1.Explore of nanopore sequencing technology in ambiguities of HLA genotyping
Nanying CHEN ; Wei ZHANG ; Lina DONG ; Fang WANG ; Yizhen HE ; Chen CHEN ; Faming ZHU
Chinese Journal of Blood Transfusion 2025;38(3):309-315
[Objective] To resolve the ambiguities of HLA genotyping generated by next generation sequencing (NGS) using nanopore sequencing technology. [Methods] A total of 38 samples with ambiguous HLA genotyping by NGS in our laboratory were collected, and HLA-A, -B, -C, -DRB1, -DRB3/4/5, -DQA1, -DQB1, -DPA1 and -DPB1 loci in these samples were amplified using primers in the same commercial NGS HLA genotyping kit, then subjected to third-generation library construction, and sequenced on the nanopore sequencer. The sequencing data were converted into Fastq files and analyzed by software, and the genotypes of 11 HLA loci were obtained. The ambiguities were counted directly. [Results] The high-resolution genotyping at the second domain of 11 HLA loci of 38 samples using the third generation sequencing (TGS) were consistent with the results of the NGS method at a rate of 100%. The genotypes for the HLA-A, -B, -C, -DRB3, -DRB4, -DQA1 and -DPA1 loci by TGS were all only one result, and the discrimination rate for ambiguities of the HLA-A, -B, -C, and -DQA1 loci (all caused by the difficulty in phasing due to the short NGS read length) was 100%. Among the HLA-DRB1, -DRB5, -DQB1 and -DPB1 loci, the discrimination rate of TGS for the ambiguities caused by non-amplification of exon 1 was 0% and by the short NGS read length was 100%. [Conclusion] Nanopore technology was used to identify the ambiguities of 11 HLA loci in this study, and the ambiguities caused by the short read length disadvantage of the NGS method could be solved effectively and the accuracy of HLA genotyping would be improved.
2.Investigation and analysis of radiation dose levels in pediatric patients in Jiangxi Province, China
Faming CAO ; Zhe HUANG ; Ning ZHOU ; Zhe WANG ; Li TAN ; Shiping CHEN ; Lei DENG
Chinese Journal of Radiological Health 2025;34(5):720-725
Objective To analyze the scanning parameters and radiation dose characteristics of pediatric CT examinations in Jiangxi Province, China, and to provide a basis for optimizing radiation protection in children. Methods The data of
3.Heterotopic ossification: Current developments and emerging potential therapies.
Mingjian BEI ; Qiyong CAO ; Chunpeng ZHAO ; Yaping XIAO ; Yimin CHEN ; Honghu XIAO ; Xu SUN ; Faming TIAN ; Minghui YANG ; Xinbao WU
Chinese Medical Journal 2025;138(4):389-404
This review aimed to provide a comprehensive analysis of the etiology, epidemiology, pathology, and conventional treatment of heterotopic ossification (HO), especially emerging potential therapies. HO is the process of ectopic bone formation at non-skeletal sites. HO can be subdivided into two major forms, acquired and hereditary, with acquired HO predominating. Hereditary HO is a rare and life-threatening genetic disorder, but both acquired and hereditary form can cause severe complications, such as peripheral nerve entrapment, pressure ulcers, and disability if joint ankylosis develops, which heavily contributes to a reduced quality of life. Modalities have been proposed to treat HO, but none have emerged as the gold standard. Surgical excision remains the only effective modality; however, the optimal timing is controversial and may cause HO recurrence. Recently, potential therapeutic strategies have emerged that focus on the signaling pathways involved in HO, and small molecule inhibitors have been shown to be promising. Moreover, additional specific targets, such as small interfering RNAs (siRNAs) and non-coding RNAs, could be used to effectively block HO or develop combinatorial therapies for HO.
Humans
;
Ossification, Heterotopic/genetics*
4.Expert consensus on orthodontic treatment of patients with periodontal disease.
Wenjie ZHONG ; Chenchen ZHOU ; Yuanyuan YIN ; Ge FENG ; Zhihe ZHAO ; Yaping PAN ; Yuxing BAI ; Zuolin JIN ; Yan XU ; Bing FANG ; Yi LIU ; Hong HE ; Faming CHEN ; Weiran LI ; Shaohua GE ; Ang LI ; Yi DING ; Lili CHEN ; Fuhua YAN ; Jinlin SONG
International Journal of Oral Science 2025;17(1):27-27
Patients with periodontal disease often require combined periodontal-orthodontic interventions to restore periodontal health, function, and aesthetics, ensuring both patient satisfaction and long-term stability. Managing these patients involving orthodontic tooth movement can be particularly challenging due to compromised periodontal soft and hard tissues, especially in severe cases. Therefore, close collaboration between orthodontists and periodontists for comprehensive diagnosis and sequential treatment, along with diligent patient compliance throughout the entire process, is crucial for achieving favorable treatment outcomes. Moreover, long-term orthodontic retention and periodontal follow-up are essential to sustain treatment success. This expert consensus, informed by the latest clinical research and practical experience, addresses clinical considerations for orthodontic treatment of periodontal patients, delineating indications, objectives, procedures, and principles with the aim of providing clear and practical guidance for clinical practitioners.
