1.Role and Mechanism of Hyaluronic Acid-modified Milk Exosomes in Reversing Pemetrexed Resistance in Lung Adenocarcinoma Cells.
Chinese Journal of Lung Cancer 2025;28(9):658-666
BACKGROUND:
Lung cancer currently ranks first globally in both incidence and mortality. Pemetrexed (PMX) serves as a first-line treatment for lung adenocarcinoma (LUAD), but the patients often develop drug resistance during therapy. Milk exosome (mEXO) have the advantages of low immunogenicity, high tissue affinity, and low cost, and mEXO itself has anti-tumor effects. Hyaluronan (HA) naturally bind to CD44, a receptor which is highly expressed in LUAD tissues. This study aims to construct hyaluronan-modified milk exosome (HA-mEXO) and preliminarily investigate their molecular mechanisms for reversing PMX resistance through cellular experiments.
METHODS:
Exosomes were extracted from milk using high-speed centrifugation, and HA-mEXO was constructed. PMX-resistant A549 and PC-9 cell lines were treated with mEXO and HA-mEXO, respectively. CCK-8 assays, colony formation assays, Transwell assays, and flow cytometry were performed to evaluate proliferation, colony formation, migration, invasion, and apoptosis phenotypes in the treated resistant cell lines. Finally, transcriptomic sequencing, analysis, and cellular functional recovery experiments were conducted to investigate the mechanism by which HA-mEXO reverses PMX resistance in LUAD cells.
RESULTS:
The expression of CD44 in A549 and PC-9 LUAD drug-resistant cell lines was significantly higher than that in parental cells, and the uptake rate of HA-mEXO by drug-resistant cell lines was significantly higher than that of mEXO. Compared to the mEXO group, HA-mEXO-treated A549 and PC-9 resistant cells exhibited significantly reduced half maximal inhibitory concentration (IC50) values for PMX, markedly diminished clonogenic, migratory, and invasive capabilities, and a significantly increased proportion of apoptotic cells. Western blot analysis revealed that, compared to parental cells, A549 and PC-9 drug-resistant cells exhibited downregulated ZNF516 expression and upregulated ABCC5 expression. Immunofluorescence analysis revealed that HA-mEXO treatment downregulated ABCC5 expression in A549 and PC-9 drug-resistant cells compared to the PBS group, whereas co-treatment with HA-mEXO and ZNF516 knockdown showed no significant change in ABCC5 expression.
CONCLUSIONS
HA-mEXO carrying ZNF516 suppress ABCC5 expression, thereby enhancing the sensitivity of A549 and PC-9 LAUD drug-resistant cells to PMX.
Humans
;
Hyaluronic Acid/chemistry*
;
Drug Resistance, Neoplasm/drug effects*
;
Exosomes/chemistry*
;
Adenocarcinoma of Lung/genetics*
;
Pemetrexed/pharmacology*
;
Animals
;
Lung Neoplasms/pathology*
;
Milk/chemistry*
;
Cell Proliferation/drug effects*
;
Apoptosis/drug effects*
;
Cell Line, Tumor
;
Hyaluronan Receptors/metabolism*
2.Effects of Electromagnetic Pulses on Exosomes Secretion by A549 Cells.
Qingxia HOU ; Yingmei WANG ; Meng CAO ; Jiangzheng LIU ; Deqin KONG ; Qian ZHANG ; Weihua YU ; Guangzhou AN
Chinese Journal of Lung Cancer 2024;27(12):885-893
BACKGROUND:
Numerous researches indicated that electromagnetic pulses (EMP) possessed advantages such as strong targeting, minimal side-effects and low treatment cost in tumor therapy, but its optimum parameters for treatment and the relationship between EMP and tumor-derived exosomes remains unclear. This study aims to clarify the effects of EMP with different parameters on the quantity and miRNA (microRNA) of exosomes secreted by human non-small cell lung cancer A549 cells, providing beneficial reference for the clinical application of EMP and related research.
METHODS:
A549 cells were randomly divided into control group and different EMP radiation groups with respective intensity of 400, 600 and 800 kV/m. EMP was performed with 2000 pulses once, 20 Hz of repetition frequency and 120 ns of pulse width. A549 cells were radiated once per day for continuous 3 days. After radiation, exosomes were collected and identified; cell number was measured by trypan blue staining; the concentration of exosomes was measured by nanoparticle tracking analysis (NTA); the abundance of miRNAs was determined by miRNA sequencing.
