1.Carvedilol to prevent hepatic decompensation of cirrhosis in patients with clinically significant portal hypertension stratified by new non-invasive model (CHESS2306)
Chuan LIU ; Hong YOU ; Qing-Lei ZENG ; Yu Jun WONG ; Bingqiong WANG ; Ivica GRGUREVIC ; Chenghai LIU ; Hyung Joon YIM ; Wei GOU ; Bingtian DONG ; Shenghong JU ; Yanan GUO ; Qian YU ; Masashi HIROOKA ; Hirayuki ENOMOTO ; Amr Shaaban HANAFY ; Zhujun CAO ; Xiemin DONG ; Jing LV ; Tae Hyung KIM ; Yohei KOIZUMI ; Yoichi HIASA ; Takashi NISHIMURA ; Hiroko IIJIMA ; Chuanjun XU ; Erhei DAI ; Xiaoling LAN ; Changxiang LAI ; Shirong LIU ; Fang WANG ; Ying GUO ; Jiaojian LV ; Liting ZHANG ; Yuqing WANG ; Qing XIE ; Chuxiao SHAO ; Zhensheng LIU ; Federico RAVAIOLI ; Antonio COLECCHIA ; Jie LI ; Gao-Jun TENG ; Xiaolong QI
Clinical and Molecular Hepatology 2025;31(1):105-118
Background:
s/Aims: Non-invasive models stratifying clinically significant portal hypertension (CSPH) are limited. Herein, we developed a new non-invasive model for predicting CSPH in patients with compensated cirrhosis and investigated whether carvedilol can prevent hepatic decompensation in patients with high-risk CSPH stratified using the new model.
Methods:
Non-invasive risk factors of CSPH were identified via systematic review and meta-analysis of studies involving patients with hepatic venous pressure gradient (HVPG). A new non-invasive model was validated for various performance aspects in three cohorts, i.e., a multicenter HVPG cohort, a follow-up cohort, and a carvediloltreating cohort.
Results:
In the meta-analysis with six studies (n=819), liver stiffness measurement and platelet count were identified as independent risk factors for CSPH and were used to develop the new “CSPH risk” model. In the HVPG cohort (n=151), the new model accurately predicted CSPH with cutoff values of 0 and –0.68 for ruling in and out CSPH, respectively. In the follow-up cohort (n=1,102), the cumulative incidences of decompensation events significantly differed using the cutoff values of <–0.68 (low-risk), –0.68 to 0 (medium-risk), and >0 (high-risk). In the carvediloltreated cohort, patients with high-risk CSPH treated with carvedilol (n=81) had lower rates of decompensation events than non-selective beta-blockers untreated patients with high-risk CSPH (n=613 before propensity score matching [PSM], n=162 after PSM).
Conclusions
Treatment with carvedilol significantly reduces the risk of hepatic decompensation in patients with high-risk CSPH stratified by the new model.
2.Carvedilol to prevent hepatic decompensation of cirrhosis in patients with clinically significant portal hypertension stratified by new non-invasive model (CHESS2306)
Chuan LIU ; Hong YOU ; Qing-Lei ZENG ; Yu Jun WONG ; Bingqiong WANG ; Ivica GRGUREVIC ; Chenghai LIU ; Hyung Joon YIM ; Wei GOU ; Bingtian DONG ; Shenghong JU ; Yanan GUO ; Qian YU ; Masashi HIROOKA ; Hirayuki ENOMOTO ; Amr Shaaban HANAFY ; Zhujun CAO ; Xiemin DONG ; Jing LV ; Tae Hyung KIM ; Yohei KOIZUMI ; Yoichi HIASA ; Takashi NISHIMURA ; Hiroko IIJIMA ; Chuanjun XU ; Erhei DAI ; Xiaoling LAN ; Changxiang LAI ; Shirong LIU ; Fang WANG ; Ying GUO ; Jiaojian LV ; Liting ZHANG ; Yuqing WANG ; Qing XIE ; Chuxiao SHAO ; Zhensheng LIU ; Federico RAVAIOLI ; Antonio COLECCHIA ; Jie LI ; Gao-Jun TENG ; Xiaolong QI
Clinical and Molecular Hepatology 2025;31(1):105-118
Background:
s/Aims: Non-invasive models stratifying clinically significant portal hypertension (CSPH) are limited. Herein, we developed a new non-invasive model for predicting CSPH in patients with compensated cirrhosis and investigated whether carvedilol can prevent hepatic decompensation in patients with high-risk CSPH stratified using the new model.
