1.The Role of AMPK in Diabetic Cardiomyopathy and Related Intervention Strategies
Fang-Lian LIAO ; Xiao-Feng CHEN ; Han-Yi XIANG ; Zhi XIA ; Hua-Yu SHANG
Progress in Biochemistry and Biophysics 2025;52(10):2550-2567
Diabetic cardiomyopathy is a distinct form of cardiomyopathy that can lead to heart failure, arrhythmias, cardiogenic shock, and sudden death. It has become a major cause of mortality in diabetic patients. The pathogenesis of diabetic cardiomyopathy is complex, involving increased oxidative stress, activation of inflammatory responses, disturbances in glucose and lipid metabolism, accumulation of advanced glycation end products (AGEs), abnormal autophagy and apoptosis, insulin resistance, and impaired intracellular Ca2+ homeostasis. Recent studies have shown that adenosine monophosphate-activated protein kinase (AMPK) plays a crucial protective role by lowering blood glucose levels, promoting lipolysis, inhibiting lipid synthesis, and exerting antioxidant, anti-inflammatory, anti-apoptotic, and anti-ferroptotic effects. It also enhances autophagy, thereby alleviating myocardial injury under hyperglycemic conditions. Consequently, AMPK is considered a key protective factor in diabetic cardiomyopathy. As part of diabetes prevention and treatment strategies, both pharmacological and exercise interventions have been shown to mitigate diabetic cardiomyopathy by modulating the AMPK signaling pathway. However, the precise regulatory mechanisms, optimal intervention strategies, and clinical translation require further investigation. This review summarizes the role of AMPK in the prevention and treatment of diabetic cardiomyopathy through drug and/or exercise interventions, aiming to provide a reference for the development and application of AMPK-targeted therapies. First, several classical AMPK activators (e.g., AICAR, A-769662, O-304, and metformin) have been shown to enhance autophagy and glucose uptake while inhibiting oxidative stress and inflammatory responses by increasing the phosphorylation of AMPK and its downstream target, mammalian target of rapamycin (mTOR), and/or by upregulating the gene expression of glucose transporters GLUT1 and GLUT4. Second, many antidiabetic agents (e.g., teneligliptin, liraglutide, exenatide, semaglutide, canagliflozin, dapagliflozin, and empagliflozin) can promote autophagy, reverse excessive apoptosis and autophagy, and alleviate oxidative stress and inflammation by enhancing AMPK phosphorylation and its downstream targets, such as mTOR, or by increasing the expression of silent information regulator 1 (SIRT1) and peroxisome proliferator-activated receptor‑α (PPAR‑α). Third, certain anti-anginal (e.g., trimetazidine, nicorandil), anti-asthmatic (e.g., farrerol), antibacterial (e.g., sodium houttuyfonate), and antibiotic (e.g., minocycline) agents have been shown to promote autophagy/mitophagy, mitochondrial biogenesis, and inhibit oxidative stress and lipid accumulation via AMPK phosphorylation and its downstream targets such as protein kinase B (PKB/AKT) and/or PPAR‑α. Fourth, natural compounds (e.g., dihydromyricetin, quercetin, resveratrol, berberine, platycodin D, asiaticoside, cinnamaldehyde, and icariin) can upregulate AMPK phosphorylation and downstream targets such as AKT, mTOR, and/or the expression of nuclear factor erythroid 2-related factor 2 (Nrf2), thereby exerting anti-inflammatory, anti-apoptotic, anti-pyroptotic, antioxidant, and pro-autophagic effects. Fifth, moderate exercise (e.g., continuous or intermittent aerobic exercise, aerobic combined with resistance training, or high-intensity interval training) can activate AMPK and its downstream targets (e.g., acetyl-CoA carboxylase (ACC), GLUT4, PPARγ coactivator-1α (PGC-1α), PPAR-α, and forkhead box protein O3 (FOXO3)) to promote fatty acid oxidation and glucose uptake, and to inhibit oxidative stress and excessive mitochondrial fission. Finally, the combination of liraglutide and aerobic interval training has been shown to activate the AMPK/FOXO1 pathway, thereby reducing excessive myocardial fatty acid uptake and oxidation. This combination therapy offers superior improvement in cardiac dysfunction, myocardial hypertrophy, and fibrosis in diabetic conditions compared to liraglutide or exercise alone.
