1.Role and Mechanism of Hyaluronic Acid-modified Milk Exosomes in Reversing Pemetrexed Resistance in Lung Adenocarcinoma Cells.
Chinese Journal of Lung Cancer 2025;28(9):658-666
BACKGROUND:
Lung cancer currently ranks first globally in both incidence and mortality. Pemetrexed (PMX) serves as a first-line treatment for lung adenocarcinoma (LUAD), but the patients often develop drug resistance during therapy. Milk exosome (mEXO) have the advantages of low immunogenicity, high tissue affinity, and low cost, and mEXO itself has anti-tumor effects. Hyaluronan (HA) naturally bind to CD44, a receptor which is highly expressed in LUAD tissues. This study aims to construct hyaluronan-modified milk exosome (HA-mEXO) and preliminarily investigate their molecular mechanisms for reversing PMX resistance through cellular experiments.
METHODS:
Exosomes were extracted from milk using high-speed centrifugation, and HA-mEXO was constructed. PMX-resistant A549 and PC-9 cell lines were treated with mEXO and HA-mEXO, respectively. CCK-8 assays, colony formation assays, Transwell assays, and flow cytometry were performed to evaluate proliferation, colony formation, migration, invasion, and apoptosis phenotypes in the treated resistant cell lines. Finally, transcriptomic sequencing, analysis, and cellular functional recovery experiments were conducted to investigate the mechanism by which HA-mEXO reverses PMX resistance in LUAD cells.
RESULTS:
The expression of CD44 in A549 and PC-9 LUAD drug-resistant cell lines was significantly higher than that in parental cells, and the uptake rate of HA-mEXO by drug-resistant cell lines was significantly higher than that of mEXO. Compared to the mEXO group, HA-mEXO-treated A549 and PC-9 resistant cells exhibited significantly reduced half maximal inhibitory concentration (IC50) values for PMX, markedly diminished clonogenic, migratory, and invasive capabilities, and a significantly increased proportion of apoptotic cells. Western blot analysis revealed that, compared to parental cells, A549 and PC-9 drug-resistant cells exhibited downregulated ZNF516 expression and upregulated ABCC5 expression. Immunofluorescence analysis revealed that HA-mEXO treatment downregulated ABCC5 expression in A549 and PC-9 drug-resistant cells compared to the PBS group, whereas co-treatment with HA-mEXO and ZNF516 knockdown showed no significant change in ABCC5 expression.
CONCLUSIONS
HA-mEXO carrying ZNF516 suppress ABCC5 expression, thereby enhancing the sensitivity of A549 and PC-9 LAUD drug-resistant cells to PMX.
Humans
;
Hyaluronic Acid/chemistry*
;
Drug Resistance, Neoplasm/drug effects*
;
Exosomes/chemistry*
;
Adenocarcinoma of Lung/genetics*
;
Pemetrexed/pharmacology*
;
Animals
;
Lung Neoplasms/pathology*
;
Milk/chemistry*
;
Cell Proliferation/drug effects*
;
Apoptosis/drug effects*
;
Cell Line, Tumor
;
Hyaluronan Receptors/metabolism*
2.Effects of Electromagnetic Pulses on Exosomes Secretion by A549 Cells.
Qingxia HOU ; Yingmei WANG ; Meng CAO ; Jiangzheng LIU ; Deqin KONG ; Qian ZHANG ; Weihua YU ; Guangzhou AN
Chinese Journal of Lung Cancer 2024;27(12):885-893
BACKGROUND:
Numerous researches indicated that electromagnetic pulses (EMP) possessed advantages such as strong targeting, minimal side-effects and low treatment cost in tumor therapy, but its optimum parameters for treatment and the relationship between EMP and tumor-derived exosomes remains unclear. This study aims to clarify the effects of EMP with different parameters on the quantity and miRNA (microRNA) of exosomes secreted by human non-small cell lung cancer A549 cells, providing beneficial reference for the clinical application of EMP and related research.
METHODS:
A549 cells were randomly divided into control group and different EMP radiation groups with respective intensity of 400, 600 and 800 kV/m. EMP was performed with 2000 pulses once, 20 Hz of repetition frequency and 120 ns of pulse width. A549 cells were radiated once per day for continuous 3 days. After radiation, exosomes were collected and identified; cell number was measured by trypan blue staining; the concentration of exosomes was measured by nanoparticle tracking analysis (NTA); the abundance of miRNAs was determined by miRNA sequencing.
