/genetics*
;
Diabetes Mellitus, Type 2
;
Microbiota
;
Bacteria/genetics*
;
Fatty Acids, Volatile
;
Colorectal Neoplasms/metabolism*
;
Butyrates
;
Feces/microbiology*
3.Research Progress of Short Chain Fatty Acids in the Pathogenesis of Immune Thrombocytopenia--Review.
Journal of Experimental Hematology 2022;30(4):1296-1300
The gut microbiota is an important part of the human body, and it's also the largest genome in the human body. Recent studies on the gut microbiota have found that it plays an important role in human immune diseases. In recent years, the methods of sequencing gut microbiota has teen improved, thus dysregulation of the gut microbiota is found in many immune diseases, and the most widely studied mechanism is the short-chain fatty acids (SCFA), which is a metabolite of gut microbiota. The role of short-chain fatty acids in intestinal barrier, IgA immunity, dendritic cells and regulatory T cells has become increasingly clear. The mechanisms of short-chain fatty acids in regulating immunity and its role in the pathogenesis of immune thrombocytopenia were covered in this review, so as to provide a new idea for the treatment of immune thrombocytopenia in the future.
Adolescent
;
Fatty Acids, Volatile/metabolism*
;
Gastrointestinal Microbiome
;
Humans
;
Intestines
;
Purpura, Thrombocytopenic, Idiopathic
4.Differences of the structure, succession and function of Clostridial communities between jiupei and pit mud during Luzhou-flavour baijiu fermentation.
Wei QIAN ; Zhenming LU ; Lijuan CHAI ; Xiaojuan ZHANG ; Pengxiang XU ; Qi LI ; Songtao WANG ; Caihong SHEN ; Jinsong SHI ; Zhenghong XU
Chinese Journal of Biotechnology 2020;36(6):1190-1197
Clostridia inhabiting in jiupei and pit mud plays key roles in the formation of flavour during the fermentation process of Luzhou-flavour baijiu. However, the differences of Clostridial communities between jiupei and pit mud remains unclear. Here, the species assembly, succession, and metabolic capacity of Clostridial communities between jiupei and pit mud were analysed by high-throughput sequencing and pure culture approaches. The ratio of Clostridial biomass to bacterial biomass in the pit mud was relatively stable (71.5%-91.2%) throughout the fermentation process. However, it varied widely in jiupei (0.9%-36.5%). The dominant Clostridial bacteria in jiupei were Clostridium (19.9%), Sedimentibacter (8.8%), and Hydrogenispora (7.2%), while Hydrogenispora (57.2%), Sedimentibacter (5.4%), and Caproiciproducens (4.9%) dominated in the Clostridial communities in pit mud. The structures of Clostridial community in pit mud and jiupei were significantly different (P=0.001) throughout fermentation. Isolated Clostridial strains showed different metabolic capacities of volatile fatty acids in pure culture. Spatial and temporal heterogeneity of Clostridial communities existed in the baijiu fermentation pit, which was closely related to the main flavour components of Luzhou-flavour baijiu.
Alcoholic Beverages
;
microbiology
;
Bacteria
;
classification
;
metabolism
;
Clostridium
;
physiology
;
Fatty Acids, Volatile
;
metabolism
;
Fermentation
;
Food Microbiology
5.Persistently Upregulated Hippocampal mTOR Signals Mediated by Fecal SCFAs Impair Memory in Male Pups with SMM Exposure in Utero.
Yi Tian ZHU ; Xin Ji LIU ; Kai Yong LIU ; Qiang ZHANG ; Lin Sheng YANG ; Rong WEI ; Jing Jing ZHANG ; Fang Biao TAO
Biomedical and Environmental Sciences 2019;32(5):345-356
OBJECTIVE:
To investigate the molecular mechanisms of the adverse effects of exposure to sulfamonomethoxin (SMM) in pregnancy on the neurobehavioral development of male offspring.
METHODS:
Pregnant mice were randomly divided into four groups: control- (normal saline), low- [10 mg/(kg•day)], middle- [50 mg/(kg•day)], and high-dose [200 mg/(kg•day)] groups, which received SMM by gavage daily during gestational days 1-18. We measured the levels of short-chain fatty acids (SCFAs) in feces from dams and male pups. Furthermore, we analyzed the mRNA and protein levels of genes involved in the mammalian target of rapamycin (mTOR) pathway in the hippocampus of male pups by RT-PCR or Western blotting.
RESULTS:
Fecal SCFA concentrations were significantly decreased in dams. Moreover, the production of individual fecal SCFAs was unbalanced, with a tendency for an increased level of total fecal SCFAs in male pups on postnatal day (PND) 22 and 56. Furthermore, the phosphatidylinositol 3-kinase (PI3k)/protein kinase B (AKT)/mTOR or mTOR/ribosomal protein S6 kinase 1 (S6K1)/4EBP1 signaling pathway was continuously upregulated until PND 56 in male offspring. In addition, the expression of Sepiapterin Reductase (SPR), a potential target of mTOR, was inhibited.