RESULTS:
Compared with control group, the morphology and cell viability of A549 cells in radiation group was not different, but the quantity of exosomes in 400 or 800 kV/m radiation group was significantly decreased (P<0.05), in contrast with obvious increase in 600 kV/m radiation group (P<0.05). The abundance of exosomal miRNAs between control group and each EMP group was obviously different (P<0.05) and target genes of differentially abundant miRNAs enriched in different pathways.
CONCLUSIONS
Under the experimental condition, the quantity and miRNA abundance of exosomes could be changed by EMP radiation, which could further influence the function of tumor-derived exosomes.
Humans
;
Exosomes/genetics*
;
A549 Cells
;
MicroRNAs/metabolism*
;
Lung Neoplasms/pathology*
;
Cell Survival/radiation effects*
;
Electromagnetic Fields
3.Jiedu recipe, a compound Chinese herbal medicine, suppresses hepatocellular carcinoma metastasis by inhibiting the release of tumor-derived exosomes in a hypoxic microenvironment.
Wen-Tao JIA ; Shuang XIANG ; Jin-Bo ZHANG ; Jia-Ying YUAN ; Yu-Qian WANG ; Shu-Fang LIANG ; Wan-Fu LIN ; Xiao-Feng ZHAI ; Yan SHANG ; Chang-Quan LING ; Bin-Bin CHENG
Journal of Integrative Medicine 2024;22(6):696-708
OBJECTIVE:
Tumor-derived exosomes (TDEs) play crucial roles in intercellular communication. Hypoxia in the tumor microenvironment enhances secretion of TDEs and accelerates tumor metastasis. Jiedu recipe (JR), a traditional Chinese medicinal formula, has demonstrated efficacy in preventing the metastasis of hepatocellular carcinoma (HCC). However, the underlying mechanism remains largely unknown.
METHODS:
Animal experiments were performed to investigate the metastasis-preventing effects of JR. Bioinformatics analysis and in vitro assays were conducted to explore the potential targets and active components of JR. TDEs were assessed using nanoparticle tracking analysis (NTA) and Western blotting (WB). Exosomes derived from normoxic or hypoxic HCC cells (H-TDEs) were collected to establish premetastatic mouse models. JR was intragastrically administered to evaluate its metastasis-preventive effects. WB and lysosomal staining were performed to investigate the effects of JR on lysosomal function and autophagy. Bioinformatics analysis, WB, NTA, and immunofluorescence staining were used to identify the active components and potential targets of JR.
RESULTS:
JR effectively inhibited subcutaneous-tumor-promoted lung premetastatic niche development and tumor metastasis. It inhibited the release of exosomes from tumor cells under hypoxic condition. JR treatment promoted both lysosomal acidification and suppressed secretory autophagy, which were dysregulated in hypoxic tumor cells. Quercetin was identified as the active component in JR, and the epidermal growth factor receptor (EGFR) was identified as a potential target. Quercetin inhibited EGFR phosphorylation and promoted the nuclear translocation of transcription factor EB (TFEB). Hypoxia-impaired lysosomal function was restored, and secretory autophagy was alleviated by quercetin treatment.
CONCLUSION
JR suppressed HCC metastasis by inhibiting hypoxia-stimulated exosome release, restoring lysosomal function, and suppressing secretory autophagy. Quercetin acted as a key component of JR and regulated TDE release through EGFR-TFEB signaling. Our study provides a potential strategy for retarding tumor metastasis by targeting H-TDE secretion. Please cite this article as: Jia WT, Xiang S, Zhang JB, Yuan JY, Wang YQ, Liang SF, Lin WF, Zhai XF, Shang Y, Ling CQ, Cheng BB. Jiedu recipe, a compound Chinese herbal medicine, suppresses hepatocellular carcinoma metastasis by inhibiting the release of tumor-derived exosomes in a hypoxic microenvironment through the EGFR-TFEB signaling pathway. J Integr Med. 2024; 22(6): 697-709.
