1.HAPLN1 secreted by synovial fibroblasts in rheumatoid arthritis promotes macrophage polarization towards the M1 phenotype.
Chenggen LUO ; Kun HUANG ; Xiaoli PAN ; Yong CHEN ; Yanjuan CHEN ; Yunting CHEN ; Mang HE ; Mei TIAN
Chinese Journal of Cellular and Molecular Immunology 2025;41(5):413-419
Objective To investigate the effects of hyaluronic acid and proteoglycan-linked protein 1 (HAPLN1) secreted by synovial fibroblasts (FLS) on the polarization of macrophages (Mϕ) in rheumatoid arthritis (RA). Methods Human monocytic leukemia cells (THP-1) were differentiated into Mϕ, which were subsequently exposed to recombinant HAPLN1 (rHAPLN1). RA-FLS were transfected separately with HAPLN1 overexpression plasmid (HAPLN1OE) or small interfering RNA targeting HAPLN1 (si-HAPLN1), and then co-cultured with Mϕ to establish a co-culture model. The viability of Mϕ was assessed using the CCK-8 assay, and the proportions of pro-inflammatory M1-type and anti-inflammatory M2-type Mϕ were analyzed by flow cytometry. Additionally, the expression levels of inflammatory markers, including interleukin 1β (IL-1β), tumor necrosis factor α (TNF-α), and inducible nitric oxide synthase (iNOS), were quantified using quantitative real-time PCR and Western blot analysis. Results The viability of Mϕ was increased in the rHAPLN1 group compared to the control group. Furthermore, both the M1/Mϕ ratio and inflammatory factor levels were elevated in the rHAPLN1 and HAPLN1OE groups. In contrast, the si-HAPLN1 group exhibited a decrease in the M1/Mϕ ratio and inflammatory factor expression. Notably, the introduction of rHAPLN1 in rescue experiments further promoted Mϕ polarization towards the M1 phenotype. Conclusion HAPLN1, secreted by RA fibroblast-like synoviocytes (RA-FLS), enhances Mϕ polarization towards the M1 phenotype.
Humans
;
Arthritis, Rheumatoid/genetics*
;
Macrophages/immunology*
;
Fibroblasts/metabolism*
;
Phenotype
;
Extracellular Matrix Proteins/genetics*
;
Proteoglycans/genetics*
;
Synovial Membrane/cytology*
;
Tumor Necrosis Factor-alpha/genetics*
;
Interleukin-1beta/genetics*
;
Nitric Oxide Synthase Type II/genetics*
;
Cell Differentiation
;
Coculture Techniques
;
THP-1 Cells
2.Mechanism of aucubin in regulating ribosome biogenesis and inhibiting injury of nucleus pulposus cells and extracellular matrix degradation.
Ling-Hui LI ; Shang-Quan WANG ; Kai SUN ; Xun-Lu YIN ; Li-Guo ZHU ; Xu WEI
China Journal of Chinese Materia Medica 2024;49(21):5713-5720
This study aimed to investigate the effect of aucubin(AU) on injury of nucleus pulposus cells and extracellular matrix(ECM) degradation and its mechanism. The nucleus pulposus cell injury model was established by interleukin-1β(IL-1β) and treated with AU or phosphatidylinositol 3-kinase(PI3K) inhibitor LY294002. CCK-8 experiment was conducted to test cell proliferation. EdU staining method was employed to detect cell injury. Flow cytometry was used to detect cell apoptosis. Western blot was used to detect protein levels of cleaved-caspase-3, B-cell lymphoma(Bcl-2), Bcl-2 associated X protein(Bax), type Ⅱ collagen(collagen Ⅱ), aggregation proteoglycans(aggrecan), PI3K, and mammalian target of rapamycin(mTOR). qPCR was used to detect the rRNA level of 5S, 18S, and 28S. Ethynyluridine was used to label nascent RNA. The results showed that IL-1β could significantly cause injury of nucleus pulposus cells and increase the apoptosis rate of nucleus pulposus cells and the expression of apoptosis protein cleaved-caspase-3 and Bax. At the same time, IL-1β down-regulated the expression of anti-apoptotic protein Bcl-2 and collagen Ⅱ and aggrecan, the main components of ECM. On this basis, AU intervention could improve the injury of nucleus pulposus cells, reduce the apoptosis of nucleus pulposus cells and the expression of cleaved-caspase-3 and Bax, and increase the expression of Bcl-2, collagen Ⅱ, and aggrecan. Compared with IL-1β, AU could up-regulate the phosphorylation level of PI3K and mTOR, and LY294002 could reverse the injury of nucleus pulposus cells and improve ECM degradation induced by AU. In addition, AU also could save lowered rRNA levels of 5S, 18S, and 28S induced by IL-1β and improve RNA synthesis. PI3K inhibitor LY294002 intervention could reduce the promoting effect of AU on ribosome biogenesis. The above results suggest that AU can improve the injury of nucleus pulposus cells and ECM degradation, and its mechanism of action is related to its activation of the PI3K/mTOR pathway to promote ribosome biogenesis.