2.Mechanism of electroacupuncture-induced macrophage polarization in promoting acute skeletal muscle injury repair in rats.
Yuting HUANG ; Yuye LIN ; Guojun ZHANG ; Chufan ZENG ; Xia ZHANG ; Jingyu ZHANG ; Yu KAN ; Yanping FANG ; Xianghong JING ; Jun LIAO
Chinese Acupuncture & Moxibustion 2025;45(6):791-800
OBJECTIVE:
To investigate the potential mechanism by which electroacupuncture (EA) induces macrophage polarization to promote muscle satellite cell proliferation and differentiation, accelerating the repair of acute skeletal muscle injury.
METHODS:
Forty-two SPF-grade SD rats were randomly divided into three groups: a blank group (n=6), a model group (n=18), and an EA group (n=18). The model and EA groups established acute blunt contusion model of the right gastrocnemius muscle using a self-made striking device. From day 1 after modeling, rats in the EA group received EA at "Chengshan" (BL57) and "Yanglingquan" (GB34) on the right side, using disperse-dense wave with a frequency of 2 Hz/100 Hz and a current of approximately 2 mA. The EA treatment was administered once daily for 30 minutes for 3, 7, or 14 days based on the designated sampling time points. Gait analysis was performed using the Cat Walk XTTM system. Hematoxylin-eosin (HE) staining was used to observe the morphological changes in the gastrocnemius muscle. Masson staining was applied to evaluate collagen fiber content. Immunofluorescence was used to detect the expression of proliferating cell nuclear antigen (PCNA) in muscle satellite cells. Immunohistochemistry was used to assess the expression levels of CD68 and CD206, markers of macrophages. Serum levels of pro-inflammatory cytokines (TNF-α, IL-1β) and anti-inflammatory cytokines (IL-10, IL-13) were detected using ELISA.
RESULTS:
Compared with the blank group, the model group showed a significant reduction in average movement speed on days 3 and 7 after modeling (P<0.05), and a decrease in the right hind limb stride length on day 3 (P<0.05). Compared with the model group, the EA group showed increased average movement speed and right hind limb stride length on day 7 (P<0.05). In the blank group, the gastrocnemius muscle on the right side showed uniform and consistent inter-fiber spacing, with neatly and regularly arranged muscle cells. In contrast, the model group exhibited enlarged inter-fiber spacing, edema, and significant infiltration of red blood cells and inflammatory cells, with progressively increasing fibrosis over time. By day 14 after modeling, the EA group showed a return to baseline levels of inflammatory cell infiltration, and the degree of fibrosis was significantly lower than that observed in the model group. Compared with the blank group, the ratio of collagen fibers in the gastrocnemius muscle of the model group increased significantly on days 3, 7, and 14 after modeling (P<0.05). Compared with the model group, the EA group exhibited a lower collagen fiber ratio on days 3, 7, and 14 (P<0.05). Compared with the blank group, PCNA positive expression in the gastrocnemius muscle of the model group was significantly increased on days 3, 7, and 14 after modeling (P<0.05). Compared with the model group, the EA group exhibited significantly higher PCNA positive expression on days 3 and 7 (P<0.05). Compared with the blank group, the model group showed a significant increase in CD68-positive macrophage expression in the gastrocnemius muscle on day 3 after modeling (P<0.05), while CD206-positive macrophage expression increased on days 3, 7, and 14 (P<0.05). Compared with the model group, CD68 expression was significantly lower in the EA group on day 3 (P<0.05), whereas CD206 expression was significantly higher on days 3 and 7 (P<0.05), peaking on day 7 with CD206 expression. Compared with the blank group, serum TNF-α levels were significantly elevated in the model group on days 3 and 7 after modeling (P<0.05), while serum IL-1β levels were increased on days 3, 7, and 14 (P<0.05). Serum IL-10 and IL-13 levels were significantly higher on day 7 after modeling (P<0.05). Compared with the model group, the EA group exhibited lower serum TNF-α level on day 3 (P<0.05) and reduced serum IL-1β levels on days 3 and 7 (P<0.05), while serum IL-10 and IL-13 levels were significantly increased on day 7 (P<0.05).
CONCLUSION
EA could promote the repair of acute blunt contusion-induced gastrocnemius muscle injury by regulating the proliferation and differentiation of muscle satellite cells. This process is closely related to macrophage polarization.