Methods:
Non-invasive risk factors of CSPH were identified via systematic review and meta-analysis of studies involving patients with hepatic venous pressure gradient (HVPG). A new non-invasive model was validated for various performance aspects in three cohorts, i.e., a multicenter HVPG cohort, a follow-up cohort, and a carvediloltreating cohort.
Results:
In the meta-analysis with six studies (n=819), liver stiffness measurement and platelet count were identified as independent risk factors for CSPH and were used to develop the new “CSPH risk” model. In the HVPG cohort (n=151), the new model accurately predicted CSPH with cutoff values of 0 and –0.68 for ruling in and out CSPH, respectively. In the follow-up cohort (n=1,102), the cumulative incidences of decompensation events significantly differed using the cutoff values of <–0.68 (low-risk), –0.68 to 0 (medium-risk), and >0 (high-risk). In the carvediloltreated cohort, patients with high-risk CSPH treated with carvedilol (n=81) had lower rates of decompensation events than non-selective beta-blockers untreated patients with high-risk CSPH (n=613 before propensity score matching [PSM], n=162 after PSM).
Conclusions
Treatment with carvedilol significantly reduces the risk of hepatic decompensation in patients with high-risk CSPH stratified by the new model.
3.Exploring the safety and the countermeasures of rational use of Psoraleae Fructus based on the evolution of efficacy/toxicity records in ancient and modern literature
Ying-jie XU ; Xiao-yan ZHAN ; Zhao-fang BAI ; Xiao-he XIAO
Acta Pharmaceutica Sinica 2025;60(2):314-322
Psoraleae Fructus is derived from the dried fruit of the
4.Carvedilol to prevent hepatic decompensation of cirrhosis in patients with clinically significant portal hypertension stratified by new non-invasive model (CHESS2306)
Chuan LIU ; Hong YOU ; Qing-Lei ZENG ; Yu Jun WONG ; Bingqiong WANG ; Ivica GRGUREVIC ; Chenghai LIU ; Hyung Joon YIM ; Wei GOU ; Bingtian DONG ; Shenghong JU ; Yanan GUO ; Qian YU ; Masashi HIROOKA ; Hirayuki ENOMOTO ; Amr Shaaban HANAFY ; Zhujun CAO ; Xiemin DONG ; Jing LV ; Tae Hyung KIM ; Yohei KOIZUMI ; Yoichi HIASA ; Takashi NISHIMURA ; Hiroko IIJIMA ; Chuanjun XU ; Erhei DAI ; Xiaoling LAN ; Changxiang LAI ; Shirong LIU ; Fang WANG ; Ying GUO ; Jiaojian LV ; Liting ZHANG ; Yuqing WANG ; Qing XIE ; Chuxiao SHAO ; Zhensheng LIU ; Federico RAVAIOLI ; Antonio COLECCHIA ; Jie LI ; Gao-Jun TENG ; Xiaolong QI
Clinical and Molecular Hepatology 2025;31(1):105-118
Background:
s/Aims: Non-invasive models stratifying clinically significant portal hypertension (CSPH) are limited. Herein, we developed a new non-invasive model for predicting CSPH in patients with compensated cirrhosis and investigated whether carvedilol can prevent hepatic decompensation in patients with high-risk CSPH stratified using the new model.
Methods:
Non-invasive risk factors of CSPH were identified via systematic review and meta-analysis of studies involving patients with hepatic venous pressure gradient (HVPG). A new non-invasive model was validated for various performance aspects in three cohorts, i.e., a multicenter HVPG cohort, a follow-up cohort, and a carvediloltreating cohort.
