1.Mechanism of extracellular vesicles in the repair of intervertebral disc degeneration.
Journal of Biomedical Engineering 2025;42(2):409-416
Extracellular vesicles (EVs), defined as cell-secreted nanoscale vesicles that carry bioactive molecules, have emerged as a promising therapeutic strategy in tumor and tissue regeneration. Their potential in repairing intervertebral disc degeneration (IDD) through multidimensional regulatory mechanisms is a rapidly advancing field of research. This paper provided an overview of the mechanisms of EVs in IDD repair, thoroughly reviewed recent literature on EVs for IDD, domestically and internationally, and summarized their therapeutic mechanisms. In IDD repair, EVs could act through different mechanisms at the molecular, cellular, and tissue levels. At the molecular level, EVs could treat IDD by inhibiting inflammatory reactions, suppressing oxidative stress, and regulating the synthesis and decomposition of extracellular matrix. At the cellular level, EVs could treat IDD by inhibiting cellular pyroptosis, ferroptosis, and apoptosis and promoting cell proliferation and differentiation. At the tissue level, EVs could treat IDD by inhibiting neovascularization. EVs have a strong potential for clinical application in the treatment of IDD and deserve more profound study.
Extracellular Vesicles/physiology*
;
Humans
;
Intervertebral Disc Degeneration/therapy*
;
Apoptosis
;
Cell Proliferation
;
Oxidative Stress
;
Cell Differentiation
;
Extracellular Matrix/metabolism*
;
Animals
;
Pyroptosis
2.Engineered Extracellular Vesicles Loaded with MiR-100-5p Antagonist Selectively Target the Lesioned Region to Promote Recovery from Brain Damage.
Yahong CHENG ; Chengcheng GAI ; Yijing ZHAO ; Tingting LI ; Yan SONG ; Qian LUO ; Danqing XIN ; Zige JIANG ; Wenqiang CHEN ; Dexiang LIU ; Zhen WANG
Neuroscience Bulletin 2025;41(6):1021-1040
Hypoxic-ischemic (HI) brain damage poses a high risk of death or lifelong disability, yet effective treatments remain elusive. Here, we demonstrated that miR-100-5p levels in the lesioned cortex increased after HI insult in neonatal mice. Knockdown of miR-100-5p expression in the brain attenuated brain injury and promoted functional recovery, through inhibiting the cleaved-caspase-3 level, microglia activation, and the release of proinflammation cytokines following HI injury. Engineered extracellular vesicles (EVs) containing neuron-targeting rabies virus glycoprotein (RVG) and miR-100-5p antagonists (RVG-EVs-Antagomir) selectively targeted brain lesions and reduced miR-100-5p levels after intranasal delivery. Both pre- and post-HI administration showed therapeutic benefits. Mechanistically, we identified protein phosphatase 3 catalytic subunit alpha (Ppp3ca) as a novel candidate target gene of miR-100-5p, inhibiting c-Fos expression and neuronal apoptosis following HI insult. In conclusion, our non-invasive method using engineered EVs to deliver miR-100-5p antagomirs to the brain significantly improves functional recovery after HI injury by targeting Ppp3ca to suppress neuronal apoptosis.
Animals
;
MicroRNAs/metabolism*
;
Extracellular Vesicles/metabolism*
;
Mice
;
Recovery of Function/physiology*
;
Hypoxia-Ischemia, Brain/therapy*
;
Mice, Inbred C57BL
;
Antagomirs/administration & dosage*
;
Male
;
Animals, Newborn
;
Apoptosis/drug effects*
;
Brain Injuries/metabolism*
;
Glycoproteins
;
Peptide Fragments
;
Viral Proteins
3.Mandible-derived extracellular vesicles regulate early tooth development in miniature swine via targeting KDM2B.
Ye LI ; Meng SUN ; Yi DING ; Ang LI
International Journal of Oral Science 2025;17(1):36-36
Tissue interactions play a crucial role in tooth development. Notably, extracellular vesicle-mediated interactions between the mandible and tooth germ are considered essential. Here, we revealed that mandible extracellular vesicles could modulate the proliferation and differentiation of dental mesenchymal cells by regulating the histone demethylase KDM2B. Further investigation showed that mandible derived extracellular vesicles could deliver miR-206 to KDM2B, thereby regulating tooth development. An animal study demonstrated that the miR-206/KDM2B pathway affected tooth morphogenesis and mineralization after eight weeks of subcutaneous transplantation in nude mice. In conclusion, this study suggested that the mandible played a critical role in tooth morphogenesis and mineralization, which could be a potential therapeutic target for abnormal tooth development and an alternative model for tooth regeneration.