Animals
;
Electroacupuncture
;
Rats, Sprague-Dawley
;
Rats
;
Macrophages/immunology*
;
Muscle, Skeletal/immunology*
;
Male
;
Humans
;
Female
;
Tumor Necrosis Factor-alpha/immunology*
;
Cell Proliferation
3.Effect of moxibustion on small intestinal mucosal immune barrier in rats with diarrhea-predominant irritable bowel syndrome.
Kuiwu LI ; Haoran CHU ; Ling ZOU ; Jingru RUAN ; Lumin LIAO ; Xiaoyu HAN ; Wenli MA ; Ming FANG ; Jingwei ZHU ; Yucheng FANG ; Ziye WANG ; Tingting TONG
Chinese Acupuncture & Moxibustion 2025;45(7):935-944
OBJECTIVE:
To observe the effect of moxibustion on small intestinal mucosal immune barrier in rats with diarrhea-predominant irritable bowel syndrome (IBS-D) and explore its underlying mechanisms.
METHODS:
Of 38 newborn rats from 4 healthy SPF pregnant rats, 12 neonatal rats were randomly selected in a normal group. IBS-D model was prepared by the combined measures for the rest rats, including neonatal maternal separation, acetic acid enema and chronic restraint stress. Twenty-four successfully-modeled rats were randomized into a model group and a moxibustion group, 12 rats in each one. In the moxibustion group, suspending moxibustion was delivered at bilateral "Tianshu" (ST25) and "Shangjuxu" (ST37), 20 min each time, once daily and for 7 consecutive days. Separately, before acetic acid enema (aged 35 days), after modeling (aged 45 days) and after intervention (aged 53 days), the body mass, loose stool rate (LSR) and and the minimum volume threshold when abdominal withdrawal reflex (AWR) scored 3 were observed in the rats of each group. After intervention (aged 53 days), using HE and PAS staining, the morphology of duodenum was observed, the length of villus and the depth of crypt were measured, the ratio of the length of villus to the depth of crypt was calculated; and the numbers of mucosal intraepithelial lymphocytes (IELs) and goblet cells were counted. With ELISA adopted, the contents of γ-interferon (IFN-γ), interleukin-4 (IL-4) and secretory immunoglobulin A (sIgA) in duodenal mucosa of rats were detected. The proportion of T cell subsets in duodenal mucosa was detected using flow cytometry. The microvilli and tight junctions of duodenal mucosal epithelial cells were observed by transmission electron microscopy, and the integrity of duodenal mucosa observed by scanning electron microscopy.
RESULTS:
Compared with the normal group, for the rats in the model group, the body mass, the minimum volume threshold when AWR scored 3, the length of duodenal villus and the the ratio of the length of villus to the depth of crypt, as well as the proportion of CD8+ T subset were all reduced (P<0.01, P<0.05), the counts of goblet cells in duodenal mucosa decreased (P<0.01); LRS, the proportion of CD4+ T subset and CD4+/CD8+, as well as the contents of IFN-γ, IL-4 and sIgA in duodenal mucosa and IFN-γ/IL-4 were all elevated (P<0.01); and the numbers of IELs rose (P<0.01). The morphology of duodenal mucosa was irregular, the villi got shorter, sparse and scattered, with uneven density. The morphology of epithelial cells was destroyed and the tight junctions damaged, with larger spaces. When compared with the model group, in the moxibustion group, the body mass, the minimum volume threshold when AWR scored 3, the length of duodenal villus and the ratio of the length of villus to the depth of crypt, as well as the counts of goblet cells in duodenal mucosa increased (P<0.01); LRS, the proportion of CD4+ T subset, and CD4+/CD8+, as well as the contents of IFN-γ, IL-4 and sIgA in duodenal mucosa and IFN-γ/IL-4 were reduced (P<0.01); and the numbers of IELs was dropped (P<0.01). The morphology of duodenal mucosa was more regular, the villi were grew, got longer and arranged regularly, with even density. The morphology of epithelial cells was slightly destroyed, and the tight junctions partially damaged.
CONCLUSION
Moxibustion at "Tianshu" (ST25) and "Shangjuxu" (ST37) can reduce visceral hypersensitivity in IBS-D rats and relieve abdominal pain, diarrhea and other symptoms. Its effect mechanism may be related to the repair of small intestinal mucosal immune barrier and the improvement in the immune function in IBS-D.
