1.Detection and sequence analysis of broad bean wilt virus 2 on Rehmannia glutinosa.
Xiao-Long DENG ; Jie YAO ; Lang QIN ; Shi-Wen DING ; Tie-Lin WANG ; Kun ZHANG ; Lei CHENG ; Zhen HE
China Journal of Chinese Materia Medica 2025;50(7):1741-1747
To clarify the occurrence and distribution of broad bean wilt virus 2(BBWV2) on Rehmannia glutinosa, this study collected 87 R. glutinosa samples with typical symptoms of viral disease such as chlorosis and crumple from Wenxian county and Wuzhi county in Jiaozuo city, Henan province and Qiaocheng district in Bozhou city, Anhui province. The BBWV2 CP target band was amplified from 37 R. glutinosa samples by RT-PCR technology. The total detection rate reached 42.5%, among which 43.0% was detected in samples from Henan province. The detection rate in samples from Anhui province was 37.5%. 37 BBWV2 CP sequences were obtained by cloning and sequencing of BBWV2 positive samples(data has been submitted to GenBank, accession numbers: PP407959-PP407995), and the sequence analysis of these CP sequences with 91 other BBWV2 isolates in GenBank showed a high genetic diversity with a consistency rate of 70.8%-100%. Meanwhile, phylogenetic analysis showed that BBWV2 could be divided into three groups according to CP sequences, among which the BBWV2 in R. glutinosa isolates obtained in this study were all located in group 3. This study identified the differences in the occurrence, distribution, and genetic diversity of BBWV2 in R. glutinosa from Henan province and Anhui province and provided a theoretical basis for the prevention and control of BBWV2.
Rehmannia/virology*
;
Phylogeny
;
Plant Diseases/virology*
;
China
;
Molecular Sequence Data
;
Fabavirus/classification*
2.Molecular identification and sequence analysis of broad bean wilt virus 2 isolates from atractylodes macrocephala Koidz.
Yanbing NIU ; Xiaoli SHI ; Ximei ZHANG ; Huiqi ZHAO ; Baojia ZHAO
Chinese Journal of Virology 2015;31(1):58-64
To identity the pathogen that causes the mosaic and yellowing symptoms on Atractylodes macrocephala Koidz in Jiangxian, Shanxi province, biological inoculation, sequence-independent amplification (SIA),RT-PCR and other identification methods were used. The results showed that the chlorotic and necrosis symptoms occurred in the indicator plant Chenopodium quinoa after it was infected with the pathogen,and the same symptoms appeared after the reinoculation of healthy Atractylodes macrocephala Koidz; this reflected that the disease was likely to be caused by a virus. The results of SIA and sequencing showed that Broad bean wilt virus 2 (BBWV2) was present in severely mosaic Atractylodes macrocephala Koidz leaves. To further characterize the BBWV2 isolate from Atractylodes macrocephala (BBWV2-Am), the polyprotein partial gene encoded by BBWV2-Am RNA2 was cloned and sequenced. Sequence alignments showed that the nucleotide sequence identity of BBWV2-Am SCP and LCP genes ranged from 79.3% to 87.2% and from 80.1% to 89.2% compared to other BBWV2 strains,respectively; the deduced amino acid sequence similarities of the two gene products ranged from 91.2% to 95.7% and from 89.44 to 95.5%, respectively,compared to those of other BBWV2 strains. Phylogenetic comparisons showed that BBWV2-Am was most likely to be related to BBWV2-Rg,but formed an independent branch. This is the first report of BBWV2 in Atractylodes macrocephala Koidz.
Amino Acid Sequence
;
Atractylodes
;
virology
;
Fabavirus
;
chemistry
;
classification
;
genetics
;
isolation & purification
;
Molecular Sequence Data
;
Phylogeny
;
Plant Diseases
;
virology
;
Sequence Analysis
;
Viral Proteins
;
chemistry
;
genetics

Result Analysis
Print
Save
E-mail