Exosomes/drug effects*
;
Animals
;
Carcinoma, Hepatocellular/genetics*
;
Drugs, Chinese Herbal/pharmacology*
;
Liver Neoplasms/pathology*
;
Tumor Microenvironment/drug effects*
;
Mice
;
Humans
;
Cell Line, Tumor
;
Mice, Inbred BALB C
;
Neoplasm Metastasis
;
Male
;
Mice, Nude
4.Research Progress in Exosomes in the Pathogenesis of Bronchial Asthma.
Acta Academiae Medicinae Sinicae 2023;45(5):827-832
Bronchial asthma is a heterogeneous chronic inflammatory disease involving multiple immune cells and structural cells.It is characterized by airflow limitation,airway hyperresponsiveness,and airway remodeling,with complex pathogenesis.In recent years,the research on exosomes has developed rapidly.Exosomes are small vesicles secreted by a variety of cells and are naturally found in various biological fluids,with stability and biocompatibility.Exosomes from different cells are involved in pathophysiological processes such as airway inflammation,remodeling,and hyperresponsiveness through specific mechanisms and play a regulatory role in multiple links in bronchial asthma.This review focuses on the role of exosomes from different cells in the pathogenesis of bronchial asthma.
Humans
;
Exosomes/pathology*
;
Asthma
;
Lung/pathology*
;
Inflammation
;
Chronic Disease
5.Viral myocarditis serum exosome-derived miR-320 promotes the apoptosis of mouse cardiomyocytes by inhibiting AKT/mTOR pathway and targeting phosphatidylinositol 3-kinase regulatory subunit 1 (Pik3r1).
Xin ZHANG ; Xueqin LI ; Liangyu ZHU ; Guoquan YIN ; Yuan ZHANG ; Kun LYU
Chinese Journal of Cellular and Molecular Immunology 2023;39(6):516-525
Objective To investigate the effect of viral myocarditis serum exosomal miR-320 on apoptosis of cardiomyocytes and its mechanism. Methods The model of viral myocarditis mice was established by intraperitoneal injection of Coxsackie virus B3. Serum exosomes were extracted by serum exosome extraction kit and co-cultured with cardiomyocytes. The uptake of exosomes by cardiomyocytes was detected by laser confocal microscopy. Cardiomyocytes were transfected with miR-320 inhibitor or mimic, and the expression level of miR-320 was detected by real-time quantitative PCR. Flow cytometry was used to detect cardiomyocyte apoptosis rate, and the expression levels of B cell lymphoma 2 (Bcl2) and Bcl2-related X protein (BAX) were tested by Western blot analysis. The prediction of miR-320 target genes and GO and KEGG enrichment analysis were tested by online database. The relationship between miR-320 and its target gene phosphoinositide-3-kinase regulatory subunit 1(Pik3r1) was examined by luciferase reporter gene. The effect of miR-320 on AKT/mTOR pathway protein was detected by Western blot analysis. Results Viral myocarditis serum exosomes promoted cardiomyocyte apoptosis, and increased the level of BAX while the level of Bcl2 was decreased. miR-320 was significantly up-regulated in myocardial tissue of viral myocarditis mice, and both pri-miR-320 and mature of miR-320 were up-regulated greatly in cardiomyocytes. The level of miR-320 in cardiomyocytes treated with viral myocarditis serum exosomes was significantly up-regulated, while transfection of miR-320 inhibitor counteracted miR-320 overexpression and reduced apoptosis rate caused by exosomes. Pik3r1 is the target gene of miR-320, and its overexpression reversed cardiomyocyte apoptosis induced by miR-320 up-regulation. The overexpression of miR-320 inhibited AKT/mTOR pathway activation. Conclusion Viral myocarditis serum exosome-derived miR-320 promotes apoptosis of mouse cardiomyocytes by inhibiting AKT/mTOR pathway by targeting Pik3r1.
Mice
;
Animals
;
Myocytes, Cardiac
;
Phosphatidylinositol 3-Kinase/metabolism*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Myocarditis/pathology*
;
Exosomes/metabolism*
;
bcl-2-Associated X Protein/metabolism*
;
MicroRNAs/metabolism*
;
TOR Serine-Threonine Kinases/metabolism*
;
Apoptosis/genetics*
6.Biosensor-based assay of exosome biomarker for early diagnosis of cancer.