RESULTS:
Compared with control group, the morphology and cell viability of A549 cells in radiation group was not different, but the quantity of exosomes in 400 or 800 kV/m radiation group was significantly decreased (P<0.05), in contrast with obvious increase in 600 kV/m radiation group (P<0.05). The abundance of exosomal miRNAs between control group and each EMP group was obviously different (P<0.05) and target genes of differentially abundant miRNAs enriched in different pathways.
CONCLUSIONS
Under the experimental condition, the quantity and miRNA abundance of exosomes could be changed by EMP radiation, which could further influence the function of tumor-derived exosomes.
Humans
;
Exosomes/genetics*
;
A549 Cells
;
MicroRNAs/metabolism*
;
Lung Neoplasms/pathology*
;
Cell Survival/radiation effects*
;
Electromagnetic Fields
3.Jiedu recipe, a compound Chinese herbal medicine, suppresses hepatocellular carcinoma metastasis by inhibiting the release of tumor-derived exosomes in a hypoxic microenvironment.
Wen-Tao JIA ; Shuang XIANG ; Jin-Bo ZHANG ; Jia-Ying YUAN ; Yu-Qian WANG ; Shu-Fang LIANG ; Wan-Fu LIN ; Xiao-Feng ZHAI ; Yan SHANG ; Chang-Quan LING ; Bin-Bin CHENG
Journal of Integrative Medicine 2024;22(6):696-708
OBJECTIVE:
Tumor-derived exosomes (TDEs) play crucial roles in intercellular communication. Hypoxia in the tumor microenvironment enhances secretion of TDEs and accelerates tumor metastasis. Jiedu recipe (JR), a traditional Chinese medicinal formula, has demonstrated efficacy in preventing the metastasis of hepatocellular carcinoma (HCC). However, the underlying mechanism remains largely unknown.
METHODS:
Animal experiments were performed to investigate the metastasis-preventing effects of JR. Bioinformatics analysis and in vitro assays were conducted to explore the potential targets and active components of JR. TDEs were assessed using nanoparticle tracking analysis (NTA) and Western blotting (WB). Exosomes derived from normoxic or hypoxic HCC cells (H-TDEs) were collected to establish premetastatic mouse models. JR was intragastrically administered to evaluate its metastasis-preventive effects. WB and lysosomal staining were performed to investigate the effects of JR on lysosomal function and autophagy. Bioinformatics analysis, WB, NTA, and immunofluorescence staining were used to identify the active components and potential targets of JR.
RESULTS:
JR effectively inhibited subcutaneous-tumor-promoted lung premetastatic niche development and tumor metastasis. It inhibited the release of exosomes from tumor cells under hypoxic condition. JR treatment promoted both lysosomal acidification and suppressed secretory autophagy, which were dysregulated in hypoxic tumor cells. Quercetin was identified as the active component in JR, and the epidermal growth factor receptor (EGFR) was identified as a potential target. Quercetin inhibited EGFR phosphorylation and promoted the nuclear translocation of transcription factor EB (TFEB). Hypoxia-impaired lysosomal function was restored, and secretory autophagy was alleviated by quercetin treatment.
CONCLUSION
JR suppressed HCC metastasis by inhibiting hypoxia-stimulated exosome release, restoring lysosomal function, and suppressing secretory autophagy. Quercetin acted as a key component of JR and regulated TDE release through EGFR-TFEB signaling. Our study provides a potential strategy for retarding tumor metastasis by targeting H-TDE secretion. Please cite this article as: Jia WT, Xiang S, Zhang JB, Yuan JY, Wang YQ, Liang SF, Lin WF, Zhai XF, Shang Y, Ling CQ, Cheng BB. Jiedu recipe, a compound Chinese herbal medicine, suppresses hepatocellular carcinoma metastasis by inhibiting the release of tumor-derived exosomes in a hypoxic microenvironment through the EGFR-TFEB signaling pathway. J Integr Med. 2024; 22(6): 697-709.
Exosomes/drug effects*
;
Animals
;
Carcinoma, Hepatocellular/genetics*
;
Drugs, Chinese Herbal/pharmacology*
;
Liver Neoplasms/pathology*
;
Tumor Microenvironment/drug effects*
;
Mice
;
Humans
;
Cell Line, Tumor
;
Mice, Inbred BALB C
;
Neoplasm Metastasis
;
Male
;
Mice, Nude
4.Research Progress in Exosomes in the Pathogenesis of Bronchial Asthma.
