1.Effect Analysis of Different Interventions to Improve Neuroinflammation in The Treatment of Alzheimer’s Disease
Jiang-Hui SHAN ; Chao-Yang CHU ; Shi-Yu CHEN ; Zhi-Cheng LIN ; Yu-Yu ZHOU ; Tian-Yuan FANG ; Chu-Xia ZHANG ; Biao XIAO ; Kai XIE ; Qing-Juan WANG ; Zhi-Tao LIU ; Li-Ping LI
Progress in Biochemistry and Biophysics 2025;52(2):310-333
Alzheimer’s disease (AD) is a central neurodegenerative disease characterized by progressive cognitive decline and memory impairment in clinical. Currently, there are no effective treatments for AD. In recent years, a variety of therapeutic approaches from different perspectives have been explored to treat AD. Although the drug therapies targeted at the clearance of amyloid β-protein (Aβ) had made a breakthrough in clinical trials, there were associated with adverse events. Neuroinflammation plays a crucial role in the onset and progression of AD. Continuous neuroinflammatory was considered to be the third major pathological feature of AD, which could promote the formation of extracellular amyloid plaques and intracellular neurofibrillary tangles. At the same time, these toxic substances could accelerate the development of neuroinflammation, form a vicious cycle, and exacerbate disease progression. Reducing neuroinflammation could break the feedback loop pattern between neuroinflammation, Aβ plaque deposition and Tau tangles, which might be an effective therapeutic strategy for treating AD. Traditional Chinese herbs such as Polygonum multiflorum and Curcuma were utilized in the treatment of AD due to their ability to mitigate neuroinflammation. Non-steroidal anti-inflammatory drugs such as ibuprofen and indomethacin had been shown to reduce the level of inflammasomes in the body, and taking these drugs was associated with a low incidence of AD. Biosynthetic nanomaterials loaded with oxytocin were demonstrated to have the capability to anti-inflammatory and penetrate the blood-brain barrier effectively, and they played an anti-inflammatory role via sustained-releasing oxytocin in the brain. Transplantation of mesenchymal stem cells could reduce neuroinflammation and inhibit the activation of microglia. The secretion of mesenchymal stem cells could not only improve neuroinflammation, but also exert a multi-target comprehensive therapeutic effect, making it potentially more suitable for the treatment of AD. Enhancing the level of TREM2 in microglial cells using gene editing technologies, or application of TREM2 antibodies such as Ab-T1, hT2AB could improve microglial cell function and reduce the level of neuroinflammation, which might be a potential treatment for AD. Probiotic therapy, fecal flora transplantation, antibiotic therapy, and dietary intervention could reshape the composition of the gut microbiota and alleviate neuroinflammation through the gut-brain axis. However, the drugs of sodium oligomannose remain controversial. Both exercise intervention and electromagnetic intervention had the potential to attenuate neuroinflammation, thereby delaying AD process. This article focuses on the role of drug therapy, gene therapy, stem cell therapy, gut microbiota therapy, exercise intervention, and brain stimulation in improving neuroinflammation in recent years, aiming to provide a novel insight for the treatment of AD by intervening neuroinflammation in the future.