Animals
;
Irritable Bowel Syndrome/immunology*
;
Rats
;
Moxibustion
;
Intestinal Mucosa/immunology*
;
Female
;
Diarrhea/therapy*
;
Intestine, Small/immunology*
;
Male
;
Humans
;
Rats, Sprague-Dawley
;
Disease Models, Animal
4.Involvement of interferon γ-producing mast cells in immune responses against melanocytes in vitiligo requires Mas-related G protein-coupled receptor X2 activation.
Zhikai LIAO ; Yunzhu YAO ; Bingqi DONG ; Yue LE ; Longfei LUO ; Fang MIAO ; Shan JIANG ; Tiechi LEI
Chinese Medical Journal 2025;138(11):1367-1378
BACKGROUND:
Increasing evidence indicates that oxidative stress and interferon γ (IFNγ)-driven cellular immune responses are responsible for the pathogenesis of vitiligo. However, the connection between oxidative stress and the local production of IFNγ in early vitiligo remains unexplored. The aim of this study was to identify the mechanism underlying the production of IFNγ by mast cells and its impact on vitiligo pathogenesis.
METHODS:
Skin specimens from the central, marginal, and perilesional skin areas of active vitiligo lesions were collected to characterize changes of mast cells, CD8 + T cells, and IFNγ-producing cells. Cell supernatants from hydrogen peroxide (H 2 O 2 )-treated keratinocytes (KCs) were harvested to measure levels of soluble stem cell factor (sSCF) and matrix metalloproteinase (MMP)-9. A murine vitiligo model was established using Mas-related G protein-coupled receptor-B2 (MrgB2, mouse ortholog of human MrgX2) conditional knockout (MrgB2 -/- ) mice to investigate IFNγ production and inflammatory cell infiltrations in tail skin following the challenge with tyrosinase-related protein (Tyrp)-2 180 peptide. Potential interactions between the Tyrp-2 180 peptide and MrgX2 were predicted using molecular docking. The siRNAs targeting MrgX2 and the calcineurin inhibitor FK506 were also used to examine the signaling pathways involved in mast cell activation.
RESULTS:
IFNγ-producing mast cells were closely aligned with the recruitment of CD8 + T cells in the early phase of vitiligo skin. sSCF released by KCs through stress-enhanced MMP9-dependent proteolytic cleavage recruited mast cells into sites of inflamed skin (Perilesion vs . lesion, 13.00 ± 4.00/high-power fields [HPF] vs . 26.60 ± 5.72/HPF, P <0.05). Moreover, IFNγ-producing mast cells were also observed in mouse tail skin following challenge with Tyrp-2 180 (0 h vs . 48 h post-recall, 0/HPF vs . 3.80 ± 1.92/HPF, P <0.05). The IFNγ + mast cell and CD8 + T cell counts were lower in the skin of MrgB2 -/- mice than in those of wild-type mice (WT vs . KO 48 h post-recall, 4.20 ± 0.84/HPF vs . 0.80 ± 0.84/HPF, P <0.05).
CONCLUSION
Mast cells activated by MrgX2 serve as a local IFNγ producer that bridges between innate and adaptive immune responses against MCs in early vitiligo. Targeting MrgX2-mediated mast cell activation may represent a new strategy for treating vitiligo.
Vitiligo/metabolism*
;
Mast Cells/immunology*
;
Animals
;
Interferon-gamma/metabolism*
;
Mice
;
Humans
;
Melanocytes/metabolism*
;
Receptors, G-Protein-Coupled/genetics*
;
Mice, Knockout
;
Mice, Inbred C57BL
;
Male
;
Female
;
Matrix Metalloproteinase 9/metabolism*
;
Stem Cell Factor/metabolism*
5.Metabolomics and pharmacokinetics of Corni Fructus in ameliorating myocardial ischemic injury.