Humans
;
Consensus
;
Orthodontics, Corrective/standards*
;
Periodontal Diseases/complications*
;
Tooth Movement Techniques/methods*
;
Practice Guidelines as Topic
5.Expert consensus on the diagnosis and treatment of cemental tear.
Ye LIANG ; Hongrui LIU ; Chengjia XIE ; Yang YU ; Jinlong SHAO ; Chunxu LV ; Wenyan KANG ; Fuhua YAN ; Yaping PAN ; Faming CHEN ; Yan XU ; Zuomin WANG ; Yao SUN ; Ang LI ; Lili CHEN ; Qingxian LUAN ; Chuanjiang ZHAO ; Zhengguo CAO ; Yi LIU ; Jiang SUN ; Zhongchen SONG ; Lei ZHAO ; Li LIN ; Peihui DING ; Weilian SUN ; Jun WANG ; Jiang LIN ; Guangxun ZHU ; Qi ZHANG ; Lijun LUO ; Jiayin DENG ; Yihuai PAN ; Jin ZHAO ; Aimei SONG ; Hongmei GUO ; Jin ZHANG ; Pingping CUI ; Song GE ; Rui ZHANG ; Xiuyun REN ; Shengbin HUANG ; Xi WEI ; Lihong QIU ; Jing DENG ; Keqing PAN ; Dandan MA ; Hongyu ZHAO ; Dong CHEN ; Liangjun ZHONG ; Gang DING ; Wu CHEN ; Quanchen XU ; Xiaoyu SUN ; Lingqian DU ; Ling LI ; Yijia WANG ; Xiaoyuan LI ; Qiang CHEN ; Hui WANG ; Zheng ZHANG ; Mengmeng LIU ; Chengfei ZHANG ; Xuedong ZHOU ; Shaohua GE
International Journal of Oral Science 2025;17(1):61-61
Cemental tear is a rare and indetectable condition unless obvious clinical signs present with the involvement of surrounding periodontal and periapical tissues. Due to its clinical manifestations similar to common dental issues, such as vertical root fracture, primary endodontic diseases, and periodontal diseases, as well as the low awareness of cemental tear for clinicians, misdiagnosis often occurs. The critical principle for cemental tear treatment is to remove torn fragments, and overlooking fragments leads to futile therapy, which could deteriorate the conditions of the affected teeth. Therefore, accurate diagnosis and subsequent appropriate interventions are vital for managing cemental tear. Novel diagnostic tools, including cone-beam computed tomography (CBCT), microscopes, and enamel matrix derivatives, have improved early detection and management, enhancing tooth retention. The implementation of standardized diagnostic criteria and treatment protocols, combined with improved clinical awareness among dental professionals, serves to mitigate risks of diagnostic errors and suboptimal therapeutic interventions. This expert consensus reviewed the epidemiology, pathogenesis, potential predisposing factors, clinical manifestations, diagnosis, differential diagnosis, treatment, and prognosis of cemental tear, aiming to provide a clinical guideline and facilitate clinicians to have a better understanding of cemental tear.
Humans
;
Dental Cementum/injuries*
;
Consensus
;
Diagnosis, Differential
;
Cone-Beam Computed Tomography
;
Tooth Fractures/therapy*
6.M2 Macrophages regulate cementogenic differentiation of human periodontal ligament stem cells by modu-lating oxidant-antioxidant system and mitophagy
Dian GAN ; Faming CHEN ; Xuan LI
Journal of Practical Stomatology 2024;40(2):164-172
Objective:To investigate the effects of macrophage(Mφ)polarization on the cementogenic differentiation of human perio-dontal ligament stem cells(hPDLSCs)and the underlying mechanism.Methods:Human monocytic THP-1 cells were induced to M0,M1 and M2 Mφ subsets,then RPM1 1640 medium or supernatants of different Mφ phenotypes were mixed with an equal volume of ce-mentoblastic induction medium to generate conditioned mediums(CMs),and termed as CM-Control,CM-M0,CM-M1 and CM-M2,respectively.hPDLSCs were cultured with different CMs,and the hPDLSCs sheets were then wrapped around treated dentin matrix(TDM)to generate cell sheet/dentin complexes.The complexes were subcutaneously implanted into nude mice.The cementum-like tissue formation was evaluated by HE staining,immunofluorescent staining(IMF)and qRT-PCR were used to detect the expression level of cementogenic differentiation-related markers bone sialoprotein(BSP),cementum attachment protein(CAP)and cementum pro-tein-1(CEMP-1),oxidant-antioxidant system-related markers superoxide dismutase 1(SOD1)and nuclear factor erythroid 2-related factor 2(NRF2),mitophagy-related markers PTEN induced putative kinase 1(PINK1)and microtubule asso ciated proteins 1A/1B light chain 3(LC3).Results:In vivo,CM-M2-treated hPDLSCs(CM-M2)group formed more cementum-like tissues and expressed higher protein levels of CAP,CEMP-1,SOD1,PINK1 and LC3 than that in other groups.In vitro tests showed that,compared with CM-Control group,hPDLSCs incubated with CM-M2 increased the levels of BSP(P<0.01),CAP(P<0.001),CEMP-1(P<0.01)and SOD1(P<0.05),while no statistically significant difference was detected for NRF2(P>0.05),and increasedthe expression of PINK1(P<0.05).Conclusion:M2 Mφ regulate the cementogenic differentiation of hPDLSCs possibly via modulating oxidant-antioxidant system and mitophagy.