Ying DENG ; Zhaowei SUN ; Lei WANG ; Minghui WANG ; Jie YANG ; Genxi LI
Frontiers of Medicine 2022;16(2):157-175
Cancer imposes a severe threat to people's health and lives, thus pressing a huge medical and economic burden on individuals and communities. Therefore, early diagnosis of cancer is indispensable in the timely prevention and effective treatment for patients. Exosome has recently become an attractive cancer biomarker in noninvasive early diagnosis because of the unique physiology and pathology functions, which reflects remarkable information regarding the cancer microenvironment, and plays an important role in the occurrence and evolution of cancer. Meanwhile, biosensors have gained great attention for the detection of exosomes due to their superior properties, such as convenient operation, real-time readout, high sensitivity, and remarkable specificity, suggesting promising biomedical applications in the early diagnosis of cancer. In this review, the latest advances of biosensors regarding the assay of exosomes were summarized, and the superiorities of exosomes as markers for the early diagnosis of cancer were evaluated. Moreover, the recent challenges and further opportunities of developing effective biosensors for the early diagnosis of cancer were discussed.
Biomarkers, Tumor
;
Biosensing Techniques
;
Early Detection of Cancer
;
Exosomes/pathology*
;
Humans
;
Neoplasms/pathology*
;
Tumor Microenvironment
7.Effects of exosomes from human adipose-derived mesenchymal stem cells on pulmonary vascular endothelial cells injury in septic mice and its mechanism.
Wei Xia CAI ; Kuo SHEN ; Tao CAO ; Jing WANG ; Ming ZHAO ; Ke Jia WANG ; Yue ZHANG ; Jun Tao HAN ; Da Hai HU ; Ke TAO
Chinese Journal of Burns 2022;38(3):266-275
Objective: To investigate the effects of exosomes from human adipose-derived mesenchymal stem cells (ADSCs) on pulmonary vascular endothelial cells (PMVECs) injury in septic mice and its mechanism. Methods: The experimental research method was adopted. The primary ADSCs were isolated and cultured from the discarded fresh adipose tissue of 3 patients (female, 10-25 years old), who were admitted to the First Affiliated Hospital of Air Force Medical University undergoing abdominal surgery, and the cell morphology was observed by inverted phase contrast microscope on the 5th day. The expressions of CD29, CD34, CD44, CD45, CD73, and CD90 of ADSCs in the third passage were detected by flow cytometry. The third to the fifth passage of ADSCs were collected, and their exosomes from the cell supernatant were obtained by differential ultracentrifugation, and the shape, particle size, and the protein expressions of CD9, CD63, tumor susceptibility gene 101 (TSG101), and β-actin of exosomes were detected, respectively, by transmission electron microscopy, nano-particle tracking analysis and Western blotting. Twenty-four adult male BALB/c mice were adopted and were divided into normal control group, caecal ligation perforation (CLP) alone group, and CLP+ADSC-exosome group with each group of 8 according to random number table (the same grouping method below) and were treated accordingly. At 24 h after operation, tumor necrosis factor (TNF-α) and interleukin 1β (IL-1β) levels of mice serum were detected by enzyme-linked immunosorbent assay, and lung tissue morphology of mice was detected by hematoxylin-eosin and myeloperoxidase staining, and the expression of 8-hydroxy-deoxyguanosine (8-OHdG) of mouse lung cells was detected by immunofluorescence method. Primary PMVECs were obtained from 1-month-old C57 mice regardless gender by tissue block method. The expression of CD31 of PMVECs was detected by immunofluorescence and flow cytometry. The third passage of PMVECs was co-cultured with ADSCs derived exosomes for 12 h, and the phagocytosis of exosomes by PMVECs was detected by PKH26 kit. The third passage of PMVECs were adopted and were divided into blank control group, macrophage supernatant alone group, and macrophage supernatant+ADSC-exosome group, with 3 wells in each group, which were treated accordingly. After 24 h, the content of reactive oxygen species in cells was detected by flow cytometry, the expression of 8-OHdG in cells was detected by immunofluorescence, and Transwell assay was used to determine the permeability of cell monolayer. The number of samples in above were all 3. Data were statistically analyzed with one-way analysis of variance and least significant difference t test. Results: The primary ADSCs were isolated and cultured to day 5, growing densely in a spindle shape with a typical swirl-like. The percentages of CD29, CD44, CD73 and CD90 positive cells of ADSCs in the third passage were all >90%, and the percentages of CD34 and CD45 positive cells were <5%. Exosomes derived