1.Research progress on the impact and mechanism of neutrophil extracellular traps (NETs) components in atherosclerosis.
Xin CHEN ; Jing-Jing ZHU ; Xiao-Fan YANG ; Yu-Peng MA ; Yi-Min BAO ; Ke NING
Acta Physiologica Sinica 2025;77(1):107-119
Atherosclerosis (AS) is a prevalent clinical vascular condition and serves as a pivotal pathological foundation for cardiovascular diseases. Understanding the pathogenesis of AS has significant clinical and societal implications, aiding in the development of targeted drugs. Neutrophils, the most abundant leukocytes in circulation, assume a central role during inflammatory responses and closely interact with AS, which is a chronic inflammatory vascular disease. Neutrophil extracellular traps (NETs) are substantial reticular formations discharged by neutrophils that serve as an immune defense mechanism. These structures play a crucial role in inducing dysfunction of the vascular barrier following endothelial cell injury. Components released by NETs pose a threat to the integrity of vascular endothelium, which is essential as it acts as the primary barrier to maintain vascular wall integrity. Endothelial damage constitutes the initial stage in the onset of AS. Recent investigations have explored the intricate involvement of NETs in AS progression. The underlying structures of NETs and their active ingredients, including histone, myeloperoxidase (MPO), cathepsin G, neutrophil elastase (NE), matrix metalloproteinases (MMPs), antimicrobial peptide LL-37, alpha-defensin 1-3, and high mobility group protein B1 have diverse and complex effects on AS through various mechanisms. This review aims to comprehensively examine the interplay between NETs and AS while providing insights into their mechanistic underpinnings of NETs in this condition. By shedding light on this intricate relationship, this exploration paves the way for future investigations into NETs while guiding clinical translation efforts and charting new paths for therapeutic interventions.
Extracellular Traps/physiology*
;
Humans
;
Atherosclerosis/immunology*
;
Neutrophils/physiology*
;
Leukocyte Elastase/metabolism*
;
Peroxidase/physiology*
;
Matrix Metalloproteinases/physiology*
;
Cathepsin G/metabolism*
;
Cathelicidins
;
HMGB1 Protein/physiology*
;
Histones
;
Animals
;
Endothelium, Vascular
2.Unveiling the molecular features and diagnosis and treatment prospects of immunothrombosis via integrated bioinformatics analysis.
Yafen WANG ; Xiaoshuang WU ; Zhixin LIU ; Xinlei LI ; Yaozhen CHEN ; Ning AN ; Xingbin HU
Chinese Journal of Cellular and Molecular Immunology 2025;41(3):228-235
Objective To investigate the common molecular features of immunothrombosis, thus enhancing the comprehension of thrombosis triggered by immune and inflammatory responses and offering crucial insights for identifying potential diagnostic and therapeutic targets. Methods Differential gene expression analysis and functional enrichment analysis were conducted on datasets of systemic lupus erythematosus (SLE) and venous thromboembolism (VTE). The intersection of differentially expressed genes in SLE and VTE with those of neutrophil extracellular traps (NET) yielded cross-talk genes (CG) for SLE-NET and VTE-NET interaction. Further analysis included functional enrichment and protein-protein interaction (PPI) network assessments of these CG to identify hub genes. Venn diagrams and receiver operating characteristic (ROC) curve analysis were employed to pinpoint the most effective shared diagnostic CG, which were validated using a graft-versus-host disease (GVHD) dataset. Results Differential expression genes in SLE and VTE were associated with distinct biological processes, whereas SLE-NET-CG and VTE-NET-CG were implicated in pathways related to leukocyte migration, inflammatory response, and immune response. Through PPI network analysis, several hub genes were identified, with matrix metalloproteinase 9 (MMP9) and S100 calcium-binding protein A12 (S100A12) emerging as the best shared diagnostic CG for SLE (AUC: 0.936 and 0.832) and VTE (AUC: 0.719 and 0.759). Notably, MMP9 exhibited good diagnostic performance in the GVHD dataset (AUC: 0.696). Conclusion This study unveils the common molecular features of SLE, VTE, and NET, emphasizing MMP9 and S100A12 as the optimal shared diagnostic CG, thus providing valuable evidence for the diagnosis and therapeutic strategies related to immunothrombosis. Additionally, the expression of MMP9 in GVHD highlights its critical role in the risk of VTE associated with immune system disorders.
Humans
;
Computational Biology/methods*
;
Lupus Erythematosus, Systemic/immunology*
;
Protein Interaction Maps/genetics*
;
Venous Thromboembolism/therapy*
;
Matrix Metalloproteinase 9/genetics*
;
Extracellular Traps/metabolism*
;
Gene Regulatory Networks
;
Thrombosis/immunology*
;
Graft vs Host Disease/genetics*
;
Gene Expression Profiling
3.Dual Roles of Neutrophil Extracellular Traps in Lung Cancer: Mechanism Exploration and Therapeutic Prospects.