Acta Academiae Medicinae Sinicae 2023;45(5):827-832
Bronchial asthma is a heterogeneous chronic inflammatory disease involving multiple immune cells and structural cells.It is characterized by airflow limitation,airway hyperresponsiveness,and airway remodeling,with complex pathogenesis.In recent years,the research on exosomes has developed rapidly.Exosomes are small vesicles secreted by a variety of cells and are naturally found in various biological fluids,with stability and biocompatibility.Exosomes from different cells are involved in pathophysiological processes such as airway inflammation,remodeling,and hyperresponsiveness through specific mechanisms and play a regulatory role in multiple links in bronchial asthma.This review focuses on the role of exosomes from different cells in the pathogenesis of bronchial asthma.
Humans
;
Exosomes/pathology*
;
Asthma
;
Lung/pathology*
;
Inflammation
;
Chronic Disease
5.Viral myocarditis serum exosome-derived miR-320 promotes the apoptosis of mouse cardiomyocytes by inhibiting AKT/mTOR pathway and targeting phosphatidylinositol 3-kinase regulatory subunit 1 (Pik3r1).
Xin ZHANG ; Xueqin LI ; Liangyu ZHU ; Guoquan YIN ; Yuan ZHANG ; Kun LYU
Chinese Journal of Cellular and Molecular Immunology 2023;39(6):516-525
Objective To investigate the effect of viral myocarditis serum exosomal miR-320 on apoptosis of cardiomyocytes and its mechanism. Methods The model of viral myocarditis mice was established by intraperitoneal injection of Coxsackie virus B3. Serum exosomes were extracted by serum exosome extraction kit and co-cultured with cardiomyocytes. The uptake of exosomes by cardiomyocytes was detected by laser confocal microscopy. Cardiomyocytes were transfected with miR-320 inhibitor or mimic, and the expression level of miR-320 was detected by real-time quantitative PCR. Flow cytometry was used to detect cardiomyocyte apoptosis rate, and the expression levels of B cell lymphoma 2 (Bcl2) and Bcl2-related X protein (BAX) were tested by Western blot analysis. The prediction of miR-320 target genes and GO and KEGG enrichment analysis were tested by online database. The relationship between miR-320 and its target gene phosphoinositide-3-kinase regulatory subunit 1(Pik3r1) was examined by luciferase reporter gene. The effect of miR-320 on AKT/mTOR pathway protein was detected by Western blot analysis. Results Viral myocarditis serum exosomes promoted cardiomyocyte apoptosis, and increased the level of BAX while the level of Bcl2 was decreased. miR-320 was significantly up-regulated in myocardial tissue of viral myocarditis mice, and both pri-miR-320 and mature of miR-320 were up-regulated greatly in cardiomyocytes. The level of miR-320 in cardiomyocytes treated with viral myocarditis serum exosomes was significantly up-regulated, while transfection of miR-320 inhibitor counteracted miR-320 overexpression and reduced apoptosis rate caused by exosomes. Pik3r1 is the target gene of miR-320, and its overexpression reversed cardiomyocyte apoptosis induced by miR-320 up-regulation. The overexpression of miR-320 inhibited AKT/mTOR pathway activation. Conclusion Viral myocarditis serum exosome-derived miR-320 promotes apoptosis of mouse cardiomyocytes by inhibiting AKT/mTOR pathway by targeting Pik3r1.
Mice
;
Animals
;
Myocytes, Cardiac
;
Phosphatidylinositol 3-Kinase/metabolism*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Myocarditis/pathology*
;
Exosomes/metabolism*
;
bcl-2-Associated X Protein/metabolism*
;
MicroRNAs/metabolism*
;
TOR Serine-Threonine Kinases/metabolism*
;
Apoptosis/genetics*
6.MicroRNA-204 Carried by Exosomes of Human Umbilical Cord-derived Mesenchymal Stem Cells Regulates the Polarization of Macrophages in a Mouse Model of Myocardial Ischemia-reperfusion Injury.
