1.Biallelic variants in RBM42 cause a multisystem disorder with neurological, facial, cardiac, and musculoskeletal involvement.
Yiyao CHEN ; Bingxin YANG ; Xiaoyu Merlin ZHANG ; Songchang CHEN ; Minhui WANG ; Liya HU ; Nina PAN ; Shuyuan LI ; Weihui SHI ; Zhenhua YANG ; Li WANG ; Yajing TAN ; Jian WANG ; Yanlin WANG ; Qinghe XING ; Zhonghua MA ; Jinsong LI ; He-Feng HUANG ; Jinglan ZHANG ; Chenming XU
Protein & Cell 2024;15(1):52-68
Here, we report a previously unrecognized syndromic neurodevelopmental disorder associated with biallelic loss-of-function variants in the RBM42 gene. The patient is a 2-year-old female with severe central nervous system (CNS) abnormalities, hypotonia, hearing loss, congenital heart defects, and dysmorphic facial features. Familial whole-exome sequencing (WES) reveals that the patient has two compound heterozygous variants, c.304C>T (p.R102*) and c.1312G>A (p.A438T), in the RBM42 gene which encodes an integral component of splicing complex in the RNA-binding motif protein family. The p.A438T variant is in the RRM domain which impairs RBM42 protein stability in vivo. Additionally, p.A438T disrupts the interaction of RBM42 with hnRNP K, which is the causative gene for Au-Kline syndrome with overlapping disease characteristics seen in the index patient. The human R102* or A438T mutant protein failed to fully rescue the growth defects of RBM42 ortholog knockout ΔFgRbp1 in Fusarium while it was rescued by the wild-type (WT) human RBM42. A mouse model carrying Rbm42 compound heterozygous variants, c.280C>T (p.Q94*) and c.1306_1308delinsACA (p.A436T), demonstrated gross fetal developmental defects and most of the double mutant animals died by E13.5. RNA-seq data confirmed that Rbm42 was involved in neurological and myocardial functions with an essential role in alternative splicing (AS). Overall, we present clinical, genetic, and functional data to demonstrate that defects in RBM42 constitute the underlying etiology of a new neurodevelopmental disease which links the dysregulation of global AS to abnormal embryonic development.
Female
;
Animals
;
Mice
;
Humans
;
Child, Preschool
;
Intellectual Disability/genetics*
;
Heart Defects, Congenital/genetics*
;
Facies
;
Cleft Palate
;
Muscle Hypotonia
2.Clinical features and genetic analysis of two children with Williams-Beuren syndrome.
Mingzhu HUANG ; Lingling XU ; Xiaoyuan CHEN ; Linghua DONG ; Liyan MA ; Jinhai MA
Chinese Journal of Medical Genetics 2023;40(7):828-832
OBJECTIVE:
To explore the clinical and genetic characteristics of two children with Williams-Beuren syndrome (WBS).
METHODS:
Two children who had presented at the Department of Pediatrics, General Hospital of Ningxia Medical University respectively on January 26 and March 18, 2021 were selected as the study subjects. Clinical data and results of genetic testing of the two patients were analyzed.
RESULTS:
Both children had featured developmental delay, characteristic facies and cardiovascular malformation. Child 1 also had subclinical hypothyroidism, whilst child 2 had occurrence of epilepsy. Genetic testing revealed that child 1 has harbored a 1.54 Mb deletion in the 7q11.23 region, whilst child 2 has a 1.53 Mb deletion in the same region, in addition with a c.158G>A variant of the ATP1A1 gene and a c.12181A>G variant of the KMT2C gene. Based on the guidelines from the American College of Medical Genetics and Genomics, the c.158G>A and c.12181A>G variants were rated as variants of unknown significance (PM1+PM2_Supporting+PP2+PP3;PM2_Supporting).
CONCLUSION
Both children had characteristic features of WBS, for which deletions of the 7q11.23 region may be accountable. For children manifesting developmental delay, facial dysmorphism and cardiovascular malformations, the diagnosis of WBS should be suspected, and genetic testing should be recommended to confirm the diagnosis.
Child
;
Humans
;
Williams Syndrome/diagnosis*
;
Genetic Testing
;
Facies
;
Epilepsy/genetics*
;
Chromosomes, Human, Pair 7/genetics*
;
Chromosome Deletion
3.Clinical and genetic characteristics of 9 rare cases with coexistence of dual genetic diagnoses.