2.The Role of AMPK in Diabetic Cardiomyopathy and Related Intervention Strategies
Fang-Lian LIAO ; Xiao-Feng CHEN ; Han-Yi XIANG ; Zhi XIA ; Hua-Yu SHANG
Progress in Biochemistry and Biophysics 2025;52(10):2550-2567
Diabetic cardiomyopathy is a distinct form of cardiomyopathy that can lead to heart failure, arrhythmias, cardiogenic shock, and sudden death. It has become a major cause of mortality in diabetic patients. The pathogenesis of diabetic cardiomyopathy is complex, involving increased oxidative stress, activation of inflammatory responses, disturbances in glucose and lipid metabolism, accumulation of advanced glycation end products (AGEs), abnormal autophagy and apoptosis, insulin resistance, and impaired intracellular Ca2+ homeostasis. Recent studies have shown that adenosine monophosphate-activated protein kinase (AMPK) plays a crucial protective role by lowering blood glucose levels, promoting lipolysis, inhibiting lipid synthesis, and exerting antioxidant, anti-inflammatory, anti-apoptotic, and anti-ferroptotic effects. It also enhances autophagy, thereby alleviating myocardial injury under hyperglycemic conditions. Consequently, AMPK is considered a key protective factor in diabetic cardiomyopathy. As part of diabetes prevention and treatment strategies, both pharmacological and exercise interventions have been shown to mitigate diabetic cardiomyopathy by modulating the AMPK signaling pathway. However, the precise regulatory mechanisms, optimal intervention strategies, and clinical translation require further investigation. This review summarizes the role of AMPK in the prevention and treatment of diabetic cardiomyopathy through drug and/or exercise interventions, aiming to provide a reference for the development and application of AMPK-targeted therapies. First, several classical AMPK activators (e.g., AICAR, A-769662, O-304, and metformin) have been shown to enhance autophagy and glucose uptake while inhibiting oxidative stress and inflammatory responses by increasing the phosphorylation of AMPK and its downstream target, mammalian target of rapamycin (mTOR), and/or by upregulating the gene expression of glucose transporters GLUT1 and GLUT4. Second, many antidiabetic agents (e.g., teneligliptin, liraglutide, exenatide, semaglutide, canagliflozin, dapagliflozin, and empagliflozin) can promote autophagy, reverse excessive apoptosis and autophagy, and alleviate oxidative stress and inflammation by enhancing AMPK phosphorylation and its downstream targets, such as mTOR, or by increasing the expression of silent information regulator 1 (SIRT1) and peroxisome proliferator-activated receptor‑α (PPAR‑α). Third, certain anti-anginal (e.g., trimetazidine, nicorandil), anti-asthmatic (e.g., farrerol), antibacterial (e.g., sodium houttuyfonate), and antibiotic (e.g., minocycline) agents have been shown to promote autophagy/mitophagy, mitochondrial biogenesis, and inhibit oxidative stress and lipid accumulation via AMPK phosphorylation and its downstream targets such as protein kinase B (PKB/AKT) and/or PPAR‑α. Fourth, natural compounds (e.g., dihydromyricetin, quercetin, resveratrol, berberine, platycodin D, asiaticoside, cinnamaldehyde, and icariin) can upregulate AMPK phosphorylation and downstream targets such as AKT, mTOR, and/or the expression of nuclear factor erythroid 2-related factor 2 (Nrf2), thereby exerting anti-inflammatory, anti-apoptotic, anti-pyroptotic, antioxidant, and pro-autophagic effects. Fifth, moderate exercise (e.g., continuous or intermittent aerobic exercise, aerobic combined with resistance training, or high-intensity interval training) can activate AMPK and its downstream targets (e.g., acetyl-CoA carboxylase (ACC), GLUT4, PPARγ coactivator-1α (PGC-1α), PPAR-α, and forkhead box protein O3 (FOXO3)) to promote fatty acid oxidation and glucose uptake, and to inhibit oxidative stress and excessive mitochondrial fission. Finally, the combination of liraglutide and aerobic interval training has been shown to activate the AMPK/FOXO1 pathway, thereby reducing excessive myocardial fatty acid uptake and oxidation. This combination therapy offers superior improvement in cardiac dysfunction, myocardial hypertrophy, and fibrosis in diabetic conditions compared to liraglutide or exercise alone.