Animals
;
Extracellular Vesicles/metabolism*
;
Jumonji Domain-Containing Histone Demethylases/metabolism*
;
Swine
;
MicroRNAs/metabolism*
;
Mandible
;
Mice, Nude
;
Odontogenesis/physiology*
;
Swine, Miniature
;
Mice
;
Cell Differentiation
;
Cell Proliferation
4.MSCs-derived apoptotic extracellular vesicles promote muscle regeneration by inducing Pannexin 1 channel-dependent creatine release by myoblasts.
Qingyuan YE ; Xinyu QIU ; Jinjin WANG ; Boya XU ; Yuting SU ; Chenxi ZHENG ; Linyuan GUI ; Lu YU ; Huijuan KUANG ; Huan LIU ; Xiaoning HE ; Zhiwei MA ; Qintao WANG ; Yan JIN
International Journal of Oral Science 2023;15(1):7-7
Severe muscle injury is hard to heal and always results in a poor prognosis. Recent studies found that extracellular vesicle-based therapy has promising prospects for regeneration medicine, however, whether extracellular vesicles have therapeutic effects on severe muscle injury is still unknown. Herein, we extracted apoptotic extracellular vesicles derived from mesenchymal stem cells (MSCs-ApoEVs) to treat cardiotoxin induced tibialis anterior (TA) injury and found that MSCs-ApoEVs promoted muscles regeneration and increased the proportion of multinucleated cells. Besides that, we also found that apoptosis was synchronized during myoblasts fusion and MSCs-ApoEVs promoted the apoptosis ratio as well as the fusion index of myoblasts. Furthermore, we revealed that MSCs-ApoEVs increased the relative level of creatine during myoblasts fusion, which was released via activated Pannexin 1 channel. Moreover, we also found that activated Pannexin 1 channel was highly expressed on the membrane of myoblasts-derived ApoEVs (Myo-ApoEVs) instead of apoptotic myoblasts, and creatine was the pivotal metabolite involved in myoblasts fusion. Collectively, our findings firstly revealed that MSCs-ApoEVs can promote muscle regeneration and elucidated that the new function of ApoEVs as passing inter-cell messages through releasing metabolites from activated Pannexin 1 channel, which will provide new evidence for extracellular vesicles-based therapy as well as improving the understanding of new functions of extracellular vesicles.
Creatine/metabolism*
;
Extracellular Vesicles
;
Muscle, Skeletal/metabolism*
;
Myoblasts/metabolism*
;
Regeneration
;
Connexins/metabolism*
5.Carcinoma-associated fibroblast-derived lysyl oxidase-rich extracellular vesicles mediate collagen crosslinking and promote epithelial-mesenchymal transition via p-FAK/p-paxillin/YAP signaling.
Xue LIU ; Jiao LI ; Xuesong YANG ; Xiaojie LI ; Jing KONG ; Dongyuan QI ; Fuyin ZHANG ; Bo SUN ; Yuehua LIU ; Tingjiao LIU
International Journal of Oral Science 2023;15(1):32-32
Carcinoma-associated fibroblasts (CAFs) are the main cellular components of the tumor microenvironment and promote cancer progression by modifying the extracellular matrix (ECM). The tumor-associated ECM is characterized by collagen crosslinking catalyzed by lysyl oxidase (LOX). Small extracellular vesicles (sEVs) mediate cell-cell communication. However, the interactions between sEVs and the ECM remain unclear. Here, we demonstrated that sEVs released from oral squamous cell carcinoma (OSCC)-derived CAFs induce collagen crosslinking, thereby promoting epithelial-mesenchymal transition (EMT). CAF sEVs preferably bound to the ECM rather than being taken up by fibroblasts and induced collagen crosslinking, and a LOX inhibitor or blocking antibody suppressed this effect. Active LOX (αLOX), but not the LOX precursor, was enriched in CAF sEVs and interacted with periostin, fibronectin, and bone morphogenetic protein-1 on the surface of sEVs. CAF sEV-associated integrin α2β1 mediated the binding of CAF sEVs to collagen I, and blocking integrin α2β1 inhibited collagen crosslinking by interfering with CAF sEV binding to collagen I. CAF sEV-induced collagen crosslinking promoted the EMT of OSCC through FAK/paxillin/YAP pathway. Taken together, these findings reveal a novel role of CAF sEVs in tumor ECM remodeling, suggesting a critical mechanism for CAF-induced EMT of cancer cells.