from ADSCs of the third to fifth passages showed a typical double-cavity disc-like structure with an average particle size of 103 nm, and the protein expressions of CD9, CD63 and TSG101 of exosomes were positive, while the protein expression of β-actin of exosomes was negative. At 24 h after operation, compared with those in normal control group, both the levels of TNF-α and IL-1β of mice serum in CLP alone group were significantly increased (with t values of 28.76 and 29.69, respectively, P<0.01); compared with those in CLP alone group, both the content of TNF-α and IL-1β of mice serum in CLP+ADSC-exosome group was significantly decreased (with t values of 9.90 and 4.76, respectively, P<0.05 or P<0.01). At 24 h after surgery, the pulmonary tissue structure of mice in normal control group was clear and complete without inflammatory cell infiltration; compared with those in normal control group, the pulmonary tissue edema and inflammatory cell infiltration of mice in CLP alone group were more obvious; compared with those in CLP alone group, the pulmonary tissue edema and inflammatory cell infiltration of mice in CLP+ADSC-exosome group were significantly reduced. At 24 h after operation, endothelial cells in lung tissues of mice in 3 groups showed positive expression of CD31; compared with that in normal control group, the fluorescence intensity of 8-OHdG positive cells of the lung tissues of mice in CLP alone group was significantly increased, and compared with that in CLP alone group, the fluorescence intensity of 8-OHdG positive cells in the lung tissues of mice in CLP+ADSC-exosome group was significantly decreased. The PMVECs in the 3rd passage showed CD31 positive expression by immunofluorescence, and the result of flow cytometry showed that CD31 positive cells accounted for 99.5%. At 12 h after co-culture, ADSC-derived exosomes were successfully phagocytose by PMVECs and entered its cytoplasm. At 12 h after culture of the third passage of PMVECs, compared with that in blank control group, the fluorescence intensity of reactive oxygen species of PMVECs in macrophage supernatant alone group was significantly increased (t=15.73, P<0.01); compared with that in macrophage supernatant alone group, the fluorescence intensity of reactive oxygen species of PMVECs in macrophage supernatant+ADSC-exosome group was significantly decreased (t=4.72, P<0.01). At 12 h after culture of the third passage of PMVECs, and the 8-OHdG positive fluorescence intensity of PMVECs in macrophage supernatant alone group was significantly increased; and compared with that in blank control group, the 8-OHdG positive fluorescence intensity of PMVECs in macrophage+ADSC-exosome supernatant group was between blank control group and macrophage supernatant alone group. At 12 h after culture of the third passage PMVECs, compared with that in blank control group, the permeability of PMVECs monolayer in macrophage supernatant alone group was significantly increased (t=6.34, P<0.01); compared with that in macrophage supernatant alone group, the permeability of PMVECs monolayer cells in macrophage supernatant+ADSC-exosome group was significantly decreased (t=2.93, P<0.05). Conclusions: Exosomes derived from ADSCs can ameliorate oxidative damage in mouse lung tissue, decrease the level of reactive oxygen species, 8-OHdG expression, and permeability of PMVECs induced by macrophage supernatant.
Animals
;
Endothelial Cells/metabolism*
;
Exosomes/metabolism*
;
Female
;
Humans
;
Lung Injury/metabolism*
;
Male
;
Mesenchymal Stem Cells/metabolism*
;
Mice
;
Sepsis/pathology*
8.Research Advances of Immunotherapy of Exosome PD-L1 in Non-small Cell Lung Cancer.
Chinese Journal of Lung Cancer 2022;25(9):689-695
Cancer immunotherapy is increasingly popular in the field of cancer treatment, and related research is emerging. For patients with non-small cell lung cancer (NSCLC), in recent years, immune checkpoint inhibitors (ICIs) represented by programmed cell death 1 (PD-1)/programmed cell death ligand 1 (PD-L1) immunosuppressants, have become one of the most promising treatments for malignant tumors. Immune checkpoint blockade therapy includes anti-cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) mAb, anti-PD-1 mAb and anti-PD-L1 mAb, with the best-known number of PD-L1 immunotherapy. At present, ICIs have achieved very good therapeutic results in clinical treatment, but with less effective efficiency, so we hope to obtain higher therapeutic efficiency. In recent years, exosomal PD-L1 has played an important role in the progress of immunotherapy for NSCLC. This paper reviews the effects of tumor exosomal PD-L1 protein on the tumor microenvironment, the effect prediction of immunotherapy, and as novel therapeutic strategies for immunotherapy in NSCLC.