3.Clinical trial of Morinda officinalis oligosaccharides in the continuation treatment of adults with mild and moderate depression
Shu-Zhe ZHOU ; Zu-Cheng HAN ; Xiu-Zhen WANG ; Yan-Qing CHEN ; Ya-Ling HU ; Xue-Qin YU ; Bin-Hong WANG ; Guo-Zhen FAN ; Hong SANG ; Ying HAI ; Zhi-Jie JIA ; Zhan-Min WANG ; Yan WEI ; Jian-Guo ZHU ; Xue-Qin SONG ; Zhi-Dong LIU ; Li KUANG ; Hong-Ming WANG ; Feng TIAN ; Yu-Xin LI ; Ling ZHANG ; Hai LIN ; Bin WU ; Chao-Ying WANG ; Chang LIU ; Jia-Fan SUN ; Shao-Xiao YAN ; Jun LIU ; Shou-Fu XIE ; Mao-Sheng FANG ; Wei-Feng MI ; Hong-Yan ZHANG
The Chinese Journal of Clinical Pharmacology 2024;40(6):815-819
Objective To observe the efficacy and safety of Morinda officinalis oligosaccharides in the continuation treatment of mild and moderate depression.Methods An open,single-arm,multi-center design was adopted in our study.Adult patients with mild and moderate depression who had received acute treatment of Morinda officinalis oligosaccharides were enrolled and continue to receive Morinda officinalis oligosaccharides capsules for 24 weeks,the dose remained unchanged during continuation treatment.The remission rate,recurrence rate,recurrence time,and the change from baseline to endpoint of Hamilton Depression Scale(HAMD),Hamilton Anxiety Scale(HAMA),Clinical Global Impression-Severity(CGI-S)and Arizona Sexual Experience Scale(ASEX)were evaluated.The incidence of treatment-related adverse events was reported.Results The scores of HAMD-17 at baseline and after treatment were 6.60±1.87 and 5.85±4.18,scores of HAMA were 6.36±3.02 and 4.93±3.09,scores of CGI-S were 1.49±0.56 and 1.29±0.81,scores of ASEX were 15.92±4.72 and 15.57±5.26,with significant difference(P<0.05).After continuation treatment,the remission rate was 54.59%(202 cases/370 cases),and the recurrence rate was 6.49%(24 cases/370 cases),the recurrence time was(64.67±42.47)days.The incidence of treatment-related adverse events was 15.35%(64 cases/417 cases).Conclusion Morinda officinalis oligosaccharides capsules can be effectively used for the continuation treatment of mild and moderate depression,and are well tolerated and safe.
4.Effects of total flavonoids of Oxytropis falcata Bunge on CCl4-induced liver fibrosis in rats
Tian-Yan YANG ; Xin-Huan MA ; Zhi-Wei XU ; Rong-Kun LI ; Fang-Xiong MA ; Bao-Feng HE ; Liang CHEN ; Xiao-Qing CHEN ; Jun ZHANG
The Chinese Journal of Clinical Pharmacology 2024;40(14):2073-2077
Objective To investigate the effects of total flavones from Oxytropis falcata Bunge on hepatic fibrosis(HF)induced by carbon tetrachloride and liver transforming growth factor(TGF-β)/Smad signaling pathway.Methods Forty-eight male rats were randomly divided into normal group(intraperitoneal injection of peanut oil,intragastric administration of 0.9%NaCl),model group(intraperitoneal injection of 40%CC14 peanut oil solution induced HF model,intragastric administration of 0.9%NaCl),positive control group(modeling,intragastric administration of 0.2 mg·kg-1 of colchicine),experimental-L,-M,-H groups(modeling,intragastric administration of 100,200 and 400 mg·kg-1 of total flavonoid extract of Oxytropis falcata Bunge),8 individuals in each group,for 4 consecutive weeks.The histopathological changes were observed by hematoxylin-eosin and Masson staining.Serum liver function and liver fibrosis were measured;erum inflammatory factors were detected;fluorescence quantitative polymerase chain reaction(RT-qPCR)was used to determine gene expression in liver.Results The pathological injury of liver tissue in the model group was serious,and a large number of inflammatory factors and collagen fibers were accumulated,while the rest of the