Nucleus Pulposus/cytology*
;
Extracellular Matrix/drug effects*
;
Animals
;
Iridoid Glucosides/pharmacology*
;
Apoptosis/drug effects*
;
Interleukin-1beta/metabolism*
;
Phosphatidylinositol 3-Kinases/genetics*
;
Rats
;
Cell Proliferation/drug effects*
;
TOR Serine-Threonine Kinases/genetics*
;
Rats, Sprague-Dawley
;
Humans
;
Signal Transduction/drug effects*
;
Caspase 3/genetics*
;
Proto-Oncogene Proteins c-bcl-2/genetics*
3.Spatio-temporal expression of dentin sialophosphoprotein and collagen Ⅰ during molar tooth germ development in vps4b knockout mouse.
Dong CHEN ; Ying-Ying WANG ; Xiao-Cong LI ; Fang-Li LU ; Qiang LI
West China Journal of Stomatology 2019;37(3):248-252
OBJECTIVE:
To verify the effect of the mutant gene vps4b on the expression of tooth development-related proteins, dentin sialophosphoprotein (DSPP) and collagenⅠ (COL-Ⅰ).
METHODS:
Paraffin tissue sections of the first molar tooth germ were obtained from the heads of fetal mice at the embryonic stages of 13.5, 14.5, and 16.5 days and from the mandibles of larvae aged 2.5 and 7 days after birth. The immunohistochemical method was used to detect the expression and location of DSPP and COL-Ⅰ in wild-type mouse and vps4b knockout mouse.
RESULTS:
DSPP and COL-Ⅰ were not found in the bud and cap stages of wild-type mouse molar germ. In the bell stage, DSPP was positively expressed in the inner enamel epithelium and dental papilla, whereas COL-Ⅰ was strongly expressed in the dental papilla and dental follicle. During the secretory and mineralized periods, DSPP and COL-Ⅰ were intensely observed in ameloblasts, odontoblasts, and dental follicles, but COL-Ⅰ was also expressed in the dental papilla. After vps4b gene knockout, DSPP was not expressed in the dental papilla of the bell stage and in the dental papilla and dental follicle of the secretory phase. The expression position of COL-Ⅰ in the bell and mineralization phase was consistent with that in the wild-type mice. Moreover, the expression of COL-Ⅰ in the dental papilla changed in the secretory stage.
CONCLUSIONS
Gene vps4b plays a significant role in the development of tooth germ. The expression of DSPP and COL-Ⅰ may be controlled by gene vps4b and regulates the development of tooth dentin and cementum together with vps4b.
ATPases Associated with Diverse Cellular Activities
;
genetics
;
Animals
;
Collagen
;
metabolism
;
Endosomal Sorting Complexes Required for Transport
;
genetics
;
Extracellular Matrix Proteins
;
metabolism
;
Mice
;
Mice, Knockout
;
Molar
;
Odontoblasts
;
Phosphoproteins
;
metabolism
;
Sialoglycoproteins
;
metabolism
;
Tooth Germ
4.Effect of telmisartan on expression of metadherin in the kidney of mice with unilateral ureter obstruction.
Fenfen PENG ; Hongyu LI ; Bohui YIN ; Yuxian WANG ; Yihua CHEN ; Zhaozhong XU ; Chongwei LUO ; Haibo LONG
Journal of Southern Medical University 2019;39(2):156-161
OBJECTIVE:
To explore the effect of telmisartan on the expression of metadherin in the kidney of mice with unilateral ureter obstruction.