Humans
;
Paxillin/metabolism*
;
Protein-Lysine 6-Oxidase/metabolism*
;
Carcinoma, Squamous Cell/pathology*
;
Epithelial-Mesenchymal Transition
;
Integrin alpha2beta1/metabolism*
;
Mouth Neoplasms/pathology*
;
Collagen/metabolism*
;
Fibroblasts
;
Extracellular Vesicles/metabolism*
;
Cell Line, Tumor
;
Tumor Microenvironment
6.Extracellular vesicle-carried GTF2I from mesenchymal stem cells promotes the expression of tumor-suppressive FAT1 and inhibits stemness maintenance in thyroid carcinoma.
Jie SHAO ; Wenjuan WANG ; Baorui TAO ; Zihao CAI ; Haixia LI ; Jinhong CHEN
Frontiers of Medicine 2023;17(6):1186-1203
Through bioinformatics predictions, we identified that GTF2I and FAT1 were downregulated in thyroid carcinoma (TC). Further, Pearson's correlation coefficient revealed a positive correlation between GTF2I expression and FAT1 expression. Therefore, we selected them for this present study, where the effects of bone marrow mesenchymal stem cell-derived EVs (BMSDs-EVs) enriched with GTF2I were evaluated on the epithelial-to-mesenchymal transition (EMT) and stemness maintenance in TC. The under-expression of GTF2I and FAT1 was validated in TC cell lines. Ectopically expressed GTF2I and FAT1 were found to augment malignant phenotypes of TC cells, EMT, and stemness maintenance. Mechanistic studies revealed that GTF2I bound to the promoter region of FAT1 and consequently upregulated its expression. MSC-EVs could shuttle GTF2I into TPC-1 cells, where GTF2I inhibited TC malignant phenotypes, EMT, and stemness maintenance by increasing the expression of FAT1 and facilitating the FAT1-mediated CDK4/FOXM1 downregulation. In vivo experiments confirmed that silencing of GTF2I accelerated tumor growth in nude mice. Taken together, our work suggests that GTF2I transferred by MSC-EVs confer antioncogenic effects through the FAT1/CDK4/FOXM1 axis and may be used as a promising biomarker for TC treatment.
Mice
;
Animals
;
Cell Line, Tumor
;
Cell Proliferation
;
Mice, Nude
;
Epithelial-Mesenchymal Transition
;
Thyroid Neoplasms/pathology*
;
Extracellular Vesicles/pathology*
;
Mesenchymal Stem Cells
;
Transcription Factors, TFIII/metabolism*
;
Neoplastic Stem Cells/pathology*
7.Research progress of exosomes in the diagnosis and treatment of sepsis.
Xin DU ; Hui FENG ; Yuhao JIANG ; Zihao FAN ; Hengheng ZHENG ; Jianjun ZHU
Chinese Critical Care Medicine 2023;35(9):999-1003
Sepsis is a life-threatening organ dysfunction caused by infection that lead to dysregulation of the host response. Sepsis and septic shock with a high mortality threaten human health at present, which are important medical and health problems. Early diagnosis and treatment decision-making for sepsis and septic shock still need to be improved. Exosomes are extracellular vesicles with a diameter of 30-150 nm formed by the fusion of multi-vesicle bodies and cell membranes. Exosomes can effectively transport a variety of bioactive substances such as proteins, lipids, RNA, DNA, and participate in the regulation of inflammatory response, immune response, infection and other pathophysiological processes. In recent years, exosomes have become one of the important methods for the diagnosis and treatment of systemic inflammatory diseases. This article will focus on the basic and clinical research of sepsis, and focus on the research progress of exosomes in the diagnosis and targeted therapy of sepsis.
Humans
;
Shock, Septic/therapy*
;
Exosomes/metabolism*
;
Sepsis/therapy*
;
Extracellular Vesicles/metabolism*
;
RNA/metabolism*
8.Mechanisms of Extracellular Vesicles Involved in Multiple Myeloma --Review.
