1.Cost-effectiveness of angiographic quantitative flow ratio-guided coronary intervention: A multicenter, randomized, sham-controlled trial.
Yanyan ZHAO ; Changdong GUAN ; Yang WANG ; Zening JIN ; Bo YU ; Guosheng FU ; Yundai CHEN ; Lijun GUO ; Xinkai QU ; Yaojun ZHANG ; Kefei DOU ; Yongjian WU ; Weixian YANG ; Shengxian TU ; Javier ESCANED ; William F FEARON ; Shubin QIAO ; David J COHEN ; Harlan M KRUMHOLZ ; Bo XU ; Lei SONG
Chinese Medical Journal 2025;138(10):1186-1193
BACKGROUND:
The FAVOR (Comparison of Quantitative Flow Ratio Guided and Angiography Guided Percutaneous Intervention in Patients with Coronary Artery Disease) III China trial demonstrated that percutaneous coronary intervention (PCI) lesion selection using quantitative flow ratio (QFR) measurement, a novel angiography-based approach for estimating fractional flow reserve, improved two-year clinical outcomes compared with standard angiography guidance. This study aimed to assess the cost-effectiveness of QFR-guided PCI from the perspective of the current Chinese healthcare system.
METHODS:
This study is a pre-specified analysis of the FAVOR III China trial, which included 3825 patients randomized between December 25, 2018, and January 19, 2020, from 26 centers in China. Patients with stable or unstable angina pectoris or those ≥72 hours post-myocardial infarction who had at least one lesion with a diameter stenosis between 50% and 90% in a coronary artery with a ≥2.5 mm reference vessel diameter by visual assessment were randomized to a QFR-guided strategy or an angiography-guided strategy with 1:1 ratio. During the two-year follow-up, data were collected on clinical outcomes, quality-adjusted life-years (QALYs), estimated costs of index procedure hospitalization, outpatient cardiovascular medication use, and rehospitalization due to major adverse cardiac and cerebrovascular events (MACCE). The primary analysis calculated the incremental cost-effectiveness ratio (ICER) as the cost per MACCE avoided. An ICER of ¥10,000/MACCE event avoided was considered economically attractive in China.
RESULTS:
At two years, the QFR-guided group demonstrated a reduced rate of MACCE compared to the angiography-guided group (10.8% vs . 14.7%, P <0.01). Total two-year costs were similar between the groups (¥50,803 ± 21,121 vs . ¥50,685 ± 23,495, P = 0.87). The ICER for the QFR-guided strategy was ¥3055 per MACCE avoided, and the probability of QFR being economically attractive was 64% at a willingness-to-pay threshold of ¥10,000/MACCE avoided. Sensitivity analysis showed that QFR-guided PCI would become cost-saving if the cost of QFR were below ¥3682 (current cost: ¥3800). Cost-utility analysis yielded an ICER of ¥56,163 per QALY gained, with a 53% probability of being cost-effective at a willingness-to-pay threshold of ¥85,000 per QALY gained.
CONCLUSION:
In patients undergoing PCI, a QFR-guided strategy appears economically attractive compared to angiographic guidance from the perspective of the Chinese healthcare system.
TRIAL REGISTRATION
ClinicalTrials.gov , NCT03656848.
Humans
;
Cost-Benefit Analysis
;
Percutaneous Coronary Intervention/methods*
;
Male
;
Female
;
Coronary Angiography/methods*
;
Middle Aged
;
Aged
;
Coronary Artery Disease/surgery*
;
Quality-Adjusted Life Years
;
Fractional Flow Reserve, Myocardial/physiology*
2.Exploring the potential protective role of anthocyanins in mitigating micro/nanoplastic-induced reproductive toxicity: A steroid receptor perspective.