Xiang-Feng LIU ; Yu WU ; Chao-Yan YANG ; Hua-Wei LIAO ; Yan-Fen CHEN ; Xin HE ; Ying-Fang WANG ; Jin-Ru LIANG
China Journal of Chinese Materia Medica 2025;50(5):1363-1376
This study aims to investigate the ameliorating effect of Corni Fructus(CF) on the myocardial ischemic injury and the pharmacokinetic properties of characteristic components of CF. The mouse model of isoproterenol-induced myocardial ischemia was established and administrated with the aqueous extract of CF. The general efficacy of CF in ameliorating the myocardial ischemic injury was evaluated based on the cardiac histopathology and the levels of myocardial injury markers: creatine kinase isoenzyme(CK-MB) and cardiac troponin I(cTn-I). The metabolomics analysis was carried out for the heart and serum samples of mice to screen the biomarkers of CF in ameliorating the myocardial ischemic injury and then the predicted biomarkers were submitted to metabolic pathway enrichment. The pharmacokinetic analysis was performed for morroniside, loganin, and cornuside Ⅰ in mouse heart and serum samples to obtain the pharmacokinetic parameters of these components. The pharmacokinetic parameters were then integrated on the basis of self-defined weighting coefficients to simulate an integrated pharmacokinetic profile of CF iridoid glycosides in the heart and serum of the mouse model of myocardial ischemia. The results indicated that CF reduced the pathological damage to cardiac cells and tissue(hematoxylin-eosin staining) and lowered the levels of CK-MB and cTn-I in the serum of the mouse model of myocardial ischemia(P<0.01). Metabolomics analysis screed out 31 endogenous metabolites in the heart and 35 in the serum as biomarkers of CF in ameliorating the myocardial ischemic injury. These biomarkers were altered by modeling and restored by CF. Six metabolic pathways in the heart and 5 in the serum were enriched based on these metabolic markers. The main integrated pharmacokinetic parameters of CF iridoid glycosides were T_(max)=1 h, t_(1/2)=(1.52±0.05) h in the heart and T_(max)=1 h, t_(1/2)=(1.56±0.50) h in the serum. Both concentration-time curves showed a double-peak phenomenon. In conclusion, CF demonstrated the cardioprotective effect by regulating metabolic pathways such as taurine and hypotaurine metabolism, and pantothenic acid and coenzyme A biosynthesis. The integrated pharmacokinetics reflect the general pharmacokinetic properties of characteristic components in CF.
Animals
;
Cornus/chemistry*
;
Mice
;
Metabolomics
;
Drugs, Chinese Herbal/administration & dosage*
;
Male
;
Myocardial Ischemia/metabolism*
;
Humans
;
Troponin I/metabolism*
;
Myocardium/pathology*
;
Disease Models, Animal
;
Biomarkers/metabolism*
;
Creatine Kinase, MB Form/metabolism*
6.Chronic prostatitis/chronic pelvic pain syndrome induces metabolomic changes in expressed prostatic secretions and plasma.
Fang-Xing ZHANG ; Xi CHEN ; De-Cao NIU ; Lang CHENG ; Cai-Sheng HUANG ; Ming LIAO ; Yu XUE ; Xiao-Lei SHI ; Zeng-Nan MO
Asian Journal of Andrology 2025;27(1):101-112
Chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) is a complex disease that is often accompanied by mental health disorders. However, the potential mechanisms underlying the heterogeneous clinical presentation of CP/CPPS remain uncertain. This study analyzed widely targeted metabolomic data of expressed prostatic secretions (EPS) and plasma to reveal the underlying pathological mechanisms of CP/CPPS. A total of 24 CP/CPPS patients from The Second Nanning People's Hospital (Nanning, China), and 35 asymptomatic control individuals from First Affiliated Hospital of Guangxi Medical University (Nanning, China) were enrolled. The indicators related to CP/CPPS and psychiatric symptoms were recorded. Differential analysis, coexpression network analysis, and correlation analysis were performed to identify metabolites that were specifically altered in patients and associated with various phenotypes of CP/CPPS. The crucial links between EPS and plasma were further investigated. The metabolomic data of EPS from CP/CPPS patients were significantly different from those from control individuals. Pathway analysis revealed dysregulation of amino acid metabolism, lipid metabolism, and the citrate cycle in EPS. The tryptophan metabolic pathway was found to be the most significantly altered pathway associated with distinct CP/CPPS phenotypes. Moreover, the dysregulation of tryptophan and tyrosine metabolism and elevation of oxidative stress-related metabolites in plasma were found to effectively elucidate the development of depression in CP/CPPS. Overall, metabolomic alterations in the EPS and plasma of patients were primarily associated with oxidative damage, energy metabolism abnormalities, neurological impairment, and immune dysregulation. These alterations may be associated with chronic pain, voiding symptoms, reduced fertility, and depression in CP/CPPS. This study provides a local-global perspective for understanding the pathological mechanisms of CP/CPPS and offers potential diagnostic and therapeutic targets.