Results:
In the meta-analysis with six studies (n=819), liver stiffness measurement and platelet count were identified as independent risk factors for CSPH and were used to develop the new “CSPH risk” model. In the HVPG cohort (n=151), the new model accurately predicted CSPH with cutoff values of 0 and –0.68 for ruling in and out CSPH, respectively. In the follow-up cohort (n=1,102), the cumulative incidences of decompensation events significantly differed using the cutoff values of <–0.68 (low-risk), –0.68 to 0 (medium-risk), and >0 (high-risk). In the carvediloltreated cohort, patients with high-risk CSPH treated with carvedilol (n=81) had lower rates of decompensation events than non-selective beta-blockers untreated patients with high-risk CSPH (n=613 before propensity score matching [PSM], n=162 after PSM).
Conclusions
Treatment with carvedilol significantly reduces the risk of hepatic decompensation in patients with high-risk CSPH stratified by the new model.
5.Study on the mechanism of Cuscuta chinensis flavonoids promoting decidualization and improving recurrent spontaneous abortion
Fang FANG ; Ying CUI ; Jialü HUANG ; Lili CHEN ; Jia XU ; Yunhui WAN
China Pharmacy 2025;36(19):2379-2386
OBJECTIVE To explore the mechanism by which Cuscuta chinensis flavonoids (CCF) promote decidualization and improve recurrent spontaneous abortion (RSA). METHODS HTR-8/SVneo cells in logarithmic growth phase were randomly divided into blank group, lipopolysaccharide (LPS) group, CCF group, SGK2 inhibitor (GSK650394, abbreviated as “GSK”) group and CCF+GSK group. Each group was treated with the corresponding agents accordingly. HTR-8/SVneo cells with SGK2 knockdown were randomly divided into small interfering RNA of SGK2 (siSGK2) group and siSGK2+CCF group; additionally, blank group and LPS group were established; each group was treated with the corresponding agents accordingly. The cell survival rate, expression levels of WNK signaling pathway- and decidualization-related proteins and mRNAs, as well as mitochondrial membrane potential levels, were assessed in each group before and after SGK2 knockdown. RSA mice model was constructed and randomly divided into model group, CCF low-dose group, CCF high-dose group, GSK group, and combined dosing group, with 4 mice in each group. Other 4 normal pregnant female mice were selected as the control group. The number of implanted embryos, viable fetuses, and lost embryos in mice was recorded. The morphological changes of endometrium and decidualization were observed, and WNK signaling pathway- and decidualization-related proteins and mRNAs expressing levels as well as mitochondrial membrane potential levels were all detected. RESULTS Compared with the blank group, the cell survival rate, as well as the protein and mRNA expression levels of SGK2, WNK1, WNK4, prolactin, insulin-like growth factor- binding protein-1, oxidative stress responsive kinase 1, and Ste20-like proline-/alanine-rich kinase were significantly reduced in the LPS group (P<0.05); compared with the LPS group, the cell survival rate and the expression levels of the above- mentioned proteins and mRNAs were significantly increased in the CCF group, while the cell survival rate and the expression levels of the above-mentioned proteins and mRNAs were significantly decreased in the GSK group (P<0.05); compared with the CCF group, the cell survival rate and the expression levels of the above-mentioned proteins and mRNAs were significantly reduced in the CCF+GSK group (P<0.05). After knocking down SGK2, compared with the LPS group, the cell survival rate, red/green fluorescence intensity ratio, and the expression levels of the above-mentioned proteins and mRNAs were significantly reduced in the siSGK2 group (P<0.05); compared with the siSGK2 group, the cell survival rate, red/green fluorescence intensity ratio, and the expression levels of the above-mentioned proteins and mRNAs were significantly increased in the siSGK2+CCF group (P<0.05). The in vivo experimental results showed that CCF treatment can significantly improve the number of implanted embryos and viable fetuses in RSA model mice and reduce lost embryos, the expression levels of the above-mentioned proteins and mRNAs in endometrial tissue were significantly increased, and the red/green fluorescence intensity ratio was significantly increased (P< 0.05); the combined dosing group could reverse the effect of CCF (P<0.05). CONCLUSIONS CCF can activate SGK2, up- regulate the WNK signaling pathway, promote endometrial decidualization, and improve RSA.
