1.Research on performance optimization method of human-machine physical interaction system considering exoskeleton wearing comfort.
Wenyao QI ; Yuwei YANG ; Zuyi ZHOU ; Jianchao GONG ; Pengyu CHEN
Journal of Biomedical Engineering 2023;40(1):118-124
In order to improve the wearing comfort and bearing effectiveness of the exoskeleton, based on the prototype and working mechanism analysis of a relaxation wearable system for knee exoskeleton robot, the static optimization synthesis and its method are studied. Firstly, based on the construction of the virtual prototype model of the system, a comprehensive wearable comfort evaluation index considering the factors such as stress, deformation and the proportion of stress nodes was constructed. Secondly, based on the static simulation and evaluation index of system virtual prototype, multi-objective genetic optimization and local optimization synthesis of armor layer topology were carried out. Finally, the model reconstruction simulation data confirmed that the system had good wearing comfort. Our study provides a theoretical basis for the bearing performance and prototype construction of the subsequent wearable system.
Humans
;
Exoskeleton Device
;
Computer Simulation
;
Emotions
;
Knee Joint
2.Structure Design of Hip Joint Parallel Rehabilitation Exoskeleton.
Yajun HUANG ; Huaixian LI ; Yimin GAO ; Lei YANG
Chinese Journal of Medical Instrumentation 2023;47(6):612-616
At present, most of the research on hip exoskeleton robots adopts the method of decoupling analysis of hip joint motion, decoupling the ball pair motion of hip joint into rotational motion on sagittal plane, coronal plane and cross section, and designing it into series mechanism. Aiming at the problems of error accumulation and man-machine coupling in series mechanism, a parallel hip rehabilitation exoskeleton structure is proposed based on the bionic analysis of human hip joint. The structure model is established and the kinematics analysis is carried out. Through the OpenSim software, the curve of hip flexion and extension, adduction and abduction angle in a gait cycle is obtained. The inverse solution of the structure is obtained by the D-H coordinate system method. The gait data points are selected and compared with the inverse solution obtained by ADAMS software simulation. The results show that the inverse solution expression is correct. The parallel hip exoskeleton structure can meet the requirements of the rotation angle of the hip joint of the human body, and can basically achieve the movement of the hip joint, which is helpful to improve the human-computer interaction performance of the exoskeleton.
Humans
;
Exoskeleton Device
;
Hip Joint
;
Gait
;
Biomechanical Phenomena
;
Computer Simulation
3.Human muscle fatigue monitoring method and its application for exoskeleton interactive control.
Huiqi NIU ; Bi ZHANG ; Ligang LIU ; Yiwen ZHAO ; Xingang ZHAO
Journal of Biomedical Engineering 2023;40(4):654-662
Aiming at the human-computer interaction problem during the movement of the rehabilitation exoskeleton robot, this paper proposes an adaptive human-computer interaction control method based on real-time monitoring of human muscle state. Considering the efficiency of patient health monitoring and rehabilitation training, a new fatigue assessment algorithm was proposed. The method fully combined the human neuromuscular model, and used the relationship between the model parameter changes and the muscle state to achieve the classification of muscle fatigue state on the premise of ensuring the accuracy of the fatigue trend. In order to ensure the safety of human-computer interaction, a variable impedance control algorithm with this algorithm as the supervision link was proposed. On the basis of not adding redundant sensors, the evaluation algorithm was used as the perceptual decision-making link of the control system to monitor the muscle state in real time and carry out the robot control of fault-tolerant mechanism decision-making, so as to achieve the purpose of improving wearing comfort and improving the efficiency of rehabilitation training. Experiments show that the proposed human-computer interaction control method is effective and universal, and has broad application prospects.
Humans
;
Exoskeleton Device
;
Muscle Fatigue
;
Muscles
;
Algorithms
;
Electric Impedance
4.Multi-modal synergistic quantitative analysis and rehabilitation assessment of lower limbs for exoskeleton.