METHODS:
Eighteen male C57 mice were randomized into sham-operated group, model group and telmisartan treatment group. In the latter two groups, renal interstitial fibrosis as the result of unilateral ureter obstruction (UUO) was induced by unilateral ureteral ligation with or without telmisartan intervention. Renal pathological changes of the mice were assessed using Masson staining, and immunohistochemistry and Western blotting were used to detect the expression of extracellular matrix proteins and metadherin in the kidney of the mice. In the experiment, cultured mouse renal tubular epithelial cells (mTECs) were stimulated with transforming growth factor-β1 (TGF-β1) and transfected with a siRNA targeting metadherin, and the changes in the expressions of extracellular matrix proteins and metadherin were detected using Western blotting.
RESULTS:
The expressions of extracellular matrix proteins and metadherin increased significantly in the kidney of mice with UUO ( < 0.05). Intervention with telmisartan significantly lowered the expressions of extracellular matrix proteins and metadherin and alleviated the pathology of renal fibrosis in mice with UUO ( < 0.05). In cultured mTECs, siRNA-mediated knockdown of metadherin obviously reversed TGF-β1-induced increase in the expressions of extracellular matrix proteins and metadherin.
CONCLUSIONS
Telmisartan can suppress the production of extracellular matrix proteins and the expression of metadhein to attenuate UUO-induced renal fibrosis in mice.
Angiotensin II Type 1 Receptor Blockers
;
Animals
;
Antihypertensive Agents
;
Extracellular Matrix Proteins
;
metabolism
;
Fibrosis
;
Kidney
;
drug effects
;
metabolism
;
pathology
;
Male
;
Membrane Proteins
;
genetics
;
metabolism
;
Mice
;
Mice, Inbred C57BL
;
RNA, Small Interfering
;
Random Allocation
;
Telmisartan
;
pharmacology
;
Transforming Growth Factor beta1
;
pharmacology
;
Ureteral Obstruction
;
complications
;
metabolism
5.Glycosylation of dentin matrix protein 1 is a novel key element for astrocyte maturation and BBB integrity.
Bo JING ; Chunxue ZHANG ; Xianjun LIU ; Liqiang ZHOU ; Jiping LIU ; Yinan YAO ; Juehua YU ; Yuteng WENG ; Min PAN ; Jie LIU ; Zuolin WANG ; Yao SUN ; Yi Eve SUN
Protein & Cell 2018;9(3):298-309
The blood-brain barrier (BBB) is a tight boundary formed between endothelial cells and astrocytes, which separates and protects brain from most pathogens as well as neural toxins in circulation. However, detailed molecular players involved in formation of BBB are not completely known. Dentin matrix protein 1 (DMP1)-proteoglycan (PG), which is known to be involved in mineralization of bones and dentin, is also expressed in soft tissues including brain with unknown functions. In the present study, we reported that DMP1-PG was expressed in brain astrocytes and enriched in BBB units. The only glycosylation site of DMP1 is serine89 (S89) in the N-terminal domain of the protein in mouse. Mutant mice with DMP1 point mutations changing S89 to glycine (S89G), which completely eradicated glycosylation of the protein, demonstrated severe BBB disruption. Another breed of DMP1 mutant mice, which lacked the C-terminal domain of DMP1, manifested normal BBB function. The polarity of S89G-DMP1 astrocytes was disrupted and cell-cell adhesion was loosened. Through a battery of analyses, we found that DMP1 glycosylation was critically required for astrocyte maturation both in vitro and in vivo. S89G-DMP1 mutant astrocytes failed to express aquaporin 4 and had reduced laminin and ZO1 expression, which resulted in disruption of BBB. Interestingly, overexpression of wild-type DMP1-PG in mouse brain driven by the nestin promoter elevated laminin and ZO1 expression beyond wild type levels and could effectively resisted intravenous mannitol-induced BBB reversible opening. Taken together, our study not only revealed a novel element, i.e., DMP1-PG, that regulated BBB formation, but also assigned a new function to DMP1-PG.
Animals
;
Astrocytes
;
cytology
;
metabolism
;
Blood-Brain Barrier
;
cytology
;
metabolism
;
Cells, Cultured
;
Extracellular Matrix Proteins
;
genetics
;
metabolism
;
Female
;
Glycosylation
;
Male
;
Mice
;
Proteoglycans
;
metabolism
;
Reverse Transcriptase Polymerase Chain Reaction
6.The minor collagens in articular cartilage.