7.Preparation,characterization,and in vitro biological performance evaluation of PLGA electrospinning membranes doped with metformin-loaded hollow mesoporous silica nanoparticles
Rui JIN ; Jia WANG ; Yichu SUN ; Wenshuo LI ; Faming CHEN ; Ying AN
Journal of Practical Stomatology 2024;40(2):180-186
Objective:To prepare PLGA electrospinning membranes doped with hollow mesoporous silica nanoparticles loaded with metformin and investigate their biological properties.Methods:PLGA(Control group)and PLGA/HMSN/Met electrospun membranes(Experimental group)were prepared by electrospinning technology.The microscopic morphology of the 2 groups of electrospun mem-branes was observed by SEM.The hydrophilicity,elemental composition and in vitro drug release were detected by contact angle meas-urement,EDS,and drug release test,respectively.SEM and laser scanning confocal microscope(LSCM)were used to observe the growth of periodontal ligament stem cells(PDLSCs)on the 2 groups of electrospun membranes,and CCK-8 assay was used to detect the cell proliferation.Results:Both electrospun membranes had extracellular matrix(ECM)-like fiber structures.The PLGA/HMSN/Met electrospun membranes could slowly release Met for up to 35 days,and the hydrophilicity of PLGA membranes was improved by HMSN-Met doped.The composite electrospun membranes had good cell biocompatibility in vitro,and could promote cell proliferation.Conclu-sion:Modification of PLGA with HMSN-Met can improve the hydrophilicity of PLGA electrospun membranes,continuously release Met,and have good cell biocompatibility.
8.Nonimpacted third molars and the periodontal homeostasis of their adjacent second molars
Chinese Journal of Stomatology 2024;59(2):138-144
Due to the limitations of eruption time and space, third molars (M3s) are often impacted and induce a variety of oral diseases, bringing adverse effects on the health of their adjacent second molars (M2s). For a long time, a large number of studies have focused on the harm of impacted M3s (I-M3s) to the health of their adjacent teeth, while less attention has been paid to nonimpacted M3s (N-M3s) that have already erupted. In recent years, however, a growing number of studies and evidences have shown that the existence of N-M3s is also an important risk factor for various diseases of their adjacent teeth, whose hazard has not been taken seriously by dentists and patients. Based on the latest results of both domestic and international researches as well as our group, this review summarizes and explains the effects of N-M3s on the periodontal homeostasis and periodontal health of adjacent M2s, so as to provide reference for clinical decision-making of N-M3s and the healthy maintenance of their adjacent teeth.