Xu ZHONG ; Bi ZHANG ; Jiwei LI ; Liang ZHANG ; Xiangnan YUAN ; Peng ZHANG ; Xingang ZHAO
Journal of Biomedical Engineering 2023;40(5):953-964
In response to the problem that the traditional lower limb rehabilitation scale assessment method is time-consuming and difficult to use in exoskeleton rehabilitation training, this paper proposes a quantitative assessment method for lower limb walking ability based on lower limb exoskeleton robot training with multimodal synergistic information fusion. The method significantly improves the efficiency and reliability of the rehabilitation assessment process by introducing quantitative synergistic indicators fusing electrophysiological and kinematic level information. First, electromyographic and kinematic data of the lower extremity were collected from subjects trained to walk wearing an exoskeleton. Then, based on muscle synergy theory, a synergistic quantification algorithm was used to construct synergistic index features of electromyography and kinematics. Finally, the electrophysiological and kinematic level information was fused to build a modal feature fusion model and output the lower limb motor function score. The experimental results showed that the correlation coefficients of the constructed synergistic features of electromyography and kinematics with the clinical scale were 0.799 and 0.825, respectively. The results of the fused synergistic features in the K-nearest neighbor (KNN) model yielded higher correlation coefficients ( r = 0.921, P < 0.01). This method can modify the rehabilitation training mode of the exoskeleton robot according to the assessment results, which provides a basis for the synchronized assessment-training mode of "human in the loop" and provides a potential method for remote rehabilitation training and assessment of the lower extremity.
Humans
;
Exoskeleton Device
;
Reproducibility of Results
;
Walking/physiology*
;
Lower Extremity
;
Algorithms
;
Stroke Rehabilitation/methods*
5.Design and analysis of shoulder type exoskeleton stretcher for individual soldier.
Yunxiao MAO ; Haipo CUI ; Zhan ZHAO ; Xudong GUO ; Xin ZHANG ; Qian MA
Journal of Biomedical Engineering 2023;40(6):1200-1208
For the transportation process of rescuing wounded personnel on naval vessels, a new type of shoulder type exoskeleton stretcher for individual soldier was designed in this paper. The three-dimensional model of the shoulder type exoskeleton stretcher for individual soldier was constructed using three dimensional modeling software. Finite element analysis technique was employed to conduct statics simulation, modal analysis, and transient dynamics analysis on the designed exoskeleton stretcher. The results show that the maximum stress of the exoskeleton stretcher for walking on flat ground is 265.55 MPa, which is lower than the allowable strength of the fabrication material. Furthermore, the overall deformation of the structure is small. Modal analysis reveals that the natural frequency range of the exoskeleton stretcher under different gait conditions is 1.96 Hz to 28.70 Hz, which differs significantly from the swing frequency of 1 Hz during walking. This indicates that the designed structure can effectively avoid resonance. The transient dynamics analysis results show that the maximum deformation and stress of exoskeleton stretcher remain within the safety range, which meets the expected performance requirements. In summary, the shoulder type exoskeleton stretcher for individual soldier designed in this study can solve the problem of requiring more than 2 people to carry for the existing stretcher, especially suitable for narrow spaces of naval vessels. The research results of this paper can provide a new solution for the rescue of wounded personnel on naval vessels.
Humans
;
Stretchers
;
Military Personnel
;
Shoulder
;
Exoskeleton Device
;
Walking
;
Gait
;
Biomechanical Phenomena
6.Effects of ankle exoskeleton assistance during human walking on lower limb muscle contractions and coordination patterns.