Gaili YUAN ; Dongwei YANG ; Limei LUO ; Wen WEN
Acta Academiae Medicinae Sinicae 2022;44(5):785-793
Objective To explore the role and mechanism of microRNA-204(miR-204) carried by the exosomes of human umbilical cord-derived mesenchymal stem cells(hUC-MSC) in regulating the polarization of macrophages in a mouse model of myocardial ischemia-reperfusion(I/R) injury. Methods After the hUC-MSCs were isolated,cultured,and identified,their adipogenic and osteogenic differentiation capabilities were determined.The exosomes of hUC-MSCs were separated by ultracentrifugation,and the expression of CD81,CD63,tumor susceptibility gene 101(Tsg101),and calnexin in the exosomes was determined by Nanoparticle Tracking Analysis software,transmission electron microscopy,and Western blotting.Three groups(hUC-MSC,miR-204 mimic,and negative control) were designed for the determination of the expression of miR-204 in the cells and their exosomes by qRT-PCR.The C57BL/6J mice were randomly assigned into a sham operation group,an I/R group,a hUC-MSC exosomes group,a negative control group,and a miR-204 mimic group.Except the sham operation group,the I/R model was established by ligating the left anterior descending artery.The echocardiography system was employed to detect the heart function of mice.HE staining was employed to observe the pathological changes of mouse myocardium.ELISA was employed to determine the levels of interleukin-1β(IL-1β),tumor necrosis factor-α(TNF-α),arginase 1(Arg-1),and IL-10 in the myocardial tissue.After the macrophages of mouse myocardial tissue were isolated,flow cytometry was employed to determine the expression of CD11c and CD206,and ELISA to measure the levels of IL-1β,TNF-α,Arg-1,and IL-10 in the macrophages. Results hUC-MSCs had adipogenic and osteogenic differentiation capabilities,and the exosomes were successfully identified.Compared with the negative control group,the miR-204 mimic group showed up-regulated expression of miR-204 in hUC-MSCs and their exosomes(P<0.001,P<0.001).Compared with the sham operation group,the modeling of I/R increased the left ventricular end-diastolic diameter(LVEDD)(P<0.001),left ventricular end-systolic diameter(LVESD)(P<0.001),myocardial injury score(P<0.001),and the levels of IL-1β(P<0.001),TNF-α(P<0.001),and CD11c(P<0.001).Meanwhile,it lowered the left ventricular ejection fraction(LVEF)(P<0.001),left ventricular fractional shortening(LVFS)(P<0.001),Arg-1(P<0.001),IL-10(P<0.001),and CD206(P<0.001).Compared with those in the I/R group,the LVEDD(P<0.001),LVESD(P<0.001),myocardial injury score(P<0.001),and the levels of IL-1β(P<0.001),TNF-α(P=0.010),and CD11c(P<0.001) reduced,while LVEF(P<0.001),LVFS(P<0.001),and the levels of Arg-1(P<0.001),IL-10(P=0.028),and CD206(P=0.022) increased in the hUC-MSC exosomes group.Compared with those in the negative control group,the LVEDD(P<0.001),LVESD(P<0.001),myocardial injury score(P=0.001),and the levels of IL-1β(P=0.048),TNF-α(P<0.001),and CD11c(P=0.007) reduced,while the LVEF(P<0.001),LVFS(P<0.001),and the levels of Arg-1(P<0.001),IL-10(P=0.001),and CD206(P=0.001) increased in the miR-204 mimic group. Conclusion The hUC-MSC exosomes overexpressing miR-204 can inhibit the polarization of macrophages in the I/R mouse model to M1-type and promote the polarization to M2-type.
Animals
;
Humans
;
Mice
;
Disease Models, Animal
;
Exosomes/pathology*
;
Interleukin-10/metabolism*
;
Macrophages
;
Mesenchymal Stem Cells
;
Mice, Inbred C57BL
;
MicroRNAs/genetics*
;
Myocardial Reperfusion Injury
;
Osteogenesis
;
Stroke Volume
;
Tumor Necrosis Factor-alpha/metabolism*
;
Umbilical Cord/pathology*
;
Ventricular Function, Left
7.The Role of Platelet Exosomes in Atherogenic Thrombosis --Review.
Dong-Lian TAO ; Shan DENG ; Yue HU ; Xiu-Quan WU ; Yi-Jian CHEN
Journal of Experimental Hematology 2022;30(3):975-978
Exosomes are subtypes of extracellur vesicles containing a variety of cell-specific proteins, lipids and nucleic acids released during cell activation or apoptosis, and play the role of intercellur communication mediators in different physiological and pathological processes. With the development of research in recent years, the role of platelet-derived exosomes in cardiovascular diseases has attracted extensive attention. This paper reviews the role of platelet-derived exosomes in atherosclerotic thrombosis and the potential role of platelet-derived exosomes as biomarkers for the diagnosis and treatment of atherosclerotic thrombotic disease and the problems to be solved.
Apoptosis
;
Atherosclerosis/pathology*
;
Blood Platelets/pathology*
;
Exosomes/pathology*
;
Humans
;
Thrombosis
8.Research Advances of Immunotherapy of Exosome PD-L1 in Non-small Cell Lung Cancer.