treatment groups had different degrees of remission.In normal group,model group,positive control group,experimental-L,-M,-H groups,glutamic-pyruvic transaminase levels were(49.28±12.44),(5 885.42±948.37),(4 454.60±489.27),(4 650.47±843.53),(3 761.75±887.30)and(3 544.90±1 066.75)μg·L-1;glutamic-oxaloacetic transaminase levels were(186.90±46.89),(5 936.23±793.81),(3 971.37±780.28),(4 360.30±863.35),(3 943.10±439.47)and(3 971.38±631.08)μg·L-1;hyaluronic acid levels were(45.08±17.16),(104.32±36.06),(66.83±20.09),(70.30±21.07),(60.00±9.68)and(59.02±10.73)μg·L-1;laminin levels were(23.13±3.89),(60.85±13.66),(35.67±9.92),(39.98±9.39),(36.55±12.21)and(34.68±24.83)μg·L-1;type Ⅲ procollagen level were(24.98±5.34),(82.58±30.14),(40.70±16.14),(51.08±23.21),(43.60±12.48)and(44.20±11.66)p±g·L-1;interleukin(IL)-1β levels were(37.63±1.24),(46.10±3.23),(39.22±2.36),(41.33±0.93),(40.25±2.04)and(39.18±2.23)pg·mL-1;tumor necrosis factor-α levels were(314.58±20.56),(383.71±16.97),(349.00±7.93),(348.88±25.11),(325.75±27.84)and(335.07±21.33)pg·mL-1;TGF-β1 mRNA expression of relative quantity respectively were 1.00±0.00,60.99±15.70,9.61±1.59,7.37±1.09,6.41±0.64,6.87±1.09;Smad7 mRNA relative expression were 1.00±0.00,0.34±0.05,0.21±0.03,0.35±0.02,0.38±0.02,0.42±0.03.The above indexes in the model group were compared with the normal group,and the above indexes in the experimental-M,-H groups were compared with the model group,and the differences were statistically significant(P<0.05,P<0.01,P<0.001).Conclusion Total flavonoids of Oxytropis falcata Bunge have protective effects on CC14-induced liver fibrosis in rats,and the mechanism may be related to the regulation of TGF-β/Smad pathway.
5.Rapid screening the chemical components in Jiawei Dingzhi pills using precursor ion selection UHPLC-Q-TOF-MS/MS
Zu-ying WEI ; Cong FANG ; Kui CHEN ; Hao-lan YANG ; Jie LIU ; Zhi-xin JIA ; Yue-ting LI ; Hong-bin XIAO
Acta Pharmaceutica Sinica 2024;59(8):2350-2364
A precursor ion selection (PIS) based ultra high performance liquid chromatography-quadrupole time of flight mass spectrometry (UHPLC-Q-TOF-MS) analytical method was used to screen the chemical components in Jiawei Dingzhi pills (JWDZP) comprehensively and rapidly. To compile the components of the compound medicine, a total of 1 921 components were found utilizing online databases and literature. After verifying the sources, unifying the component names, merging the multi-flavor attributed components, and removing the weak polar molecules, 450 components were successfully retained. The Acquity UPLC HSS T3 column (100 mm × 2.1 mm, 1.8 μm) was used, with a 0.1% formic acid water (A)-acetonitrile (B) as the mobile phase. The flow rate was 0.35 mL·min-1, the column temperature was 35 ℃, and an electrospray ion source was used. Data was collected with the PIS strategy in both positive and negative ion modes. Compounds were screened through matching accurate molecular weight of the database, and identified according to MS/MS data (characteristic fragment ions and neutral loss), with comparison of reference. Some compounds were confirmed using standard products. A total of 176 compounds were screened out in the extract of JWDZP, among which 26 compounds were confirmed by standard products. These compounds include 96 components from the sovereign drug, and 34 coefflux components with low ion intensity. The PIS-UHPLC-Q-TOF-MS/MS method established in this study can quickly and comprehensively screen the chemical components of JWDZP, which enhanced the screening rate of components with co-elution compounds of low ion intensities and provided a basis for the study of the material foundation of JWDZP.