CONCLUSION
In utero exposure to SMM, persistent upregulation of the hippocampal mTOR pathway related to dysfunction of the gut (SCFA)-brain axis may contribute to cognitive deficits in male offspring.
Alcohol Oxidoreductases
;
metabolism
;
Animals
;
Anti-Infective Agents
;
toxicity
;
Fatty Acids, Volatile
;
analysis
;
Feces
;
chemistry
;
Female
;
Hippocampus
;
drug effects
;
metabolism
;
Male
;
Memory
;
drug effects
;
Mice, Inbred ICR
;
Pregnancy
;
Prenatal Exposure Delayed Effects
;
Sulfamonomethoxine
;
toxicity
;
TOR Serine-Threonine Kinases
;
metabolism
6.Gut microbiota analysis and its significance in vasovagal syncope in children.
Wei BAI ; Selena CHEN ; Chao-Shu TANG ; Jian-Guang QI ; Qing-Hua CUI ; Ming XU ; Jun-Bao DU ; Hong-Fang JIN
Chinese Medical Journal 2019;132(4):411-419
BACKGROUND:
Vasovagal syncope (VVS) is common in children and greatly affect both physical and mental health. But the mechanisms have not been completely explained. This study was designed to analyze the gut microbiota in children with VVS and explore its clinical significance.
METHODS:
Fecal samples from 20 VVS children and 20 matched controls were collected, and the microbiota were analyzed by 16S rRNA gene sequencing. The diversity and microbiota compositions of the VVS cases and controls were compared with the independent sample t test or Mann-Whitney U test. The correlation between the predominant bacteria and clinical symptoms was analyzed using Pearson or Spearman correlation test.
RESULTS:
No significant differences in diversity were evident between VVS and controls (P > 0.05). At the family level, the relative abundance of Ruminococcaceae was significantly higher in VVS children than in controls (median [Q1, Q3]: 22.10% [16.89%, 27.36%] vs. 13.92% [10.31%, 20.18%], Z = -2.40, P < 0.05), and LEfSe analysis revealed Ruminococcaceae as a discriminative feature (linear discriminant analysis [LDA] score > 4, P < 0.05). The relative abundance of Ruminococcaceae in VVS patients was positively correlated with the frequency of syncope (r = 0.616, P < 0.01). In terms of its correlation with hemodynamics, we showed that relative abundance of Ruminococcaceae was negatively correlated with the systolic and diastolic pressure reduction at the positive response in head-up tilt test (HUTT; r = -0.489 and -0.448, all P < 0.05), but was positively correlated with the mean pressure drop and decline rate (r = 0.489 and 0.467, all P < 0.05) as well as diastolic pressure drop and decline rate at the HUTT positive response (r = 0.579 and 0.589, all P < 0.01) in VVS patients.
CONCLUSION
Ruminococcaceae was the predominant gut bacteria and was associated with the clinical symptoms and hemodynamics of VVS, suggesting that gut microbiota might be involved in the development of VVS.
Adolescent
;
Child
;
Child, Preschool
;
Fatty Acids, Volatile
;
metabolism
;
Female
;
Gastrointestinal Microbiome
;
Humans
;
Male
;
Ruminococcus
;
isolation & purification
;
physiology
;
Syncope, Vasovagal
;
etiology
;
microbiology
7.Gut Microbiota and Metabolic Disorders.
Diabetes & Metabolism Journal 2015;39(3):198-203
Gut microbiota plays critical physiological roles in the energy extraction and in the control of local or systemic immunity. Gut microbiota and its disturbance also appear to be involved in the pathogenesis of diverse diseases including metabolic disorders, gastrointestinal diseases, cancer, etc. In the metabolic point of view, gut microbiota can modulate lipid accumulation, lipopolysaccharide content and the production of short-chain fatty acids that affect food intake, inflammatory tone, or insulin signaling. Several strategies have been developed to change gut microbiota such as prebiotics, probiotics, certain antidiabetic drugs or fecal microbiota transplantation, which have diverse effects on body metabolism and on the development of metabolic disorders.
Eating
;
Fatty Acids, Volatile
;
Gastrointestinal Diseases
;
Hypoglycemic Agents
;
Insulin
;
Metabolism
;
Metformin
;
Microbiota*
;
Obesity
;
Prebiotics
;
Probiotics
8.Chemopreventive and metabolic effects of inulin on colon cancer development.