Chengdao LI ; Dongge PENG ; Wei SUN
Chinese Journal of Lung Cancer 2025;28(1):63-68
Lung cancer is one of the most common and lethal malignancies in China. In the context of the tumor microenvironment, neutrophil extracellular traps (NETs) released by neutrophils exert a profound impact on the occurrence and progression of lung cancer. Although the exact mechanisms by which NETs promote tumor growth have not been fully elucidated, existing research has revealed their multiple roles in tumor growth, invasion, metastasis, and cancer-related thrombosis. This article will review the molecular biology mechanisms and research progress of NETs in lung cancer based on recent studies.
.
Extracellular Traps/metabolism*
;
Humans
;
Lung Neoplasms/drug therapy*
;
Neutrophils/immunology*
;
Animals
;
Tumor Microenvironment
4.Research Progress of Neutrophil Extracellular Traps in Lung Cancer.
Xu HAO ; Yilin FENG ; Anqi LU ; Ying SUN ; Jinchan XIA ; Xue MEI ; Long FENG ; Min JIANG ; Baiyan WANG ; Huitong YANG
Chinese Journal of Lung Cancer 2025;28(3):201-212
Neutrophil extracellular traps (NETs), intricate reticular structures released by activated neutrophils, play a pivotal regulatory role in the pathogenesis of malignant tumors. Lung cancer is one of the most prevalent malignancies globally, with persistently high incidence and mortality rates. Recent studies have revealed that NETs dynamically modulate the tumor microenvironment through unique pathological mechanisms, exhibiting complex immunoregulatory characteristics during the progression of lung cancer, and this discovery has increasingly become a focal point in tumor immunology research. This paper provides a comprehensive review of the latest advancements in NETs research related to lung cancer, offering an in-depth analysis of their impact on lung cancer progression, their potential diagnostic value, and the current state of research on targeting NETs for lung cancer prevention and treatment. The aim is to propose novel strategies to enhance therapeutic outcomes and improve the prognosis for lung cancer patients.
.
Extracellular Traps/immunology*
;
Humans
;
Lung Neoplasms/metabolism*
;
Neutrophils/metabolism*
;
Animals
;
Tumor Microenvironment
5.Taohe Chengqi decoction inhibits PAD4-mediated neutrophil extracellular traps and mitigates acute lung injury induced by sepsis.
Mengting XIE ; Xiaoli JIANG ; Weihao JIANG ; Lining YANG ; Xiaoyu JUE ; Yunting FENG ; Wei CHEN ; Shuangwei ZHANG ; Bin LIU ; Zhangbin TAN ; Bo DENG ; Jingzhi ZHANG
Chinese Journal of Natural Medicines (English Ed.) 2025;23(10):1195-1209
Acute lung injury (ALI) is a significant complication of sepsis, characterized by high morbidity, mortality, and poor prognosis. Neutrophils, as critical intrinsic immune cells in the lung, play a fundamental role in the development and progression of ALI. During ALI, neutrophils generate neutrophil extracellular traps (NETs), and excessive NETs can intensify inflammatory injury. Research indicates that Taohe Chengqi decoction (THCQD) can ameliorate sepsis-induced lung inflammation and modulate immune function. This study aimed to investigate the mechanisms by which THCQD improves ALI and its relationship with NETs in sepsis patients, seeking to provide novel perspectives and interventions for clinical treatment. The findings demonstrate that THCQD enhanced survival rates and reduced lung injury in the cecum ligation and puncture (CLP)-induced ALI mouse model. Furthermore, THCQD diminished neutrophil and macrophage infiltration, inflammatory responses, and the production of pro-inflammatory cytokines, including interleukin-1β (IL-1β), IL-6, and tumor necrosis factor α (TNF-α). Notably, subsequent experiments confirmed that THCQD inhibits NET formation both in vivo and in vitro. Moreover, THCQD significantly decreased the expression of peptidyl arginine deiminase 4 (PAD4) protein, and molecular docking predicted that certain active compounds in THCQD could bind tightly to PAD4. PAD4 overexpression partially reversed THCQD's inhibitory effects on PAD4. These findings strongly indicate that THCQD mitigates CLP-induced ALI by inhibiting PAD4-mediated NETs.
Extracellular Traps/immunology*
;
Acute Lung Injury/immunology*
;
Animals
;
Sepsis/immunology*
;
Drugs, Chinese Herbal/pharmacology*
;
Mice
;
Neutrophils/immunology*
;
Male
;
Protein-Arginine Deiminase Type 4/genetics*
;
Mice, Inbred C57BL
;
Humans
;
Disease Models, Animal
;
Cytokines/metabolism*

Result Analysis
Print
Save
E-mail