6.Preparation modification strategies for clinical treatment drugs of Parkinson's disease
Meng-jiao HE ; Yi-fang XIAO ; Xiang-an-ni KONG ; Zhi-hao LIU ; Xiao-guang WANG ; Hao FENG ; Jia-sheng TU ; Qian CHEN ; Chun-meng SUN
Acta Pharmaceutica Sinica 2024;59(3):574-580
Parkinson's disease (PD) is a chronic neurodegenerative disease. At present, levodopa and other drugs are mainly used for dopamine supplementation therapy. However, the absorption of levodopa in the gastrointestinal tract is unstable and its half-life is short, and long-term use of levodopa will lead to the end-of-dose deterioration, dyskinesia, the "ON-OFF" phenomenon and other symptoms. Therefore, new preparations need to be developed to improve drug efficacy, reduce side effects or improve compliance of patients. Based on the above clinical needs, this review briefly introduced the preparation modification strategies for the treatment of PD through case analysis, in order to provide references for the research and development of related preparations.
7.Effect and mechanism of pachymic acid on renal function and fibrosis in rats with chronic renal failure
Bin PENG ; Xue FENG ; Li FENG ; Wei XIONG ; Xi HU ; Shuangyi ZHU ; Yang XIAO ; Fang CHEN ; Zhi GAO
China Pharmacy 2024;35(12):1489-1494
OBJECTIVE To investigate the effect of pachymic acid (PA) on renal function and fibrosis in chronic renal failure (CRF) rats and its potential mechanism based on the Ras homolog gene family member A (RhoA)/Rho-associated coiled-coil forming protein kinase (ROCK) signaling pathway. METHODS Using male SD rats as subjects, the CRF model was established by 5/6 nephrectomy; the successfully modeled rats were divided into model group, PA low-dose, medium-dose and high-dose groups (5, 10, 20 mg/kg PA), high-dose PA+ROCK pathway activator lysophosphatidic acid (LPA) group (20 mg/kg PA+1 mg/kg LPA), with 15 rats in each group. Another 15 rats were selected as the sham operation group with only the kidney exposed but not excised. The rats in each drug group were gavaged and/or injected with the corresponding liquid via the caudal vein, once a day, for 12 consecutive weeks. During the experiment, the general condition of rats was observed in each group. After the last administration, the serum renal function indexes (blood urea nitrogen, serum creatinine, uric acid) of rats in each group were detected, the renal histopathological changes were observed; the renal tubule injury score and the area of renal fibrosis were quantified. The levels of oxidative stress indexes [malondialdehyde (MDA), superoxide dismutase (SOD)] and inflammatory factors (tumor necrosis factor-α, interleukin-1β, interleukin-6), the positive expression rates of connective tissue growth factor (CTGF) and collagen Ⅰ were detected as well as the expression levels of pathway-related proteins (RhoA, ROCK1) and fibrosis- related proteins (transforming growth factor-β1, bare corneum homologs 2, α-smooth muscle actin) were determined. RESULTS Compared with the sham operation group, the rats in model group had reduced diet, smaller body size, listless spirit and sluggish response, reduced and atrophied glomeruli, dilated renal tubules with chaotic structure, and a large number of inflammatory cells infiltrated interstitium; the serum levels of renal function indexes, renal tubule injury score, renal fibrosis area proportion, the levels of MDA and inflammatory factors, the positive expression rates of CTGF and collagen Ⅰ, and the expression levels of pathway-related proteins and fibrosis-related proteins in renal tissues were significantly increased, while SOD level was significantly decreased (P<0.05). Compared with the model group, the general condition and pathological injuries of kidney tissue of rats in PA groups were improved to varying degrees,and the above quantitative indexes were significantly improved in a dose-dependent manner (P<0.05). LPA could significantly reverse the improvement effect of PA on the above indicators (P<0.05). CONCLUSIONS PA can improve renal function and alleviate renal fibrosis in CRF rats, which may be related to inhibiting the activation of RhoA/ROCK signaling pathway.