.
B7-H1 Antigen
;
CTLA-4 Antigen
;
Carcinoma, Non-Small-Cell Lung/pathology*
;
Exosomes/pathology*
;
Humans
;
Immune Checkpoint Inhibitors
;
Immunosuppressive Agents/therapeutic use*
;
Immunotherapy/methods*
;
Ligands
;
Lung Neoplasms/pathology*
;
Programmed Cell Death 1 Receptor
;
Tumor Microenvironment
9.Exosomes released by melanocytes modulate fibroblasts to promote keloid formation: a pilot study.
Zeren SHEN ; Jinjin SHAO ; Jiaqi SUN ; Jinghong XU
Journal of Zhejiang University. Science. B 2022;23(8):699-704
Keloids are a common type of pathological scar as a result of skin healing, which are extremely difficult to prevent and treat without recurrence. The pathological mechanism of keloids is the excessive proliferation of fibroblasts, which synthesize more extracellular matrices (ECMs), including type I/III collagen (COL-1/3), mucopolysaccharides, connective tissue growth factor (CTGF, also known as cellular communication network factor 2 (CCN2)), and fibronectin (FN) in scar tissue, mostly through the abnormal activation of transforming growth factor-β (TGF-β)/Smads pathway (Finnson et al., 2013; Song et al., 2018). Genetic factors, including race and skin tone, are considered to contribute to keloid formation. The reported incidence of keloids in black people is as high as 16%, whereas white people are less affected. The prevalence ratio of colored people to white people is 5:1-15:1 (Rockwell et al., 1989; LaRanger et al., 2019). In addition, keloids have not been reported in albinism patients of any race, and those with darker skin in the same race are more likely to develop this disease (LaRanger et al., 2019). Skin melanocyte activity is significantly different among people with different skin tones. The more active the melanocyte function, the more melanin is produced and the darker the skin. Similarly, in the same individual, the incidence of keloids increases during periods when melanocytes are active, such as adolescence and pregnancy. Keloids rarely appear in areas where melanocytes synthesize less melanin, such as in the palms and soles. Thus, the formation of keloids seems to be closely related to melanocyte activity.
Adolescent
;
Cells, Cultured
;
Exosomes/metabolism*
;
Fibroblasts/metabolism*
;
Humans
;
Keloid/pathology*
;
Melanins/metabolism*
;
Melanocytes/pathology*
;
Pilot Projects
;
Skin/metabolism*
;
Transforming Growth Factor beta/metabolism*
10.Exosomes rewire the cartilage microenvironment in osteoarthritis: from intercellular communication to therapeutic strategies.
Yuangang WU ; Jiao LI ; Yi ZENG ; Wenchen PU ; Xiaoyu MU ; Kaibo SUN ; Yong PENG ; Bin SHEN
International Journal of Oral Science 2022;14(1):40-40
Osteoarthritis (OA) is a prevalent degenerative joint disease characterized by cartilage loss and accounts for a major source of pain and disability worldwide. However, effective strategies for cartilage repair are lacking, and patients with advanced OA usually need joint replacement. Better comprehending OA pathogenesis may lead to transformative therapeutics. Recently studies have reported that exosomes act as a new means of cell-to-cell communication by delivering multiple bioactive molecules to create a particular microenvironment that tunes cartilage behavior. Specifically, exosome cargos, such as noncoding RNAs (ncRNAs) and proteins, play a crucial role in OA progression by regulating the proliferation, apoptosis, autophagy, and inflammatory response of joint cells, rendering them promising candidates for OA monitoring and treatment. This review systematically summarizes the current insight regarding the biogenesis and function of exosomes and their potential as therapeutic tools targeting cell-to-cell communication in OA, suggesting new realms to improve OA management.
Apoptosis
;
Cartilage/pathology*
;
Cartilage, Articular/metabolism*
;
Cell Communication
;
Chondrocytes/metabolism*
;
Exosomes/pathology*
;
Humans
;
Osteoarthritis/therapy*

Result Analysis
Print
Save
E-mail