Humans
;
Male
;
Prostatitis/blood*
;
Adult
;
Pelvic Pain/blood*
;
Metabolomics
;
Prostate/metabolism*
;
Middle Aged
;
Chronic Pain/blood*
;
Metabolome
;
Case-Control Studies
;
Tryptophan/blood*
;
Depression/blood*
;
Oxidative Stress/physiology*
;
Chronic Disease
;
Lipid Metabolism/physiology*
7.Genetic and clinical characteristics of children with RAS-mutated juvenile myelomonocytic leukemia.
Yun-Long CHEN ; Xing-Chen WANG ; Chen-Meng LIU ; Tian-Yuan HU ; Jing-Liao ZHANG ; Fang LIU ; Li ZHANG ; Xiao-Juan CHEN ; Ye GUO ; Yao ZOU ; Yu-Mei CHEN ; Ying-Chi ZHANG ; Xiao-Fan ZHU ; Wen-Yu YANG
Chinese Journal of Contemporary Pediatrics 2025;27(5):548-554
OBJECTIVES:
To investigate the genomic characteristics and prognostic factors of juvenile myelomonocytic leukemia (JMML) with RAS mutations.
METHODS:
A retrospective analysis was conducted on the clinical data of JMML children with RAS mutations treated at the Hematology Hospital of Chinese Academy of Medical Sciences, from January 2008 to November 2022.
RESULTS:
A total of 34 children were included, with 17 cases (50%) having isolated NRAS mutations, 9 cases (27%) having isolated KRAS mutations, and 8 cases (24%) having compound mutations. Compared to children with isolated NRAS mutations, those with NRAS compound mutations showed statistically significant differences in age at onset, platelet count, and fetal hemoglobin proportion (P<0.05). Cox proportional hazards regression model analysis revealed that hematopoietic stem cell transplantation (HSCT) and hepatomegaly (≥2 cm below the costal margin) were factors affecting the survival rate of JMML children with RAS mutations (P<0.05); hepatomegaly was a factor affecting survival in the non-HSCT group (P<0.05).
CONCLUSIONS
Children with NRAS compound mutations have a later onset age compared to those with isolated NRAS mutations. At initial diagnosis, children with NRAS compound mutations have poorer peripheral platelet and fetal hemoglobin levels than those with isolated NRAS mutations. Liver size at initial diagnosis is related to the prognosis of JMML children with RAS mutations. HSCT can improve the prognosis of JMML children with RAS mutations.
Humans
;
Leukemia, Myelomonocytic, Juvenile/therapy*
;
Mutation
;
Male
;
Female
;
Child, Preschool
;
Retrospective Studies
;
Child
;
Infant
;
GTP Phosphohydrolases/genetics*
;
Membrane Proteins/genetics*
;
Adolescent
;
Hematopoietic Stem Cell Transplantation
;
Proportional Hazards Models
;
Proto-Oncogene Proteins p21(ras)/genetics*
;
Prognosis
8.Association between blood pressure traits, hypertension, antihypertensive drugs and calcific aortic valve stenosis: a mendelian randomization study.
Wen-Hua LEI ; Jia-Liang ZHANG ; Yan-Biao LIAO ; Yan WANG ; Fei XU ; Yao-Yu ZHANG ; Yanjiani XU ; Jing ZHOU ; Fang-Yang HUANG ; Mao CHEN
Journal of Geriatric Cardiology 2025;22(3):351-360
BACKGROUND:
Hypertension is associated with an increased risk of calcific aortic valve stenosis (CAVS). However, the directionality of causation between blood pressure traits and aortic stenosis is unclear, as is the benefit of antihypertensive drugs for CAVS.
METHODS:
Using genome-wide association studies (GWAS) summary statistics, we performed bidirectional two-sample univariable mendelian randomization (UVMR) to assess the causal associations of systolic blood pressure (SBP), diastolic blood pressure (DBP), and pulse pressure (PP) with CAVS. Multivariable mendelian randomization (MVMR) was conducted to evaluate the direct effect of hypertension on CAVS, adjusting for confounders. Drug target mendelian randomization (MR) and summary-level MR (SMR) were used to estimate the effects of 12 classes of antihypertensive drugs and their target genes on CAVS risk. Inverse variance weighting was the primary MR method, with sensitivity analyses to validate results.