Wei WANG ; Jianquan DING ; Yi WANG ; Yicheng LIU ; Juanjuan ZHANG ; Jingtai LIU
Journal of Biomedical Engineering 2022;39(1):75-83
Lower limb ankle exoskeletons have been used to improve walking efficiency and assist the elderly and patients with motor dysfunction in daily activities or rehabilitation training, while the assistance patterns may influence the wearer's lower limb muscle activities and coordination patterns. In this paper, we aim to evaluate the effects of different ankle exoskeleton assistance patterns on wearer's lower limb muscle activities and coordination patterns. A tethered ankle exoskeleton with nine assistance patterns that combined with differenet actuation timing values and torque magnitude levels was used to assist human walking. Lower limb muscle surface electromyography signals were collected from 7 participants walking on a treadmill at a speed of 1.25 m/s. Results showed that the soleus muscle activities were significantly reduced during assisted walking. In one assistance pattern with peak time in 49% of stride and peak torque at 0.7 N·m/kg, the soleus muscle activity was decreased by (38.5 ± 10.8)%. Compared with actuation timing, the assistance torque magnitude had a more significant influence on soleus muscle activity. In all assistance patterns, the eight lower limb muscle activities could be decomposed to five basic muscle synergies. The muscle synergies changed little under assistance with appropriate actuation timing and torque magnitude. Besides, co-contraction indexs of soleus and tibialis anterior, rectus femoris and semitendinosus under exoskeleton assistance were higher than normal walking. Our results are expected to help to understand how healthy wearers adjust their neuromuscular control mechanisms to adapt to different exoskeleton assistance patterns, and provide reference to select appropriate assistance to improve walking efficiency.
Aged
;
Ankle/physiology*
;
Ankle Joint/physiology*
;
Biomechanical Phenomena/physiology*
;
Electromyography
;
Exoskeleton Device
;
Gait/physiology*
;
Humans
;
Muscle Contraction
;
Muscle, Skeletal/physiology*
;
Walking/physiology*
7.A pace recognition method for exoskeleton wearers based on support vector machine-hidden Markov model.
Dong HU ; Zuojun LIU ; Lingling CHEN ; Qian WANG
Journal of Biomedical Engineering 2022;39(1):84-91
In order to improve the motion fluency and coordination of lower extremity exoskeleton robots and wearers, a pace recognition method of exoskeleton wearer is proposed base on inertial sensors. Firstly, the triaxial acceleration and triaxial angular velocity signals at the thigh and calf were collected by inertial sensors. Then the signal segment of 0.5 seconds before the current time was extracted by the time window method. And the Fourier transform coefficients in the frequency domain signal were used as eigenvalues. Then the support vector machine (SVM) and hidden Markov model (HMM) were combined as a classification model, which was trained and tested for pace recognition. Finally, the pace change rule and the human-machine interaction force were combined in this model and the current pace was predicted by the model. The experimental results showed that the pace intention of the lower extremity exoskeleton wearer could be effectively identified by the method proposed in this article. And the recognition rate of the seven pace patterns could reach 92.14%. It provides a new way for the smooth control of the exoskeleton.
Algorithms
;
Exoskeleton Device
;
Humans
;
Lower Extremity
;
Motion
;
Support Vector Machine
8.Mechanical Design and Research of Wearable Exoskeleton Assisted Robot for Upper Limb Rehabilitation.
Zongbao WANG ; Zongbing WANG ; Yonghui YANG ; Congzhen WANG ; Guang YANG ; Yefu LI
Chinese Journal of Medical Instrumentation 2022;46(1):42-46
Based on the biomechanical mechanism of human upper limb, the disadvantages of traditional rehabilitation training and the current status of upper limb rehabilitation robot, a six degree of freedom, flexible adjustment, wearable upper limb rehabilitation exoskeleton design scheme is proposed. Firstly, the mechanics of each joint of the upper limb is analyzed, and the virtual prototype design of the whole mechanical structure of the upper limb rehabilitation wearable exoskeleton is carried out by using CATIA three-dimensional software. The tooth transmission of the forearm and the upper arm single row four point contact ball bearing with internal/external rotation and the shoulder flexible passive adjustment mechanism (viscoelastic damper) are innovatively designed. Then, the joints of the upper limb rehabilitation exoskeleton are analyzed, theoretical analysis and calculation of the driving torque, the selection of the motor and gearbox of each driving joint are carried out. Finally, the whole finite element analysis of the upper limb exoskeleton is carried out. The research and experimental results showed that the design scheme of the upper limb exoskeleton assist structure is highly feasible, which can help the patients with upper limb paralysis and motor dysfunction self-rehabilitation.