Yunyun LUO ; Dovile SINKEVICIUTE ; Yi HE ; Morten KARSDAL ; Yves HENROTIN ; Ali MOBASHERI ; Patrik ÖNNERFJORD ; Anne BAY-JENSEN
Protein & Cell 2017;8(8):560-572
Articular cartilage is a connective tissue consisting of a specialized extracellular matrix (ECM) that dominates the bulk of its wet and dry weight. Type II collagen and aggrecan are the main ECM proteins in cartilage. However, little attention has been paid to less abundant molecular components, especially minor collagens, including type IV, VI, IX, X, XI, XII, XIII, and XIV, etc. Although accounting for only a small fraction of the mature matrix, these minor collagens not only play essential structural roles in the mechanical properties, organization, and shape of articular cartilage, but also fulfil specific biological functions. Genetic studies of these minor collagens have revealed that they are associated with multiple connective tissue diseases, especially degenerative joint disease. The progressive destruction of cartilage involves the degradation of matrix constituents including these minor collagens. The generation and release of fragmented molecules could generate novel biochemical markers with the capacity to monitor disease progression, facilitate drug development and add to the existing toolbox for in vitro studies, preclinical research and clinical trials.
Aggrecans
;
chemistry
;
genetics
;
metabolism
;
Animals
;
Biomarkers
;
metabolism
;
Cartilage, Articular
;
chemistry
;
metabolism
;
pathology
;
Collagen
;
chemistry
;
classification
;
genetics
;
metabolism
;
Extracellular Matrix Proteins
;
chemistry
;
genetics
;
metabolism
;
Gene Expression
;
Humans
;
Osteoarthritis
;
diagnosis
;
genetics
;
metabolism
;
pathology
;
Protein Isoforms
;
chemistry
;
classification
;
genetics
;
metabolism
7.Molecular genetic analysis and clinical phenotype of a pedigree with familial dominant drusen.
Ting ZHANG ; Xuelu XIE ; Zhibing ZENG ; Dan MENG ; Fang LU
Chinese Journal of Medical Genetics 2015;32(3):358-362
OBJECTIVETo analyze clinical features and mutations of EFEMP1 gene in a Chinese pedigree with familial dominant drusen.
METHODSClinical features of the pedigree were studied with fundus photography, fundus fluorescein angiography and optical coherence tomography. Molecular genetic analysis was performed on the patients and unaffected individuals from the family. All coding exons of the EFEMP1 gene were amplified by polymerase chain reaction (PCR) and sequenced. The results were compared with wild-type sequences from NCBI. The proband who had suffered from choroidal neovascularization and preretinal hemorrhage received an intravitreal injection of an anti-vascular endothelial growth factor (VEGF) preparation.
RESULTSA heterozygous mutation C>T (R345W) was identified in exon 10 of the EFEMP1 gene in two affected individuals from the family. The same mutation was not detected in unaffected family members and 100 healthy individuals. Postoperative follow-up of the patient receiving intravitreal injection of anti-VEGF drug showed that visual acuity was improved and fundus appeared to be stable.
CONCLUSIONThe R345W mutation in EFEMP1 is responsible for the dominant drusen in this family. Intravitreal injection of anti-VEGF drug is a promising treatment for the improvement in vision.
Adult ; Asian Continental Ancestry Group ; genetics ; Base Sequence ; Exons ; Extracellular Matrix Proteins ; genetics ; Female ; Genes, Dominant ; Humans ; Male ; Molecular Sequence Data ; Mutation, Missense ; Pedigree ; Retinal Drusen ; genetics ; metabolism ; Vascular Endothelial Growth Factor A ; metabolism ; Young Adult
9.PRDM14 promotes the migration of human non-small cell lung cancer through extracellular matrix degradation in vitro.
Hong-Xia BI ; Han-Bing SHI ; Ting ZHANG ; Ge CUI
Chinese Medical Journal 2015;128(3):373-377
BACKGROUNDAs a novel molecular markerof non-small cell lung cancer (NSCLC), PRDI-BF1 and RIZ homology domain containing protein 14 (PRDM14) is over-expressed in NSCLC tumor tissues. Extracellular matrix degradation mediated by the balance between matrix metalloproteinases (MMPs) and tissue inhibitor of metalloproteinases (TIMPs) is one of the most important mechanism in lung cancer metastasis. This study aimed to determine if PRDM14 promoted the migration of NSCLC cells through extracellular matrix degradation mediated by change of MMP/TIMP expression.