Jiaojiao ZHANG ; Wenyi LIU ; Fuqiang CUI ; Marjukka KOLEHMAINEN ; Jing CHEN ; Lei ZHANG ; Iman ZAREI
Journal of Pharmaceutical Analysis 2025;15(2):101148-101148
Microplastics and nanoplastics (MPs/NPs) are ubiquitous environmental pollutants that act as endocrine-disrupting chemicals (EDCs), raising significant concerns about their impact on human health. Research highlights the hazardous effects of MPs/NPs on both male and female reproductive systems, influencing germ cells, embryo development, and progeny. Additionally, studies show that MPs/NPs affect the gene expression of anabolic steroid hormones in vitro and in vivo, inducing reproductive toxicity through mechanisms such as oxidative stress and inflammation. Considering these adverse effects, identifying natural compounds that can mitigate the toxicity of MPs/NPs is increasingly important. Plants offer a wealth of antioxidants and anti-inflammatory compounds that can counteract these harmful effects. Among these, anthocyanins, natural colorants responsible for the vibrant hues of fruits and flowers, exhibit a wide range of biological activities, including antioxidant, anti-inflammatory, and anti-neoplastic properties. Moreover, anthocyanins can modulate sex hormone levels and alleviate reproductive toxicity. Cyanidin-3-glucoside (C3G), one of the most extensively studied anthocyanins, shows promise in reducing reproductive toxicity, particularly in females, and in protecting male reproductive organs, including the testis and epididymis. This protective effect is believed to result from its interaction with steroid receptors, specifically the androgen and estrogen receptors (ERs). These findings highlight the need to explore the mechanisms by which anthocyanins mitigate the reproductive toxicity caused by MPs/NPs. This review provides novel insights into how natural compounds can be leveraged to lessen the impact of environmental contaminants on human health, especially concerning reproductive health.
3.Improvement of catalytic activity and thermostability of glucose oxidase from Aspergillus heteromorphus.
Shanglin YU ; Qiao ZHOU ; Honghai ZHANG ; Yingguo BAI ; Huiying LUO ; Xiaojun YANG ; Bin YAO
Chinese Journal of Biotechnology 2025;41(1):296-307
Glucose oxidase (GOD) is an oxygen-consuming dehydrogenase that can catalyze the production of gluconic acid hydrogen peroxide from glucose, and its specific mechanism of action makes it promising for applications, while the low catalytic activity and poor thermostability have become the main factors limiting the industrial application of this enzyme. In this study, we used the glucose oxidase AtGOD reported with the best thermostability as the source sequence for phylogenetic analysis to obtain the GOD with excellent performance. Six genes were screened and successfully synthesized for functional validation. Among them, the glucose oxidase AhGODB derived from Aspergillus heteromorphus was expressed in Pichia pastoris and showed better thermostability and catalytic activity, with an optimal temperature of 40 ℃, a specific activity of 112.2 U/mg, and a relative activity of 47% after 5 min of treatment at 70 ℃. To improve its activity and thermal stability, we constructed several mutants by directed evolution combined with rational design. Compared with the original enzyme, the mutant T72R/A153P showcased the optimum temperature increasing from 40 to 50 ℃, the specific activity increasing from 112.2 U/mg to 166.1 U/mg, and the relative activity after treatment at 70 ℃ for 30 min increasing from 0% to 33%. In conclusion, the glucose oxidase mutants obtained in this study have improved catalytic activity and thermostability, and have potential for application.
Glucose Oxidase/chemistry*
;
Enzyme Stability
;
Aspergillus/genetics*
;
Pichia/metabolism*
;
Temperature
;
Catalysis
;
Fungal Proteins/metabolism*
;
Hot Temperature
4.Multi-modal cross-scale imaging technologies and their applications in plant network analysis.
Yining XIE ; Yuchen KOU ; Yanhui YUAN ; Jinbo SHEN ; Xiaohong ZHUANG ; Jinxing LIN ; Xi ZHANG
Chinese Journal of Biotechnology 2025;41(7):2559-2578
A complete plant body consists of elements on different scales, including microscopic molecules, mesoscopic multicellular structures, and macroscopic tissues and organs, which are interconnected to form complex biological networks. The growth and development of plants involve the regulation of elements on different scales and their biological networks, which requires the coordinated operation of multiple molecules, cells, tissues, and organs. It is difficult to reveal the essence of multi-level life activities by a single method or technology. In recent years, the development of various novel imaging technologies has provided new approaches for revealing the complex life activities in plants. Using multi-modal imaging technologies to study the cross-scale network connections of plants from the microscopic, mesoscopic, and macroscopic levels is crucial for understanding the complex internal connections behind biological functions. This paper first summarizes multi-modal cross-scale imaging technologies, three-dimensional reconstruction, and image processing methods, outlines the basic framework of cross-scale network connection properties, and then summarizes the applications of multi-modal imaging technologies in elucidating plant multi-scale networks. Finally, this review systematically integrates the combined analysis of cross-scale 3D spatial structural data and single-cell omics, laying a theoretical foundation for the innovation of novel plant imaging technologies. Furthermore, it provides a new research paradigm for in-depth exploration of the interaction mechanisms among cross-scale elements and the principles of biological network connectivity in plant life activities.
Plants/metabolism*
;
Imaging, Three-Dimensional/methods*
;
Image Processing, Computer-Assisted/methods*
;
Multimodal Imaging/methods*
;
Plant Physiological Phenomena
5.The SIRT6 gene promotes the anti-aging effects of mesenchymal stem cells in dogs.