9.Porphyromonas gingivalis outer membrane vesicles activate Toll-like receptor 2 to promote osteoclast differentiation by carrying lipopolysaccharide
Jiekang ZOU ; Yumeng CAO ; Yi TIAN ; Xuan LI ; Ruixin WU ; Beimin TIAN ; Haihua SUN ; Faming CHEN ; Xiaotao HE
Chinese Journal of Stomatology 2024;59(3):237-246
Objective:To investigate the effects of Porphyromonas gingivalis derived outer membrane vesicles (Pg OMV) on osteoclast differentiation of macrophages and its underlying mechanisms. Methods:The morphology and the size distribution of Pg OMV were analyzed by transmission electron microscopy and nanoparticle tracing analysis, respectively. The osteoclast precursors were treated with 1, 3 and 10 mg/L Pg OMV (1, 3 and 10 mg/L OMV treatment group) or phosphate buffer solution (PBS)(control group). The formation of osteoclasts was analyzed by tartrate-resistant acid phosphase (TRAP) staining and F-actin staining and real-time quantitative PCR (RT-qPCR) were used to detect the expression of Fos and matrix metallopeptidase 9 (MMP9). Polymyxin B (PMB) was used to block lipopolysaccharide (LPS) and then Pg OMV was used to treat osteoclast precursor (PMB-OMV treatment group), and OMV treatment group was used as control. TRAP and F-actin staining were used to observe the formation of osteoclasts and actin rings. The effect of Pg OMV on the expression of Toll-like receptor (TLR) 2 and TLR4 in preosteoclasts was detected by Western blotting. The osteoclast precursors were pretreated with 10, 50, 100 and 200 μmol/L C29, an inhibitor of TLR2, and then treated with Pg OMV(OMV+10, 50, 100 and 200 μmol/L C29 treatment group) and OMV treatment group without C29 pretreatment was control. TRAP and F-actin staining were used to observe the formation of osteoclasts and actin rings. The osteoclast precursor cells were treated with OMV (OMV treatment group) and OMV incubated with PMB (PMB-OMV treatment group) and the expression of TLR2 in osteoclast precursor was detected by Western blotting.Results:Pg OMV showed classical vesicular structures, and the average particle size of Pg OMV were 179.2 nm. A large number of actin rings were observed in the 3 and 10 mg/L OMV treatment groups. The percentages of TRAP-positive osteoclast area in 3 mg/L OMV treatment group [(22.6±2.1)%] and 10 mg/L OMV treatment group [(32.0±2.3)%] were significantly increased compared with control group [(4.9±0.5)%] ( P<0.001). Compared with the control group (1.000±0.029), the mRNA relative expression of Fos in 3 mg/L OMV treatment group (1.491±0.114) and 10 mg/L OMV treatment group (1.726±0.254) was significantly increased ( P=0.013, P=0.001). Compared with the control group (1.007±0.148), the mRNA relative expression of MMP9 in the group of 10 mg/L OMV (2.232±0.097) was significantly increased ( P<0.001). Actin ring formation was less in PMB-OMV treatment groups than in OMV treatment groups. The proportion of TRAP-positive osteoclasts area [(14.8±3.8)%] in PMB-OMV treatment group was significantly lower than OMV treatment group [(31.5±6.7) %] ( P=0.004). The relative expression of TLR2 in OMV treatment group (1.359±0.134) was significantly higher than that in the control group (1.000±0.000) ( t=4.62, P=0.044). Compared with the OMV treatment group [(29.4±1.7)%], 50, 100 and 200 μmol/L C29 significantly decreased the formation of osteoclasts [(24.0±1.7)%, (18.5±2.1)%, (9.1±1.3) %] ( P=0.026, P<0.001, P<0.001). TLR2 protein expression in PMB-OMV group (0.780±0.046) was significantly lower than that in OMV group (1.000±0.000)( t=8.32, P=0.001). Conclusions:Pg OMV can promote osteoclast differentiation by carrying LPS, TLR2 plays an important role in Pg OMV mediated osteoclast differentiation.
10.Periodontal tissue regeneration: current therapeutic strategies and future directions in further research
Chinese Journal of Stomatology 2024;59(4):312-317
Chronic and progressive destruction/damage of the periodontal tissues resulted from periodontitis is the leading cause of tooth loss in adults. Traditional periodontal therapies such as scaling and root planning or flap surgery have demonstrated effective in controlling local inflammation and in suppressing/arresting the disease progression of periodontitis. However, those infection control measures cannot help to regenerate lost periodontal tissues to a statistically or clinically significant degree. Although some successes regarding the reduction of the intrabony defect and maintenance of the periodontal homeostasis have been achieved in periodontal regenerative procedures, comprising but not limited to guided tissue regeneration (GTR) or bone grafting technique, the restorative effectiveness of the architecture and function of the lost or injured tissues is far from our clinical expectation. The use of the concept, technique, and method of tissue engineering for periodontal regeneration is a hotspot and animal studies have shown interesting outcomes in terms of functional regeneration of lost/damaged support tissues in the periodontium, including alveolar bone, periodontal ligament, and cementum. However, numerous issues need to be addressed before those regenerative approaches can be responsibly transformed to novel clinical therapies. Recently, paradigm that induces homing of host stem cells to site of the periodontium and encourage the body's innate capability to repair is a new research field termed endogenous regeneration. Given that endogenous regenerative technique avoids ex- vivo cell culture and transplantation, it should be relatively easier to be used in the treatment of clinical patients. Due to the limited oral microenvironment and harsh periodontal local condition for tissue regeneration, as well as poor understanding of periodontal regenerative biology, there is still a long way ahead to explore new effective, practical, and economical therapies to save and protect natural tooth and for combating highly prevalent periodontal disease.

Result Analysis
Print
Save
E-mail