1.Advances in the study of exosomes derived from mesenchymal stem cells in the treatment of pulmonary diseases.
Tao MA ; Linzhi YUE ; Yumei DAI ; Wenya DU ; Lixian WU
Chinese Journal of Cellular and Molecular Immunology 2025;41(3):278-282
Pulmonary diseases, as a prevalent category of respiratory system disorders, have become a significant global public health concern. The increasing incidence of these diseases, caused by environmental pollution and occupational hazards, poses a substantial threat to human health and the overall quality of life. Mesenchymal stem cells (MSCs) are known for their remarkable immunomodulatory, anti-bacterial, and anti-apoptotic capabilities. Exosomes derived from MSCs, carrying a diverse array of proteins, lipids, nucleic acids, and other bio-active molecules, have demonstrated considerable therapeutic potential in treating pulmonary diseases, and have come to the forefront of medical research. This review summarized the therapeutic role of exosomes derived from various sources of mesenchymal stem cells in the context of pulmonary diseases, aiming to provide a robust foundation for their clinical application in diagnosis and treatment.
Exosomes/transplantation*
;
Humans
;
Mesenchymal Stem Cells/metabolism*
;
Lung Diseases/therapy*
;
Animals
2.Research progress on bone repair biomaterials with the function of recruiting endogenous mesenchymal stem cells.
Junjie ZHAO ; Yuhao ZHAO ; Yanchuan PU ; Xiyu WANG ; Pengfei HUANG ; Zhaokun ZHANG ; Haiyan ZHAO
Chinese Journal of Reparative and Reconstructive Surgery 2024;38(11):1408-1413
OBJECTIVE:
To review the research progress on bone repair biomaterials with the function of recruiting endogenous mesenchymal stem cells (MSCs).
METHODS:
An extensive review of the relevant literature on bone repair biomaterials, particularly those designed to recruit endogenous MSCs, was conducted, encompassing both domestic and international studies from recent years. The construction methods and optimization strategies for these biomaterials were summarized. Additionally, future research directions and focal points concerning this material were proposed.
RESULTS:
With the advancement of tissue engineering technology, bone repair biomaterials have increasingly emerged as an ideal solution for addressing bone defects. MSCs serve as the most critical "seed cells" in bone tissue engineering. Historically, both MSCs and their derived exosomes have been utilized in bone repair biomaterials; however, challenges such as limited sources of MSCs and exosomes, low survival rates, and various other issues have persisted. To address these challenges, researchers are combining growth factors, bioactive peptides, specific aptamers, and other substances with biomaterials to develop constructs that facilitate stem cell recruitment. By optimizing mechanical properties, promoting vascular regeneration, and regulating the microenvironment, it is possible to create effective bone repair biomaterials that enhance stem cell recruitment.
CONCLUSION
In comparison to cytokines, phages, and metal ions, bioactive peptides and aptamers obtained through screening exhibit more specific and targeted recruitment functions. Future development directions for bone repair biomaterials will involve the modification of peptides and aptamers with targeted recruitment capabilities in biological materials, as well as the optimization of the mechanical properties of these materials to enhance vascular regeneration and adjust the microenvironment.
Mesenchymal Stem Cells/metabolism*
;
Biocompatible Materials/chemistry*
;
Tissue Engineering/methods*
;
Humans
;
Bone Regeneration
;
Tissue Scaffolds/chemistry*
;
Animals
;
Bone and Bones
;
Mesenchymal Stem Cell Transplantation/methods*
;
Exosomes/metabolism*
;
Intercellular Signaling Peptides and Proteins/metabolism*
;
Osteogenesis
3.Research advances in mesenchymal stem cell-derived exosomes in treatment of brain injury.
Chinese Journal of Contemporary Pediatrics 2017;19(12):1285-1290
Mesenchymal stem cell (MSC) transplantation is considered one of the most promising therapeutic strategies for the repair of brain injuries and plays an important role in various links of nerve repair. Recent studies have shown that MSC-derived exosomes may dominate the repair of brain injuries and help to promote angiogenesis, regulate immunity, inhibit apoptosis, and repair the nerves, and therefore, they have a great potential in the treatment of brain injuries in neonates. With reference to these studies, this article reviews the mechanism of action of exosomes in the repair of brain injuries and related prospects and challenges, in order to provide new directions for the treatment of brain injuries in neonates with stem cells.
Apoptosis
;
Brain Injuries
;
therapy
;
Exosomes
;
physiology
;
Humans
;
Inflammation
;
prevention & control
;
Mesenchymal Stem Cell Transplantation
;
Neovascularization, Physiologic
;
T-Lymphocytes
;
immunology
4.Microvesicle-delivery miR-150 promotes tumorigenesis by up-regulating VEGF, and the neutralization of miR-150 attenuate tumor development.