Dongyao HAN ; Balun LI ; Miao HAN ; Hongkai TIAN ; Jiaqi GAO ; Zengyu ZHANG ; Zixi LING ; Na LI ; Jinlian HUA
Chinese Journal of Biotechnology 2025;41(7):2719-2734
Mesenchymal stem cells (MSCs) are an effective therapeutic strategy to delay aging in dogs, they are prone to aging and have poor genetic stability when cultured for a long time in vitro. Therefore, it is of great significance to explore a method to improve the anti-aging ability of MSCs. Previous studies have shown that sirtuin 6 (SIRT6) plays an important role in anti-aging. This study constructed MSCs with overexpressed SIRT6 gene. Through Giemsa staining and senescence-associated β-galactosidase staining, it was found that SIRT6 significantly enhances the anti-aging capacity of MSCs. Transmission electron microscopy imaging and the detection of oxidative stress-related indicators revealed that SIRT6 improves the anti-aging capacity of MSCs by maintaining mitochondrial homeostasis and reducing oxidative stress levels. Transcriptome sequencing analysis revealed that SIRT6 mainly acted on phosphatidylinositol-3-kinase, mitogen-activated protein kinase and other aging and inflammation related pathways. In the establishment and verification of aging models in mice and dogs, it was found that the spatial memory ability of the model mice was significantly increased after intravenous transplantation of SIRT6 overexpression cells, the organ index was also significantly changed, and the anti-oxidative capacity of the dogs and mice blood was improved. The morphology of the spleens and livers in the SIRT6 overexpression cell treatment group could be effectively restored, and the expression levels of aging and inflammation-related proteins were significantly decreased. This study provides a new idea for the study of SIRT6-mediated anti-aging of MSCs.
Animals
;
Dogs
;
Mesenchymal Stem Cells/metabolism*
;
Sirtuins/genetics*
;
Aging/physiology*
;
Mice
;
Oxidative Stress
;
Mesenchymal Stem Cell Transplantation
6.Screening and identification of a biocontrol strain CXG2-5 against kiwifruit bacterial canker and preparation of microcapsules.
Jing HUANG ; Ruolan YANG ; Xinying LIU ; Zihan ZHANG ; Nana WANG ; Lili HUANG
Chinese Journal of Biotechnology 2025;41(10):3734-3746
To develop biocontrol agents for the control of kiwifruit bacterial canker, we isolated a strain CXG2-5 with inhibitory activity against Pseudomonas syringae pv. actinidiae (Psa), the pathogen of kiwifruit bacterial canker, from the rhizosphere soil of kiwifruit by the plate confrontation test. The strain was identified by morphological observation, physiological and biochemical tests, and molecular biological methods. The indoor control efficacy of the strain was determined by the inoculation of the strain into detached branches with wounds and into leaf discs by vacuum infiltration. The ability of the strain to expand and colonize leaf veins was determined by fluorescent labeling and scanning electron microscopy. Subsequently, the strain was prepared into microcapsules, the field control efficacy of which was evaluated. The strain CXG2-5 was identified as Pseudomonas benzenivorans. It demonstrated good antagonistic activity against Psa, with an inhibition zone diameter of 22 mm and an inhibition rate of 72.7%. The preventive effects of the strain on kiwifruit bacterial canker were better than the therapeutic effects on both detached branches and leaves, with the preventive effects reaching 65% and 92.4%, respectively. The control effect of microcapsules of this strain in the field reached 60.89%, which was slightly lower than that of 20% kasugamycin and higher than that of Bacillus subtilis wettable powder. In conclusion, strain CXG2-5 serves as a candidate for the control of kiwifruit bacterial canker, and the prepared microcapsules have good value for development and application.