Emilia HIJOVA ; Viktoria SZABADOSOVA ; Jana STOFILOVA ; Gabriela HRCKOVA
Journal of Veterinary Science 2013;14(4):387-393
Prebiotics modulate microbial composition and ensure a healthy gastrointestinal tract environment that can prevent colon cancer development. These natural dietary compounds are therefore potential chemopreventive agents. Thirty Sprague-Dawley rats (4 months old) were experimentally treated with procarcinogen dimethylhydrazine to induce colon cancer development. The rats were randomly assigned to three groups: a control group (CG), a group treated with dimethylhydrazine (DMH), and a group given DMH and inulin, a prebiotic (DMH+PRE). The effects of inulin on the activities of bacterial glycolytic enzymes, short-chain fatty acids, coliform and lactobacilli counts, cytokine levels, and cyclooxygenase-2 (COX-2) and transcription nuclear factor kappa beta (NFkappaB) immunoreactivity were measured. Inulin significantly decreased coliform counts (p < 0.01), increased lactobacilli counts (p < 0.001), and decreased the activity of beta-glucuronidase (p < 0.01). Butyric and propionic concentrations were decreased in the DMH group. Inulin increased its concentration that had been reduced by DMH. Inulin decreased the numbers of COX-2- and NFkappaB-positive cells in the tunica mucosae and tela submucosae of the colon. The expression of IL-2, TNFalpha, and IL-10 was also diminished. This 28-week study showed that dietary intake of inulin prevents preneoplastic changes and inflammation that promote colon cancer development.
Animals
;
Bacterial Proteins/genetics/metabolism
;
Colon/enzymology
;
Colonic Neoplasms/chemically induced/*drug therapy/metabolism
;
Colony Count, Microbial
;
Cyclooxygenase 2/genetics/metabolism
;
Cytokines/blood/genetics
;
Diet
;
Dietary Supplements/analysis
;
Dimethylhydrazines/toxicity
;
Enterobacteriaceae/drug effects/physiology
;
Fatty Acids, Volatile/genetics/metabolism
;
Female
;
Gene Expression Regulation/drug effects
;
Inulin/administration & dosage/*metabolism
;
Lactobacillaceae/drug effects/physiology
;
Male
;
NF-kappa B/genetics/metabolism
;
Prebiotics/*analysis
;
Rats
;
Rats, Sprague-Dawley
9.Bioproduction of volatile fatty acids from excess municipal sludge by multistage countercurrent fermentation.
Lei GUO ; He LIU ; Xiufen LI ; Guocheng DU ; Jian CHEN
Chinese Journal of Biotechnology 2008;24(7):1233-1239
A novel anaerobic fermentation process--multistage countercurrent fermentation was applied to improve the bioproduction of volatile fatty acids (VFAs) from excess municipal sludge. Results showed that the total VFAs concentration and the total VFAs yield reached (10.5 +/- 0.5) g/L and 0.20 gVFAs/gVS (Volatile solid) using this novel process. Comparing with the conventional anaerobic fermentation, the concentration and yield of total VFAs increased by 31% and by 54%, respectively. Moreover, removal ratio of organic solids also increased by 37% and it was 50% at the end of multistage countercurrent fermentation. We further investigated the mechanism of VFAs production. Results revealed that this novel process could reduce the inhibitory effect of VFAs on the acid-forming microorganisms, and the total VFAs yield and the removal ratio of organic solids respectively depended on the first stage and the third stage of this novel process. Therefore, the multistage countercurrent fermentation can efficiently improve the bioproduction of VFAs from excess municipal sludge, and relatively enhance the removal ratio of organic solids.
Anaerobiosis
;
Bacteria, Anaerobic
;
metabolism
;
Bioreactors
;
microbiology
;
Fatty Acids, Volatile
;
biosynthesis
;
Fermentation
;
Refuse Disposal
;
instrumentation
;
methods
;
Sewage
;
chemistry
10.Effects of temperature and hydraulic residence time (HRT) on treatment of dilute wastewater in a carrier anaerobic baffled reactor.
Hua-Jun FENG ; Li-Fang HU ; Dan SHAN ; Cheng-Ran FANG ; Dong-Sheng SHEN
Biomedical and Environmental Sciences 2008;21(6):460-466
OBJECTIVETo examine the effect of hydraulic residence time (HRT) on the performance and stability, to treat dilute wastewater at different operational temperatures in a carrier anaerobic baffled reactor (CABR), and hence to gain a deeper insight into microbial responses to hydraulic shocks on the base of the relationships among macroscopic performance, catabolic intermediate, and microcosmic alternation.
METHODSCOD, VFAs, and microbial activity were detected with constant feed strength (300 mg/L) at different HRTs (9-18 h) and temperatures (10 degrees C-28 degrees C) in a CABR.
RESULTSThe removal efficiencies declined with the decreases of HRTs and temperatures. However, the COD removal load was still higher at short HRT than at long HRT. Devastating reactor performance happened at temperature of 10 degrees C and at HRT of 9 h. HRTs had effect on the VFAs in the reactor slightly both at high and low temperatures, but the reasons differed from each other. Microbial activity was sensitive to indicate changes of environmental and operational parameters in the reactor.
CONCLUSIONThe CABR offers to certain extent an application to treat dilute wastewater under a hydraulic-shock at temperatures from 10 degrees C to 28 degrees C.
Anaerobiosis ; Biodegradation, Environmental ; Biomass ; Bioreactors ; Fatty Acids, Volatile ; metabolism ; Oxidoreductases ; metabolism ; Oxygen ; metabolism ; Sewage ; chemistry ; microbiology ; Temperature ; Time Factors ; Waste Disposal, Fluid

Result Analysis
Print
Save
E-mail