Yuchen LIU ; Luming ZHAO ; Dameng LI ; Yuan YIN ; Chen-Yu ZHANG ; Jing LI ; Yujing ZHANG
Protein & Cell 2013;4(12):932-941
Tumor-associated macrophages (TAMs) mostly exhibit M2-like (alternatively activated) properties and play positive roles in angiogenesis and tumorigenesis. Vascular endothelial growth factor (VEGF) is a key angiogenic factor. During tumor development, TAMs secrete VEGF and other factors to promote angiogenesis; thus, anti-treatment against TAMs and VEGF can repress cancer development, which has been demonstrated in clinical trials and on an experimental level. In the present work, we show that miR-150 is an oncomir because of its promotional effect on VEGF. MiR-150 targets TAMs to up-regulate their secretion of VEGF in vitro. With the utilization of cell-derived vesicles, named microvesicles (MVs), we transferred antisense RNA targeted to miR-150 into mice and found that the neutralization of miR-150 down-regulates miR-150 and VEGF levels in vivo and attenuates angiogenesis. Therefore, we proposed the therapeutic potential of neutralizing miR-150 to treat cancer and demonstrated a novel, natural, microvesicle-based method for the transfer of nucleic acids.
Animals
;
Carcinogenesis
;
genetics
;
metabolism
;
pathology
;
Cell Line, Tumor
;
Exosomes
;
HEK293 Cells
;
Heterografts
;
Humans
;
Macrophages
;
metabolism
;
Male
;
Mice
;
Mice, Inbred C57BL
;
MicroRNAs
;
genetics
;
metabolism
;
Neoplasm Transplantation
;
RNA, Antisense
;
administration & dosage
;
genetics
;
Up-Regulation
;
Vascular Endothelial Growth Factor A
;
genetics
;
metabolism
5.Immune tolerance induced by exosomes derived from regulatory dendritic cells of mice.
Yuan-Yuan LIU ; Hua-Hua FAN ; Ya-Na REN ; Jie YANG ; Xiao-Xuan NIE ; Li-Hua ZHAO ; Jun-Jie LIN
Journal of Experimental Hematology 2008;16(2):406-410
The study was aimed to explore the roles of exosomes derived from regulatory dendritic cells of mice in the induction of immune tolerance. Immature DC (iDC) from mouse bone marrow cells and regulatory DCs (rDC) were induced by treating iDC with TGF-beta1 and IL-10. The phenotype of regulatory DCs and normal DCs were assayed by flow cytometry. Exosomes from immature DCs (iDex) and regulatory DCs (rDex) were isolated by ultracentrifugation and ultrafiltration. A skin transplantation model was established with the recipients BALB/c mice and the donor C57BL/6 mice. Recipients were divided into PBS control group, iDex group (injection 10 microg iDex of donor C57BL/6 mice via tail vein at days 7 and 3 before skin transplantation), rDex group (injection 10 microg rDex of donor C57BL/6 mice via tail vein at days 7 and 3 before skin transplantation). The capacity of the donor mice and the unrelated allogeneic donor mice to stimulate allogeneic T lymphocyte proliferation was examined by mixed lymphocyte culture (MLR). The results showed that TGF-beta1 and IL-10 could down-regulate the expressions of costimulatory molecules, including CD80, CD86 and CD40. The graft mean survival time (MST) in control group, iDex group and rDex group was 7.8, 10.7 and 18.8 days, respectively. There was significant difference in MST between iDex group and control group (p<0.05), and between rDex group and iDex group (p<0.01). The results of MLR assays indicated donor-specific hyporeactivity especially in rDex group, while the tolerant B/C mice were still immunocompetent to unrelated allogeneic DBA mouse. It is concluded that injection iDex or rDex of donor mice via tail vein before skin transplantation induces immunotolerance, and the effect of rDex is more significant.
Animals
;
Dendritic Cells
;
cytology
;
immunology
;
transplantation
;
Exosomes
;
immunology
;
transplantation
;
Female
;
Graft Enhancement, Immunologic
;
methods
;
Graft Survival
;
Immune Tolerance
;
immunology
;
Lymphocyte Culture Test, Mixed
;
Mice
;
Mice, Inbred BALB C
;
Mice, Inbred C57BL
;
Mice, Inbred DBA
;
Skin Transplantation
;
Transplantation Immunology
;
Transplantation, Homologous

Result Analysis
Print
Save
E-mail