Actinidia/microbiology*
;
Plant Diseases/prevention & control*
;
Pseudomonas syringae
;
Pseudomonas/isolation & purification*
;
Capsules
;
Antibiosis
;
Biological Control Agents
;
Pest Control, Biological/methods*
8.Biological and genetic characteristics of three hypervirulent Klebsiella pneumoniae strains causing liver abscess
Yuqi ZHANG ; Juan WANG ; Lei HAN ; Pu LI ; Wentao MA ; Chun ZHANG ; Yali LI ; Jing YUAN ; Jin’e LEI
Journal of Xi'an Jiaotong University(Medical Sciences) 2024;45(6):885-894
[Objective] To understand the resistance mechanisms, virulence characteristics, and pathogenicity of hypervirulent Klebsiella pneumoniae (hvKp), which causes pyogenic liver abscess (PLA), and to provide related data for clinical treatment of infection caused by this type of bacteria. [Methods] We collected three strains of Klebsiella pneumoniae isolated from the liver abscess fluid of patients with liver abscesses in various departments of The First Affiliated Hospital of Xi’an Jiaotong University. The hypervirulent phenotypes were determined by the wire test, and drug sensitivity was assessed using the VITEK 2 compact automatic microbiological analyzer. Molecular characteristics such as podocarp serotypes, multi-locus sequence typing (MLST), virulence genes, and drug resistance genes were identified through whole-genome sequencing. Additionally, a mouse infection model was established to evaluate pathogenicity. [Results] The isolates were sticky, with mucous thread pulling length >5 mm, all of which exhibited high viscosity phenotypes. Except 146007, which is a multidrug-resistant bacterium, the other two strains had higher antibiotic sensitivity. Whole genome sequencing revealed that the isolates were of high-virulence type, carrying the toxin plasmid rmpADC/rmpA2, iron uptake system, bacterial hairs, secretion system, and other virulence factors. All the three isolates tested positive for rmpA/rmpA2 combined with iucA/iutA, indicating they could be classified as hvKp. Multiple resistance genes were detected, such as β-lactamase like bla
9.Cognitive Functions and Subjective Hearing in Cochlear Implant Users
Fawen ZHANG ; Kelli MCGUIRE ; Madeline SKEETERS ; Matthew BARBARA ; Pamara F. CHANG ; Nanhua ZHANG ; Jing XIANG ; Bin HUANG
Journal of Audiology & Otology 2024;28(3):176-185
Background and Objectives:
A cochlear implant (CI) is an effective prosthetic device used to treat severe-to-profound hearing loss. The present study examined cognitive function in CI users by employing a web-based cognitive testing platform, i.e., BrainCheck, and explored the correlation between cognitive function and subjective evaluation of hearing.
Subjects and Methods:
Forty-two CI users (mean age: 58.90 years) were surveyed in the subjective evaluation of hearing, and 20/42 participated in the BrainCheck cognitive tests (immediate recognition, Trail Making A, Trail Making B, Stroop, digit symbol substitution, and delayed recognition). As controls for cognitive function, young normal-hearing (YNH, mean age=23.83 years) and older normal-hearing (ONH, mean age=52.67 years) listener groups were subjected to Brain-Check testing.
Results:
CI users exhibited poorer cognitive function than the normal hearing groups in all tasks except for immediate and delayed recognition. The highest percentage of CI users who had “possible” and “likely” cognitive impairment, based on BrainCheck scores (ranging from 0-200), was observed in tests assessing executive function. The composite cognitive score across domains tended to be related to subjective hearing (p=0.07).
Conclusions
The findings of the current study suggest that CI users had a higher likelihood of cognitive impairment in the executive function domain than in lower-level domains. BrianCheck online cognitive testing affords a convenient and effective tool to self-evaluate cognitive function in CI users.
10.Intestinal epithelial cell NCoR deficiency ameliorates obesity and metabolic syndrome.
Shaocong HOU ; Hengcai YU ; Caihong LIU ; Andrew M F JOHNSON ; Xingfeng LIU ; Qian JIANG ; Qijin ZHAO ; Lijuan KONG ; Yanjun WAN ; Xiaowei XING ; Yibing CHEN ; Jingwen CHEN ; Qing WU ; Peng ZHANG ; Changtao JIANG ; Bing CUI ; Pingping LI
Acta Pharmaceutica Sinica B 2024;14(12):5267-5285
Nuclear receptor corepressor (NCoR1) interacts with various nuclear receptors and regulates the anabolism and catabolism of lipids. An imbalance in lipid/energy homeostasis is also an important factor in obesity and metabolic syndrome development. In this study, we found that the deletion of NCoR1 in intestinal epithelial cells (IECs) mainly activated the nuclear receptor PPARα and attenuated metabolic syndrome by stimulating thermogenesis. The increase in brown adipose tissue thermogenesis was mediated by gut-derived tricarboxylic acid cycle intermediate succinate, whose production was significantly enhanced by PPARα activation in the fed state. Additionally, NCoR1 deletion derepressed intestinal LXR, increased cholesterol excretion, and impaired duodenal lipid absorption by decreasing bile acid hydrophobicity, thereby reversing the possible negative effects of intestinal PPARα activation. Therefore, the simultaneous regulatory effect of intestinal NCoR1 on both lipid intake and energy expenditure strongly suggests that it is a promising target for developing metabolic syndrome treatment.

Result Analysis
Print
Save
E-mail