Yi-Hui GUO ; Jia-Wei XU ; Hui SONG ; Qing ZENG ; Wei-Min CHENG
Journal of Experimental Hematology 2022;30(5):1612-1616
Multiple myeloma (MM) is a common hematologic tumor characterized by malignant proliferation of clonal plasma cells, the exact pathogenesis of which is not yet fully understood. The extracellular vesicles (EV) are structures released by cells into their surroundings that do not have a functional nucleus and can communicate between cells or deliver biologically active proteins and nucleic acids to target cells. EV play an important role in the interaction between myeloma cells and the bone marrow microenvironment, and they can promote MM progression. In this paper, we summarize the recent research progress in the mechanism of action of EV on MM in order to provide inspiration for exploring new strategies for MM treatment and prognostic stratification.
Bone Marrow/metabolism*
;
Extracellular Vesicles/pathology*
;
Hematologic Neoplasms/metabolism*
;
Humans
;
Multiple Myeloma/pathology*
;
Nucleic Acids/metabolism*
;
Tumor Microenvironment
9.Dental stem cell-derived extracellular vesicles transfer miR-330-5p to treat traumatic brain injury by regulating microglia polarization.
Ye LI ; Meng SUN ; Xinxin WANG ; Xiaoyu CAO ; Na LI ; Dandan PEI ; Ang LI
International Journal of Oral Science 2022;14(1):44-44
Traumatic brain injury (TBI) contributes to the key causative elements of neurological deficits. However, no effective therapeutics have been developed yet. In our previous work, extracellular vesicles (EVs) secreted by stem cells from human exfoliated deciduous teeth (SHED) offered new insights as potential strategies for functional recovery of TBI. The current study aims to elucidate the mechanism of action, providing novel therapeutic targets for future clinical interventions. With the miRNA array performed and Real-time PCR validated, we revealed the crucial function of miR-330-5p transferred by SHED-derived EVs (SHED-EVs) in regulating microglia, the critical immune modulator in central nervous system. MiR-330-5p targeted Ehmt2 and mediated the transcription of CXCL14 to promote M2 microglia polarization and inhibit M1 polarization. Identified in our in vivo data, SHED-EVs and their effector miR-330-5p alleviated the secretion of inflammatory cytokines and resumed the motor functional recovery of TBI rats. In summary, by transferring miR-330-5p, SHED-EVs favored anti-inflammatory microglia polarization through Ehmt2 mediated CXCL14 transcription in treating traumatic brain injury.
Animals
;
Brain Injuries, Traumatic/therapy*
;
Chemokines, CXC/metabolism*
;
Extracellular Vesicles/metabolism*
;
Histocompatibility Antigens/metabolism*
;
Histone-Lysine N-Methyltransferase/metabolism*
;
Humans
;
MicroRNAs/metabolism*
;
Microglia/metabolism*
;
Rats
;
Stem Cells/metabolism*
10.The mini player with diverse functions: extracellular vesicles in cell biology, disease, and therapeutics.
Abhimanyu THAKUR ; Xiaoshan KE ; Ya-Wen CHEN ; Pedram MOTALLEBNEJAD ; Kui ZHANG ; Qizhou LIAN ; Huanhuan Joyce CHEN
Protein & Cell 2022;13(9):631-654
Extracellular vesicles (EVs) are tiny biological nanovesicles ranging from approximately 30-1000 nm in diameter that are released into the extracellular matrix of most cell types and in biofluids. The classification of EVs includes exosomes, microvesicles, and apoptotic bodies, dependent on various factors such as size, markers, and biogenesis pathways. The transition of EV relevance from that of being assumed as a trash bag to be a key player in critical physiological and pathological conditions has been revolutionary in many ways. EVs have been recently revealed to play a crucial role in stem cell biology and cancer progression via intercellular communication, contributing to organ development and the progression of cancer. This review focuses on the significant research progress made so far in the role of the crosstalk between EVs and stem cells and their niche, and cellular communication among different germ layers in developmental biology. In addition, it discusses the role of EVs in cancer progression and their application as therapeutic agents or drug delivery vehicles. All such discoveries have been facilitated by tremendous technological advancements in EV-associated research, especially the microfluidics systems. Their pros and cons in the context of characterization of EVs are also extensively discussed in this review. This review also deliberates the role of EVs in normal cell processes and disease conditions, and their application as a diagnostic and therapeutic tool. Finally, we propose future perspectives for EV-related research in stem cell and cancer biology.
Biomarkers/metabolism*
;
Cell-Derived Microparticles/metabolism*
;
Exosomes
;
Extracellular Vesicles/metabolism*
;
Humans
;
Neoplasms/metabolism*

Result Analysis
Print
Save
E-mail