6.ER-mitochondrial interaction in Parkinson's disease
Xiao-Min XU ; Shu-Min LIU ; Ying ZHANG ; Xin JIANG ; Peng XU ; Fang LU
Chinese Pharmacological Bulletin 2024;40(10):1819-1823
The interaction between organelles is the focus of re-search in neural development.The contact site of endoplasmic reticulum and mitochondria is the focus of Parkinson's disease(PD)in recent years.The research shows that mitochondria,endoplasmic reticulum(ER),lysosome and other organelles play an important role in neurogenesis.Specifically,metabolic turnover,reactive oxygen species production,mitochondrial dy-namics,mitochondrial autophagy,mitochondria-mediated apop-tosis,and interactions between mitochondria and the ER all play a role in neurogenesis.In PD,abnormal ER-mitochondrial inter-action can affect mitochondrial calcium overload,mitochondrial fission and fusion imbalance,and lipid homeostasis disorder.Therefore,here we review the recent progress in the main regu-latory mechanisms of ER-mitochondrial interaction and address the effects of abnormal ER-mitochondrial interactions on PD.
7.Exploration of mechanism of action of tretinoin polyglucoside in rats with IgA nephropathy based on mitochondrial dynamics
Yan-Min FAN ; Shou-Lin ZHANG ; Hong FANG ; Xu WANG ; Han-Shu JI ; Ji-Chang BU ; Ke SONG ; Chen-Chen CHEN ; Ying DING ; Chun-Dong SONG
Chinese Pharmacological Bulletin 2024;40(11):2069-2074
Aim To investigate the effects of multi-gly-cosides of Tripterygium wilfordii(GTW)on mitochon-drial dynamics-related proteins and the mechanism of nephroprotective effects in IgA nephrophathy(IgAN)rats.Methods SPF grade male SD rats were random-ly divided into the Control group,modelling group,prednisone group(6.25 mg·kg·d-1)and GTW group(6.25 mg·kg·d-1).The IgAN rat model was established by the method of"bovine serum albumin(BSA)+carbon tetrachloride(CCl4)+lipopolysac-charide(LPS)".The total amount of urinary protein(24 h-UTP)and erythrocyte count in urine were meas-ured in 24 h urine.Blood biochemistry of serum albu-min(ALB),alanine aminotransferase(ALT),urea ni-trogen(BUN),and creatinine(Scr)were measured in abdominal aorta of the rats;immunofluorescence and HE staining were used to observe the histopathology of the kidneys;RT-PCR and Western blotting were used to detect the mRNA and protein expression levels of key proteins regulating mitochondrial division and fu-sion:dynamin-related protein 1(Drp1),mitochondrial fusion protein 1(Mfn1),and mitochondrial fusion pro-tein 2(Mfn2),and PTEN-induced putative kinase 1(Pink1),in the kidney tissue of rats.Results GTW significantly reduced urinary erythrocyte count and 24 h-UTP,decreased serum ALT,BUN and Scr levels,in-creased serum ALB levels,improved renal histopatho-logical status in IgAN rats,increased the protein and mRNA expression levels of Mfn1,Mfn2,and Pink1,and decreased the protein and mRNA expression levels of Drp1 in renal tissues.Conclusions GTW may regu-late mitochondrial structure and maintain the dynamic balance of mitochondrial dynamics by promoting the ex-pression of Mfn1,Mfn2,Pink1 and decreasing Drp1.This may result in a reduction in urinary erythrocyte counts and proteinuria,and an improvement in renal function.