8.Application Study of Enzyme Inhibitors and Their Conformational Optimization in The Treatment of Alzheimer’s Disease
Chao-Yang CHU ; Biao XIAO ; Jiang-Hui SHAN ; Shi-Yu CHEN ; Chu-Xia ZHANG ; Yu-Yu ZHOU ; Tian-Yuan FANG ; Zhi-Cheng LIN ; Kai XIE ; Shu-Jun XU ; Li-Ping LI
Progress in Biochemistry and Biophysics 2024;51(7):1510-1529
Alzheimer’s disease (AD) is a central neurodegenerative disease characterized by progressive cognitive dysfunction and behavioral impairment, and there is a lack of effective drugs to treat AD clinically. Existing medications for the treatment of AD, such as Tacrine, Donepezil, Rivastigmine, and Aducanumab, only serve to delay symptoms and but not cure disease. To add insult to injury, these medications are associated with very serious adverse effects. Therefore, it is urgent to explore effective therapeutic drugs for AD. Recently, studies have shown that a variety of enzyme inhibitors, such as cholinesterase inhibitors, monoamine oxidase (MAO)inhibitors, secretase inhibitors, can ameliorate cholinergic system dysfunction, Aβ production and deposition, Tau protein hyperphosphorylation, oxidative stress damage, and the decline of synaptic plasticity, thereby improving AD symptoms and cognitive function. Some plant extracts from natural sources, such as Umbelliferone, Aaptamine, Medha Plus, have the ability to inhibit cholinesterase activity and act to improve learning and cognition. Isochromanone derivatives incorporating the donepezil pharmacophore bind to the catalytic active site (CAS) and peripheral anionic site (PAS) sites of acetylcholinesterase (AChE), which can inhibit AChE activity and ameliorate cholinergic system disorders. A compound called Rosmarinic acid which is found in the Lamiaceae can inhibit monoamine oxidase, increase monoamine levels in the brain, and reduce Aβ deposition. Compounds obtained by hybridization of coumarin derivatives and hydroxypyridinones can inhibit MAO-B activity and attenuate oxidative stress damage. Quinoline derivatives which inhibit the activation of AChE and MAO-B can reduce Aβ burden and promote learning and memory of mice. The compound derived from the combination of propargyl and tacrine retains the inhibitory capacity of tacrine towards cholinesterase, and also inhibits the activity of MAO by binding to the FAD cofactor of monoamine oxidase. A series of hybrids, obtained by an amide linker of chromone in combine with the benzylpiperidine moieties of donepezil, have a favorable safety profile of both cholinesterase and monoamine oxidase inhibitory activity. Single domain antibodies (such as AAV-VHH) targeted the inhibition of BACE1 can reduce Aβ production and deposition as well as the levels of inflammatory cells, which ultimately improve synaptic plasticity. 3-O-trans-p-coumaroyl maslinic acid from the extract of Ligustrum lucidum can specifically inhibit the activity of γ-secretase, thereby rescuing the long-term potentiation and enhancing synaptic plasticity in APP/PS1 mice. Inhibiting γ-secretase activity which leads to the decline of inflammatory factors (such as IFN-γ, IL-8) not only directly improves the pathology of AD, but also reduces Aβ production. Melatonin reduces the transcriptional expression of GSK-3β mRNA, thereby decreasing the levels of GSK-3β and reducing the phosphorylation induced by GSK-3β. Hydrogen sulfide can inhibitGSK-3β activity via sulfhydration of the Cys218 site of GSK-3β, resulting in the suppression of Tau protein hyperphosphorylation, which ameliorate the motor deficits and cognitive impairment in mice with AD. This article reviews enzyme inhibitors and conformational optimization of enzyme inhibitors targeting the regulation of cholinesterase, monoamine oxidase, secretase, and GSK-3β. We are hoping to provide a comprehensive overview of drug development in the enzyme inhibitors, which may be useful in treating AD.