Dan Dan TAN ; Yi Dan LIU ; Yan Bin FAN ; Cui Jie WEI ; Dan Yang SONG ; Hai Po YANG ; Hong PAN ; Wei Li CUI ; Shan Shan MAO ; Xiang Ping XU ; Xiao Li YU ; Bo CUI ; Hui XIONG
Chinese Journal of Pediatrics 2023;61(4):345-350
Objective: To analyze the clinical and genetic characteristics of pediatric patients with dual genetic diagnoses (DGD). Methods: Clinical and genetic data of pediatric patients with DGD from January 2021 to February 2022 in Peking University First Hospital were collected and analyzed retrospectively. Results: Among the 9 children, 6 were boys and 3 were girls. The age of last visit or follow-up was 5.0 (2.7,6.8) years. The main clinical manifestations included motor retardation, mental retardation, multiple malformations, and skeletal deformity. Cases 1-4 were all all boys, showed myopathic gait, poor running and jumping, and significantly increased level of serum creatine kinase. Disease-causing variations in Duchenne muscular dystrophy (DMD) gene were confirmed by genetic testing. The 4 children were diagnosed with DMD or Becker muscular dystrophy combined with a second genetic disease, including hypertrophic osteoarthropathy, spinal muscular atrophy, fragile X syndrome, and cerebral cavernous malformations type 3, respectively. Cases 5-9 were clinically and genetically diagnosed as COL9A1 gene-related multiple epiphyseal dysplasia type 6 combined with NF1 gene-related neurofibromatosis type 1, COL6A3 gene-related Bethlem myopathy with WNT1 gene-related osteogenesis imperfecta type XV, Turner syndrome (45, X0/46, XX chimera) with TH gene-related Segawa syndrome, Chromosome 22q11.2 microduplication syndrome with DYNC1H1 gene-related autosomal dominant lower extremity-predominant spinal muscular atrophy-1, and ANKRD11 gene-related KBG syndrome combined with IRF2BPL gene-related neurodevelopmental disorder with regression, abnormal movement, language loss and epilepsy. DMD was the most common, and there were 6 autosomal dominant diseases caused by de novo heterozygous pathogenic variations. Conclusions: Pediatric patients with coexistence of double genetic diagnoses show complex phenotypes. When the clinical manifestations and progression are not fully consistent with the diagnosed rare genetic disease, a second rare genetic disease should be considered, and autosomal dominant diseases caused by de novo heterozygous pathogenic variation should be paid attention to. Trio-based whole-exome sequencing combining a variety of molecular genetic tests would be helpful for precise diagnosis.
Humans
;
Abnormalities, Multiple
;
Retrospective Studies
;
Intellectual Disability/genetics*
;
Bone Diseases, Developmental/complications*
;
Tooth Abnormalities/complications*
;
Facies
;
Muscular Dystrophy, Duchenne/complications*
;
Muscular Atrophy, Spinal/complications*
;
Carrier Proteins
;
Nuclear Proteins
5.Clinical and genetic analysis of three children with KBG syndrome due to novel variants of ANKRD11 gene.
Li WANG ; Jingjing LI ; Jinghan XU ; Yanlei XU ; Junbo WANG ; Yin FENG ; Xiangdong KONG
Chinese Journal of Medical Genetics 2023;40(1):1-6
OBJECTIVE:
To explore the clinical and genetic characteristics of three children with KBG syndrome.
METHODS:
Clinical data of the three children from two families who have presented at the First Affiliated Hospital of Zhengzhou University between October 2019 and September 2020 and their family members were collected. Trio-whole exome sequencing (trio-WES) and Sanger sequencing were carried out.
RESULTS:
All children had feeding difficulties, congenital heart defects and facial dysmorphism. The sib- pair from family 1 was found to harbor a novel de novo heterozygous c.6270delT (p.Q2091Rfs*84) variant of the ANKRD11 gene, whilst the child from family 2 was found to harbor a novel heterozygous c.6858delC (p.D2286Efs*51) variant of the ANKRD11 gene, which was inherited from his mother who had a mild clinical phenotype.
CONCLUSION
The heterozygous frameshift variants of the ANKRD11 gene probably underlay the disease in the three children. Above findings have enriched the spectrum of the ANKRD11 gene variants.
Female
;
Child
;
Humans
;
Abnormalities, Multiple/genetics*
;
Intellectual Disability/genetics*
;
Bone Diseases, Developmental/genetics*
;
Tooth Abnormalities/genetics*
;
Facies
;
Repressor Proteins/genetics*
;
Mothers
;
Mutation
6.A case of Rubinstein-Taybi syndrome caused by a variant of EP300 gene.