8.Effects of Tripterygium glycosides tablets on LIGHT-HVEM/LTβR pathway in rats with IgA nephropathy
Xu WANG ; Hong FANG ; Yan-Min FAN ; Han-Shu JI ; Ke SONG ; Chen-Chen CHEN ; Ji-Chang BU ; Ying DING ; Chun-Dong SONG
Chinese Pharmacological Bulletin 2024;40(12):2277-2282
Aim To explore the mechanism of action of Tripterygium glycosides tablets on kidney of rats with IgA nephropathy based on inflammation-related path-ways.Methods Forty-five male SD rats of SPF grade were randomly divided into control group and modeling group.In addition to the blank group,the modeling group used the combination of bovine serum albumin(BSA)+carbon tetrachloride(CC14)+lipopolysac-charide(LPS)to establish the IgA nephropathy rat model.Successfully modeled rats were randomly divid-ed into the model group,the prednisone group and Tripterygium glycosides tablets group,and the treat-ment group was given the drug by gavage from the 13 th week,and the 24 hours urine,blood and kidney tis-sues of the rats were collected and examined after 4 weeks of the administration of the drug.Urine erythro-cyte count,quantitative 24-h urine protein(24 h-UTP),urea nitrogen(BUN),and blood creatinine(Scr)were detected in each group;serum interleukin 1β(IL-1β)and tumor necrosis factor α(TNF-α)were detected by enzyme-linked immunosorbent assay(Elisa);the pathological changes in the renal tissues of the rats in each group were observed by horizontal hematoxylin-eosin(HE)staining;and the renal tis-sues in each group were observed by Western blotting.The expressions of LIGHT,HVEM,LTβR proteins and their mRNAs in rat kidney tissue were detected by Western blot and real-time fluorescence quantitative polymerase chain reaction(RT-PCR).Results Tripterygium glycosides tablets significantly reduced the levels of urinary erythrocyte count,24 h-UTP,BUN,and Scr in IgA nephropathy rats(P<0.01),improved renal histopathology,lowered the levels of se-rum inflammatory factors IL-1β and TNF-α(P<0.01),and lowered the levels of LIGHT,HVEM,LTβR proteins and their mRNA expression in renal tis-sues(P<0.01).Conclusions Tripterygium glyco-sides tablets may inhibit the immune response and re-duce the release of inflammatory factors by down-regu-lating the LIGHT-HVEM/LT(3R pathway,thus reduc-ing the inflammatory response,lowering the urinary e-rythrocytes and urinary proteins,improving the renal nephron pathologic injury,and protecting the renal function.
9.Surveillance of bacterial resistance in tertiary hospitals across China:results of CHINET Antimicrobial Resistance Surveillance Program in 2022
Yan GUO ; Fupin HU ; Demei ZHU ; Fu WANG ; Xiaofei JIANG ; Yingchun XU ; Xiaojiang ZHANG ; Fengbo ZHANG ; Ping JI ; Yi XIE ; Yuling XIAO ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Jingyong SUN ; Qing CHEN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yunmin XU ; Sufang GUO ; Yanyan WANG ; Lianhua WEI ; Keke LI ; Hong ZHANG ; Fen PAN ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Wei LI ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Qian SUN ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanqing ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Wenhui HUANG ; Juan LI ; Quangui SHI ; Juan YANG ; Abulimiti REZIWAGULI ; Lili HUANG ; Xuejun SHAO ; Xiaoyan REN ; Dong LI ; Qun ZHANG ; Xue CHEN ; Rihai LI ; Jieli XU ; Kaijie GAO ; Lu XU ; Lin LIN ; Zhuo ZHANG ; Jianlong LIU ; Min FU ; Yinghui GUO ; Wenchao ZHANG ; Zengguo WANG ; Kai JIA ; Yun XIA ; Shan SUN ; Huimin YANG ; Yan MIAO ; Mingming ZHOU ; Shihai ZHANG ; Hongjuan LIU ; Nan CHEN ; Chan LI ; Jilu SHEN ; Wanqi MEN ; Peng WANG ; Xiaowei ZHANG ; Yanyan LIU ; Yong AN
Chinese Journal of Infection and Chemotherapy 2024;24(3):277-286