Biomechanical Phenomena
;
Exoskeleton Device
;
Humans
;
Robotics
;
Stroke Rehabilitation
;
Torque
;
Upper Extremity
;
Wearable Electronic Devices
9.Comfort optimization of a new type of foot mechanism for lower extremity exoskeleton.
Yipeng LUAN ; Jianjun ZHANG ; Kaicheng QI ; Gaowei YANG
Journal of Biomedical Engineering 2020;37(2):324-333
In order to reduce the impact caused by the contact between the foot and the ground when wearing the lower extremity exoskeleton under the condition of high load, this paper proposed an exoskeleton foot mechanism for improving the foot comfort, and optimized the key index of its influence on the comfort. Firstly, the physical model of foot mechanism was established based on the characteristics of foot stress in gait period, and then the mathematical model of vibration was abstracted. The correctness of the model was verified by the finite element analysis software ANSYS. Then, this paper analyzed the influence of vibration parameters on absolute transmissibility based on vibration mathematical model, and optimized vibration parameters with MATLAB genetic algorithm toolbox. Finally, this paper took white noise to simulate the road elevation as the vibration input, and used the visual simulation tool Simulink in MATLAB and the vibration equation to construct the acceleration simulation model, and then calculated the vibration weighted root mean square acceleration value of the foot. The results of this study show that this foot comfort mechanism can meet the comfort indexes of vibration absorption and plantar pressure, and this paper provides a relatively complete method for the design of exoskeleton foot mechanism, which has reference significance for the design of other exoskeleton foot and ankle joint rehabilitation mechanism.
Acceleration
;
Ankle Joint
;
Biomechanical Phenomena
;
Exoskeleton Device
;
Finite Element Analysis
;
Foot
;
Gait
;
Humans
;
Lower Extremity
;
Models, Theoretical
;
Vibration
10.Study on the influence of wearable lower limb exoskeleton on gait characteristics.
Junxia ZHANG ; Yunhong CAI ; Qi LIU
Journal of Biomedical Engineering 2019;36(5):785-794
The purpose of this paper was to investigate the effects of wearable lower limb exoskeletons on the kinematics and kinetic parameters of the lower extremity joints and muscles during normal walking, aiming to provide scientific basis for optimizing its structural design and improving its system performance. We collected the walking data of subjects without lower limb exoskeleton and selected the joint angles in sagittal plane of human lower limbs as driving data for lower limb exoskeleton simulation analysis. Anybody (the human biomechanical analysis software) was used to establish the human body model (the human body model without lower limb exoskeleton) and the man-machine system model (the lower limb exoskeleton model). The kinematics parameters (joint force and joint moment) and muscle parameters (muscle strength, muscle activation, muscle contraction velocity and muscle length) under two situations were compared. The experimental result shows that walking gait after wearing the lower limb exoskeleton meets the normal gait, but there would be an occasional and sudden increase in muscle strength. The max activation level of main lower limb muscles were all not exceeding 1, in another word the muscles did not appear fatigue and injury. The highest increase activation level occurred in rectus femoris (0.456), and the lowest increase activation level occurred in semitendinosus (0.013), which means the lower limb exoskeletons could lead to the fatigue and injury of semitendinosus. The results of this study illustrate that to avoid the phenomenon of sudden increase of individual muscle force, the consistency between the length of body segment and the length of exoskeleton rod should be considered in the design of lower limb exoskeleton extremity.
Biomechanical Phenomena
;
Exoskeleton Device
;
Gait
;
Humans
;
Lower Extremity
;
physiology

Result Analysis
Print
Save
E-mail