Chinese Journal of Lung Cancer 2022;25(9):689-695
Cancer immunotherapy is increasingly popular in the field of cancer treatment, and related research is emerging. For patients with non-small cell lung cancer (NSCLC), in recent years, immune checkpoint inhibitors (ICIs) represented by programmed cell death 1 (PD-1)/programmed cell death ligand 1 (PD-L1) immunosuppressants, have become one of the most promising treatments for malignant tumors. Immune checkpoint blockade therapy includes anti-cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) mAb, anti-PD-1 mAb and anti-PD-L1 mAb, with the best-known number of PD-L1 immunotherapy. At present, ICIs have achieved very good therapeutic results in clinical treatment, but with less effective efficiency, so we hope to obtain higher therapeutic efficiency. In recent years, exosomal PD-L1 has played an important role in the progress of immunotherapy for NSCLC. This paper reviews the effects of tumor exosomal PD-L1 protein on the tumor microenvironment, the effect prediction of immunotherapy, and as novel therapeutic strategies for immunotherapy in NSCLC.
.
B7-H1 Antigen
;
CTLA-4 Antigen
;
Carcinoma, Non-Small-Cell Lung/pathology*
;
Exosomes/pathology*
;
Humans
;
Immune Checkpoint Inhibitors
;
Immunosuppressive Agents/therapeutic use*
;
Immunotherapy/methods*
;
Ligands
;
Lung Neoplasms/pathology*
;
Programmed Cell Death 1 Receptor
;
Tumor Microenvironment
9.Exosomes released by melanocytes modulate fibroblasts to promote keloid formation: a pilot study.
Zeren SHEN ; Jinjin SHAO ; Jiaqi SUN ; Jinghong XU
Journal of Zhejiang University. Science. B 2022;23(8):699-704
Keloids are a common type of pathological scar as a result of skin healing, which are extremely difficult to prevent and treat without recurrence. The pathological mechanism of keloids is the excessive proliferation of fibroblasts, which synthesize more extracellular matrices (ECMs), including type I/III collagen (COL-1/3), mucopolysaccharides, connective tissue growth factor (CTGF, also known as cellular communication network factor 2 (CCN2)), and fibronectin (FN) in scar tissue, mostly through the abnormal activation of transforming growth factor-β (TGF-β)/Smads pathway (Finnson et al., 2013; Song et al., 2018). Genetic factors, including race and skin tone, are considered to contribute to keloid formation. The reported incidence of keloids in black people is as high as 16%, whereas white people are less affected. The prevalence ratio of colored people to white people is 5:1-15:1 (Rockwell et al., 1989; LaRanger et al., 2019). In addition, keloids have not been reported in albinism patients of any race, and those with darker skin in the same race are more likely to develop this disease (LaRanger et al., 2019). Skin melanocyte activity is significantly different among people with different skin tones. The more active the melanocyte function, the more melanin is produced and the darker the skin. Similarly, in the same individual, the incidence of keloids increases during periods when melanocytes are active, such as adolescence and pregnancy. Keloids rarely appear in areas where melanocytes synthesize less melanin, such as in the palms and soles. Thus, the formation of keloids seems to be closely related to melanocyte activity.
Adolescent
;
Cells, Cultured
;
Exosomes/metabolism*
;
Fibroblasts/metabolism*
;
Humans
;
Keloid/pathology*
;
Melanins/metabolism*
;
Melanocytes/pathology*
;
Pilot Projects
;
Skin/metabolism*
;
Transforming Growth Factor beta/metabolism*
10.Exosomes rewire the cartilage microenvironment in osteoarthritis: from intercellular communication to therapeutic strategies.
Yuangang WU ; Jiao LI ; Yi ZENG ; Wenchen PU ; Xiaoyu MU ; Kaibo SUN ; Yong PENG ; Bin SHEN
International Journal of Oral Science 2022;14(1):40-40
Osteoarthritis (OA) is a prevalent degenerative joint disease characterized by cartilage loss and accounts for a major source of pain and disability worldwide. However, effective strategies for cartilage repair are lacking, and patients with advanced OA usually need joint replacement. Better comprehending OA pathogenesis may lead to transformative therapeutics. Recently studies have reported that exosomes act as a new means of cell-to-cell communication by delivering multiple bioactive molecules to create a particular microenvironment that tunes cartilage behavior. Specifically, exosome cargos, such as noncoding RNAs (ncRNAs) and proteins, play a crucial role in OA progression by regulating the proliferation, apoptosis, autophagy, and inflammatory response of joint cells, rendering them promising candidates for OA monitoring and treatment. This review systematically summarizes the current insight regarding the biogenesis and function of exosomes and their potential as therapeutic tools targeting cell-to-cell communication in OA, suggesting new realms to improve OA management.
Apoptosis
;
Cartilage/pathology*
;
Cartilage, Articular/metabolism*
;
Cell Communication
;
Chondrocytes/metabolism*
;
Exosomes/pathology*
;
Humans
;
Osteoarthritis/therapy*

Result Analysis
Print
Save
E-mail