9.Extraction process,enzymatic properties and practical application of glucuronic hydrolase in Scutellaria baicalensis stems and leaves
Yu-Jie CHENG ; Xu CHEN ; Yun-Hua LIU ; Zhi-Fang HUANG ; Yan CHEN ; Yu-Hong LIU ; Jin-Hai YI
Chinese Traditional Patent Medicine 2024;46(1):35-40
AIM To study the extraction process,enzymatic properties and practical application of glucuronic hydrolase in Scutellaria baicalensis stems and leaves(sbsl GUS).METHODS With granularity,water consumption,extraction time and extraction frequency as influencing factors,enzymatic activity as an evaluation index,the extraction process was optimized by orthogonal test on the basis of single factor test.The relationship between substrate(baicalin)concentration and enzymolysis rate,after which Vmax and Km were calculated,the effects of pH value,temperature and metal ion on enzymatic activity were investigated,pH stability and heat stability were evaluated.sbsl GUS was adotped in the enzymolysis of baicalin to prepare baicalein,then the effects of pH value,temperature,reaction time,initial substrate concentration and enzyme addition on transfer rate were investigated.RESULTS The optimal extraction process was determined to be 40 mesh for granularity,10 times for water consumption,15 min for extraction time,and 3 times for extraction frequency.The enzymolysis accorded with the kinetics of enzymatic reaction,Km was 0.006 3 mol/L,Vmax was 70.42 μmol/h,the strongest enzymatic activity was found at the pH value of 6.0,temperature of 45℃and metal ion of 100 mmol/L Cu2+,sbsl GUS demonstrated good stability at the ranges of 4.0-7.0 for pH value and 4-30℃for temperature.The optimal preparation process was determined to be 6.0 for pH value,45℃for temperature,more than 12 h for reaction time,67.2 mmol/L for initial substrate concentration,and 1 mL/0.269 mmol baicalin for enzyme addition,the transfer rate was 97.83%.CONCLUSION sbsl GUS enzymolysis exhibits high efficiency and mild condition,which can provide a simple preparation method for obtaining baicalein,and expand the application path of Scutellaria baicalensis stems and leaves.
10.Experience in Diagnosis and Treatment of Tinnitus with LAI's Tongyuan Acupuncture Method
Guo-Xiong YAN ; Ji-Hong WANG ; Chao WAN ; Ying LIU ; Zhi-Kai HUANG ; Tian-Fang CHEN ; Yan-Ling HUANG
Journal of Guangzhou University of Traditional Chinese Medicine 2024;41(9):2396-2400
Tinnitus is a clinically refractory disease with a high incidence.LAI's Tongyuan acupuncture method believes that tinnitus is nothing more than the two ends of deficiency and excess.The deficiency is closely related to original spirit,and the excess is related to the pathological factors such as externally-contracted six pathogenic factors,phlegm-damp and blood stasis,and qi stagnation and yang constraint.The Tongyuan acupuncture method is based on original spirit,takes the two vessels of conception vessel(CV)and governor vessel(GV)as the general outline,takes the regulation of yin and yang as the main method,pays attention to the combination of local and overall,and emphasizes the application of tonification and purgation,and has the clinical effect of reinforcing healthy qi and dispelling pathogen,cultivating the vital essence.In clinical application,the method of'unblocking governor vessel and nourishing spirit'is used to play the role of heart and brain nourishing spirit and warming and supporting yang qi.The method of'conducting qi back to its source'has the effect of cultivating the vital essence and regulating qi movement.The treatments should be cooperated according to the syndromes,so that the pathogens can be expelled and healthy qi can be settled.Qi and blood have origins of generation and transformation and normally nourishing in the ear,so as to effectively alleviate the patient's tinnitus symptoms.This paper summarizes and analyzes Professor LAI Xin-Sheng's Experience in the diagnosis and treatment of tinnitus by Tongyuan acupuncture method,and provides a new acupuncture treatment plan for clinical application.

Result Analysis
Print
Save
E-mail