Objective To monitor the susceptibility of clinical isolates to antimicrobial agents in tertiary hospitals in major regions of China in 2022.Methods Clinical isolates from 58 hospitals in China were tested for antimicrobial susceptibility using a unified protocol based on disc diffusion method or automated testing systems.Results were interpreted using the 2022 Clinical &Laboratory Standards Institute(CLSI)breakpoints.Results A total of 318 013 clinical isolates were collected from January 1,2022 to December 31,2022,of which 29.5%were gram-positive and 70.5%were gram-negative.The prevalence of methicillin-resistant strains in Staphylococcus aureus,Staphylococcus epidermidis and other coagulase-negative Staphylococcus species(excluding Staphylococcus pseudintermedius and Staphylococcus schleiferi)was 28.3%,76.7%and 77.9%,respectively.Overall,94.0%of MRSA strains were susceptible to trimethoprim-sulfamethoxazole and 90.8%of MRSE strains were susceptible to rifampicin.No vancomycin-resistant strains were found.Enterococcus faecalis showed significantly lower resistance rates to most antimicrobial agents tested than Enterococcus faecium.A few vancomycin-resistant strains were identified in both E.faecalis and E.faecium.The prevalence of penicillin-susceptible Streptococcus pneumoniae was 94.2%in the isolates from children and 95.7%in the isolates from adults.The resistance rate to carbapenems was lower than 13.1%in most Enterobacterales species except for Klebsiella,21.7%-23.1%of which were resistant to carbapenems.Most Enterobacterales isolates were highly susceptible to tigecycline,colistin and polymyxin B,with resistance rates ranging from 0.1%to 13.3%.The prevalence of meropenem-resistant strains decreased from 23.5%in 2019 to 18.0%in 2022 in Pseudomonas aeruginosa,and decreased from 79.0%in 2019 to 72.5%in 2022 in Acinetobacter baumannii.Conclusions The resistance of clinical isolates to the commonly used antimicrobial agents is still increasing in tertiary hospitals.However,the prevalence of important carbapenem-resistant organisms such as carbapenem-resistant K.pneumoniae,P.aeruginosa,and A.baumannii showed a downward trend in recent years.This finding suggests that the strategy of combining antimicrobial resistance surveillance with multidisciplinary concerted action works well in curbing the spread of resistant bacteria.
10.Changing distribution and resistance profiles of common pathogens isolated from urine in the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Yanming LI ; Mingxiang ZOU ; Wen'en LIU ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Fengbo ZHANG ; Ping JI ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WENG ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(3):287-299
Objective To investigate the distribution and antimicrobial resistance profiles of the common pathogens isolated from urine from 2015 to 2021 in the CHINET Antimicrobial Resistance Surveillance Program.Methods The bacterial strains were isolated from urine and identified routinely in 51 hospitals across China in the CHINET Antimicrobial Resistance Surveillance Program from 2015 to 2021.Antimicrobial susceptibility was determined by Kirby-Bauer method,automatic microbiological analysis system and E-test according to the unified protocol.Results A total of 261 893 nonduplicate strains were isolated from urine specimen from 2015 to 2021,of which gram-positive bacteria accounted for 23.8%(62 219/261 893),and gram-negative bacteria 76.2%(199 674/261 893).The most common species were E.coli(46.7%),E.faecium(10.4%),K.pneumoniae(9.8%),E.faecalis(8.7%),P.mirabilis(3.5%),P.aeruginosa(3.4%),SS.agalactiae(2.6%),and E.cloacae(2.1%).The strains were more frequently isolated from inpatients versus outpatients and emergency patients,from females versus males,and from adults versus children.The prevalence of ESBLs-producing strains in E.coli,K.pneumoniae and P.mirabilis was 53.2%,52.8%and 37.0%,respectively.The prevalence of carbapenem-resistant strains in E.coli,K.pneumoniae,P.aeruginosa and A.baumannii was 1.7%,18.5%,16.4%,and 40.3%,respectively.Lower than 10%of the E.faecalis isolates were resistant to ampicillin,nitrofurantoin,linezolid,vancomycin,teicoplanin and fosfomycin.More than 90%of the E.faecium isolates were ressitant to ampicillin,levofloxacin and erythromycin.The percentage of strains resistant to vancomycin,linezolid or teicoplanin was<2%.The E.coli,K.pneumoniae,P.aeruginosa and A.baumannii strains isolated from ICU inpatients showed significantly higher resistance rates than the corresponding strains isolated from outpatients and non-ICU inpatients.Conclusions E.coli,Enterococcus and K.pneumoniae are the most common pathogens in urinary tract infection.The bacterial species and antimicrobial resistance of urinary isolates vary with different populations.More attention should be paid to antimicrobial resistance surveillance and reduce the irrational use of antimicrobial agents.

Result Analysis
Print
Save
E-mail