RESULTS:
UVMR showed SBP, DBP, and PP have causal effects on CAVS, with no significant reverse causality. MVMR confirmed the causality between hypertension and CAVS after adjusting for confounders. Drug-target MR analyses indicated that calcium channel blockers (CCBs), loop diuretics, and thiazide diuretics via SBP lowering exerted protective effects on CAVS risk. SMR analysis showed that the CCBs target gene CACNA2D2 and ARBs target gene AGTR1 were positively associated with CAVS risk, while diuretics target genes SLC12A5 and SLC12A1 were negatively associated with aortic stenosis risk.
CONCLUSIONS
Hypertension has a causal relationship with CAVS. Managing SBP in hypertensive patients with CCBs may prevent CAVS. ARBs might exert protective effects on CAVS independent of blood pressure reduction. The relationship between diuretics and CAVS is complex, with opposite effects through different mechanisms.
9.Case report of robot-assisted resection of benign parotid gland tumor via hairline incision under facial nerve monitoring.
Xijun LIN ; Fang LIAO ; Xiaoming HUANG ; Faya LIANG
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2025;39(11):1053-1056
A 30-year-old female patient with a benign tumor in the superficial lobe of the left parotid gland underwent tumor resection via a 5 cm intra-hairline incision, using the da Vinci Xi surgical robot combined with the NIM-Response 3.0 facial nerve monitoring system. During the operation, facial nerve branches were located and protected through facial nerve monitoring, and the robotic arms were used for precise tumor dissection. Postoperatively, the facial nerve function, incision healing, and tumor recurrence were observed. duration of the procedure was 120 minutes, and the tumor(2.0 cm×1.5 cm) was completely resected. Postoperative pathological examination indicated a pleomorphic adenoma. During the 3-month postoperative follow-up, the patient's facial nerve function remained normal, no salivary fistula occurred, the incision was hidden within the hairline, no tumor recurrence was found in the ultrasound reexamination, and the patient was highly satisfied with the appearance. The surgical approach of robot-assisted resection of benign parotid gland tumor via a hairline incision under facial nerve monitoring has significant advantages in facial nerve protection and cosmetic effect, and is suitable for patients with benign parotid gland tumors meeting specific conditions.
Humans
;
Female
;
Adult
;
Parotid Neoplasms/surgery*
;
Facial Nerve
;
Robotic Surgical Procedures/methods*
;
Adenoma, Pleomorphic/surgery*
;
Parotid Gland/surgery*
;
Monitoring, Intraoperative
10.Psychological stress-activated NR3C1/NUPR1 axis promotes ovarian tumor metastasis.
Bin LIU ; Wen-Zhe DENG ; Wen-Hua HU ; Rong-Xi LU ; Qing-Yu ZHANG ; Chen-Feng GAO ; Xiao-Jie HUANG ; Wei-Guo LIAO ; Jin GAO ; Yang LIU ; Hiroshi KURIHARA ; Yi-Fang LI ; Xu-Hui ZHANG ; Yan-Ping WU ; Lei LIANG ; Rong-Rong HE
Acta Pharmaceutica Sinica B 2025;15(6):3149-3162
Ovarian tumor (OT) is the most lethal form of gynecologic malignancy, with minimal improvements in patient outcomes over the past several decades. Metastasis is the leading cause of ovarian cancer-related deaths, yet the underlying mechanisms remain poorly understood. Psychological stress is known to activate the glucocorticoid receptor (NR3C1), a factor associated with poor prognosis in OT patients. However, the precise mechanisms linking NR3C1 signaling and metastasis have yet to be fully elucidated. In this study, we demonstrate that chronic restraint stress accelerates epithelial-mesenchymal transition (EMT) and metastasis in OT through an NR3C1-dependent mechanism involving nuclear protein 1 (NUPR1). Mechanistically, NR3C1 directly regulates the transcription of NUPR1, which in turn increases the expression of snail family transcriptional repressor 2 (SNAI2), a key driver of EMT. Clinically, elevated NR3C1 positively correlates with NUPR1 expression in OT patients, and both are positively associated with poorer prognosis. Overall, our study identified the NR3C1/NUPR1 axis as a critical regulatory pathway in psychological stress-induced OT metastasis, suggesting a potential therapeutic target for intervention in OT metastasis.

Result Analysis
Print
Save
E-mail