METHODSThe expression of PRDM14 was down-regulated in human cell line A 549 after transfection with lentiviral vector-mediated short-hairpin ribonucleic acids (shRNAs) which targeted the PRDM14 promoter. Cellular migration of shRNA-infected cells was detected by a scratch wound healing assay and transwell cell migration assay. Expression levels of MMP1, MMP2, TIMP1, and TIMP2 were measured by quantitative real-time polymerase chain reaction (RT-PCR).
RESULTSMigration of PRDM14-shRNA-infected cells was significantly inhibited relative to control cells as measured by the scratch wound healing (P < 0.05) and transwell cell migration assays (P < 0.01). The expression of MMP1 in A549 cells infected by PRDM14-shRNA was down-regulated significantly (P < 0.01), whereas the expression of TIMP1 and TIMP2 was up-regulated significantly (P < 0.01).
CONCLUSIONSPRDM14 accelerates A549 cells migration in vitro through extracellular matrix degradation. PRDM14 is considered as a potential therapeutic target in metastatic NSCLC.
Carcinoma, Non-Small-Cell Lung ; metabolism ; Cell Line, Tumor ; Cell Movement ; genetics ; physiology ; Extracellular Matrix ; metabolism ; Humans ; Matrix Metalloproteinase 1 ; metabolism ; Matrix Metalloproteinase 2 ; metabolism ; Neoplasm Metastasis ; genetics ; Repressor Proteins ; metabolism ; Tissue Inhibitor of Metalloproteinase-1 ; metabolism ; Tissue Inhibitor of Metalloproteinase-2 ; metabolism
10.Inhibition of Nonsmall Cell Lung Cancer Cell Migration by Protein Arginine Methyltransferase 1-small Hairpin RNA Through Inhibiting Epithelial-mesenchymal Transition, Extracellular Matrix Degradation, and Src Phosphorylation In Vitro.
Ting ZHANG ; Ge CUI ; Yun-Liang YAO ; Yue GUO ; Qi-Chun WANG ; Xi-Ning LI ; Wen-Ming FENG
Chinese Medical Journal 2015;128(9):1202-1208
BACKGROUNDProtein arginine methyltransferases 1 (PRMT1) is over-expressed in a variety of cancers, including lung cancer, and is correlated with a poor prognosis of tumor development. This study aimed to investigate the role of PRMT1 in nonsmall cell lung cancer (NSCLC) migration in vitro.
METHODSIn this study, PRMT1 expression in the NSCLC cell line A549 was silenced using lentiviral vector-mediated short hairpin RNAs. Cell migration was measured using both scratch wound healing and transwell cell migration assays. The mRNA expression levels of matrix metalloproteinase 2 (MMP-2) and tissue inhibitor of metalloproteinase 1, 2 (TIMP1, 2) were measured using quantitative real-time reverse transcription-polymerase chain reaction. The expression levels of protein markers for epithelial-mesenchymal transition (EMT) (E-cadherin, N-cadherin), focal adhesion kinase (FAK), Src, AKT, and their corresponding phosphorylated states were detected by Western blot.
RESULTSCell migration was significantly inhibited in the PRMT1 silenced group compared to the control group. The mRNA expression of MMP-2 decreased while TIMP1 and TIMP2 increased significantly. E-cadherin mRNA expression also increased while N-cadherin decreased. Only phosphorylated Src levels decreased in the silenced group while FAK or AKT remained unchanged.
CONCLUSIONSPRMT1-small hairpin RNA inhibits the migration abilities of NSCLC A549 cells by inhibiting EMT, extracellular matrix degradation, and Src phosphorylation in vitro.
Blotting, Western ; Carcinoma, Non-Small-Cell Lung ; enzymology ; genetics ; Cell Line ; Cell Movement ; genetics ; physiology ; Epithelial-Mesenchymal Transition ; genetics ; physiology ; Extracellular Matrix Proteins ; metabolism ; Humans ; Protein-Arginine N-Methyltransferases ; genetics ; metabolism ; RNA, Small Interfering ; genetics ; physiology

Result Analysis
Print
Save
E-mail