Chinese Journal of Medical Genetics 2023;40(3):360-363
OBJECTIVE:
To explore the clinical characteristics and genetic etiology of a child with Rubinstein-Taybi syndrome (RSTS).
METHODS:
A child who was admitted to the Children's Hospital of Soochow University on October 3, 2021 was selected as the study subject. Clinical data of the child was collected. Peripheral blood samples of the child and his parents were collected. The child was subjected to whole exome sequencing (WES), and candidate variant was verified by Sanger sequencing of his family members and bioinformatic analysis.
RESULTS:
The patient, a 9-year-and-4-month-old boy, had manifested unique facies, microcephaly, broad toes, growth retardation, and intellectual impairment. WES revealed that he has harbored a heterozygous c.3604G>T (p.E1202*) variant in exon 20 of the EP300 gene. Sanger sequencing confirmed that neither of his parents has carried the same variant. The variant was not found in the Shenzhou Genome data Cloud, ExAC, 1000 Genomes and gnomAD databases.Analysis with SIFT, PolyPhen-2 and CADD online software has predicted the variant to be harmful. Based on the guidelines formulated by the American College of Medical Genetics and Genomics, the variant was rated as pathogenic (PVS1+PS2+PM2_Supporting) .
CONCLUSION
The heterozygous c.3604G>T variant of the EP300 gene probably underlay the RSTS type 2 in this child. Above finding has also expanded the variation spectrum of the EP300 gene.
Child
;
Humans
;
Male
;
Computational Biology
;
E1A-Associated p300 Protein/genetics*
;
Exons
;
Face
;
Facies
;
Rubinstein-Taybi Syndrome/genetics*
7.Genetic analysis and prenatal diagnosis of a child with Multiple congenital malformations-hypotonia-epilepsy syndrome type 3 due to variants of PIGT gene.
Ying HUA ; Li YANG ; Shaoxia SUN ; Yufen LI ; Yuzeng HAN ; Liping ZHU ; Na XU ; Shiyan QIU
Chinese Journal of Medical Genetics 2023;40(9):1140-1145
OBJECTIVE:
To explore the clinical features and genetic etiology of a child with Multiple congenital malformations-hypotonia-epilepsy syndrome type 3 (MCAHS3) and provide prenatal diagnosis for her parents.
METHODS:
A female child who had presented at Linyi People's Hospital on 27 July 2022 for recurrent convulsions for over 4 years was selected as the study subject. Clinical data of the child were collected. Peripheral blood samples were taken from the child and her parents and subjected for whole exome sequencing (WES). Candidate variants were verified by Sanger sequencing. Prenatal diagnosis was carried out on amniotic fluid sample at 18 weeks' gestation. Bioinformatic software was used to analyze the pathogenicity of the protein model for the variant loci.
RESULTS:
The child was a 4-year-old female with frequent seizures, peculiar facial appearance, hypotonia and severe developmental delay. Genetic analysis revealed that she has harbored compound heterozygous variants of the PIGT gene, namely c.1126del (p.H376Tfs*56) and c.1285G>C (p.E429Q), which were respectively inherited from her mother and father. Based on the guidelines from the American College of Medical Genetics and Genomics, the c.1126del (p.H376Tfs*56) variant was predicted to be pathogenic (PVS1+PM2_Supporting+PM4), and c.1285G>C (p.E429Q) variant was predicted to be likely pathogenic (PM2_Supporting+PM3+PM4). Prenatal diagnosis suggested that the fetus also harbored the same compound heterozygous variants, and the pregnancy was terminated with induced labor.
CONCLUSION
The c.1126del (p.H376Tfs*56) and c.1285G>C (p.E429Q) compound heterozygous variants of the PIGT gene probably underlay the MCAHS3 in this patient, and prenatal diagnosis has prevented birth of further affected child in this family.
Humans
;
Female
;
Child
;
Pregnancy
;
Child, Preschool
;
Muscle Hypotonia/genetics*
;
Prenatal Diagnosis
;
Computational Biology
;
Epileptic Syndromes
;
Facies
8.Clinical features and genetic analysis of two Chinese patients with Coffin Siris syndrome-1.
Fengyu CHE ; Ying YANG ; Liyu ZHANG ; Xiaoling TIE
Chinese Journal of Medical Genetics 2022;39(8):848-853
OBJECTIVE:
To explore the genetic basis for two unrelated patients with global developmental delay and coarse facial features.
METHODS:
Clinical data and family history of the two pedigrees were collected. Whole exome sequencing and Sanger sequencing were carried out to detect potential variants.
RESULTS:
The two patients have presented with global developmental delay, coarse facies, muscular hypotonia, congenital heart disease, and pectus excavatum, and were found to harbor two de novo loss-of-function variants of the ARID1B gene, namely c.3586delC (p.Gln1196Serfs*15) and c.4954_4957delACGT (p.Thr1652Glyfs*31). Both variants were unreported previously.
CONCLUSION
The nonsense variants of the ARID1B gene probably underlay the etiology in these patients. Above finding has enriched the genotypic and phenotypic spectrum of the disease and provided a basis for prenatal diagnosis.
Abnormalities, Multiple
;
China
;
DNA-Binding Proteins/genetics*
;
Face/abnormalities*
;
Facies
;
Hand Deformities, Congenital/genetics*
;
Humans
;
Intellectual Disability/genetics*
;
Micrognathism/genetics*
;
Neck/abnormalities*
;
Transcription Factors/genetics*
9.Analysis of a case with Mowat-Wilson syndrome due to nonsense variant of ZEB2 gene.
Mingcong SHE ; Zhenhua ZHAO ; Panlai SHI ; Shanshan GAO ; Xiangdong KONG
Chinese Journal of Medical Genetics 2022;39(8):889-892
OBJECTIVE:
To explore the genetic basis for a girl with distinctive facial features, epilepsy, intellectual disability, chronic constipation and hypopigmentation of neck and upper extremities.
METHODS:
Whole exome sequencing was carried out for the proband. Candidate variant was verified by Sanger sequencing.
RESULTS:
The proband was found to harbor a heterozygous nonsense c.586G>T (p.Glu196*) variant of the ZEB2 gene, which was unreported previously. The variant was not detected in either parent.
CONCLUSION
The ZEB2 gene c.586G>T (p.Glu196*) variant probably underlay the Mowat-Wilson syndrome in this patient. Hypopigmentation in the neck and upper extremities may be related to Mowat-Wilson syndrome. Prenatal diagnosis was recommended for subsequent pregnancies.
Facies
;
Female
;
Hirschsprung Disease
;
Humans
;
Hypopigmentation
;
Intellectual Disability/genetics*
;
Microcephaly
;
Pregnancy
;
Zinc Finger E-box Binding Homeobox 2/genetics*
10.Clinical characteristics and genetic analysis of 3 children with Mowat-Wilson syndrome.
Taocheng ZHOU ; Yuchen WANG ; Dong LIANG ; Lulu CHEN ; Fuling YE ; Hongyao CAO ; Guanglei TONG
Chinese Journal of Medical Genetics 2022;39(9):944-948
OBJECTIVE:
To explore the genetic basis of three children with unexplained mental retardation/developmental delay.
METHODS:
Peripheral venous blood samples were collected for routine G-banding karyotyping analysis and chromosomal microarray analysis (CMA). Whole exome sequencing (WES) was also carried out for patient 3.
RESULTS:
The karyotypes of the 3 children were normal. The result of CMA analysis of patient 1 was arr[GRCh37]: 2q22/3(145 128 071-145 159 029)×1, with a 31 kb deletion, which was predicted to be a pathogenic copy number variation. The deletion has involved exons 8 to 10 of the ZEB2 gene. Patient 2 was arr[hg19]:2q22.3 (145 071 457-146 881 759)×1, with a 1.81 Mb deletion involving the ZEB2 and GTDC1 genes. Patient 3 was arr[GRCh37]: 9p23p23(11 698 261-12 106 261)×1, with a 408 kb deletion containing no disease-associated gene. WES has identified a c.2102C>A (p.Ser701*) variant in exon 8 of the ZEB2 gene, which was included in ClinVar database and rated as pathogenic, and verified by Sanger sequencing as a de novo variant.
CONCLUSION
For the substantial clinical and genetic heterogeneity of Mowat-Wilson-syndrome, CMA and WES are helpful to identify the etiology of children with developmental delay/mental retardation of unknown causes, particularly those with peculiar facial features and multiple congenital malformations.
Child
;
DNA Copy Number Variations
;
Facies
;
Glycosyltransferases/genetics*
;
Hirschsprung Disease
;
Humans
;
Intellectual Disability/genetics*
;
Microcephaly/genetics*

Result Analysis
Print
Save
E-mail