1.Associations of physical activity, sedentary behavior, and sleep with risk of incident Parkinson's disease: A prospective cohort study of 401,697 participants.
Haishan JIAO ; Shuyi HUANG ; Wei CHENG ; Jianfeng FENG ; Jintai YU
Chinese Medical Journal 2025;138(7):819-828
BACKGROUND:
Physical activity, sedentary behavior (SB), and sleep duration are associated with brain health. Effects of those on developing Parkinson's disease (PD) are poorly investigated. This study aimed to examine the independent and joint associations of physical activity, SB, sleep with PD risk.
METHODS:
We analyzed data on 401,697 participants from the UK Biobank cohort, which was enrolled in 2006-2010. Physical activities were measured based on a questionnaire. Sleep and SB time were defined through self-reported total number of hours. Models fitted with restricted cubic spline were conducted to test for linear and non-linear shapes of each association. Cox proportional hazards regression models were used to estimate the association of three modifiable behaviors.
RESULTS:
Our analytic sample included 401,697 participants with 3030 identified cases of PD (mean age, 63 years; 62.9% male). PD risk was 18% lower in the high total physical activity group (95% CI, 0.75-0.90), 22% lower in the high leisure-time physical activity (LTPA) group (95% CI, 0.71-0.86) compared with the low level and 14% higher in the high sleep duration group (95% CI, 1.05-1.24) compared to moderate group. Total SB time was irrelevant with PD risk, while high TV viewing showed a 12% increase of PD risk compared to the low group (95% CI, 1.02-1.22). Low computer use (0 h/day) was associated with a 14% higher risk compared to 1 h/day use (95% CI, 1.04-1.26). Those associations were independent. A combination of 7 h/day sleep, moderate-to-high computer use, and moderate-to-vigorous intensity of LTPA showed lowest PD risk (HR, 0.70; 95% CI, 0.57-0.85).
CONCLUSIONS
Physical activity, SB, and sleep were associated with PD risks separately. Our findings emphasize the possibility for changing these three daily activities concurrently to lower the risk of PD. These findings may promote an active lifestyle for PD prevention.
Humans
;
Parkinson Disease/physiopathology*
;
Male
;
Sedentary Behavior
;
Female
;
Middle Aged
;
Exercise/physiology*
;
Prospective Studies
;
Sleep/physiology*
;
Aged
;
Surveys and Questionnaires
;
Proportional Hazards Models
;
Risk Factors
2.Exercise-induced angiogenesis and lymphangiogenesis: A potential therapeutic tool to fight aging and disease.
Jizong JIANG ; Yongjun ZHENG ; Rui WANG ; Hao YANG ; Shihui ZANG ; Emeli CHATTERJEE ; Guoping LI ; Dragos CRETOIU ; Cuimei ZHAO ; Junjie XIAO
Chinese Medical Journal 2025;138(20):2552-2587
Aging is an inevitable, physiological process of the human body, leading to deterioration in bodily function and increased susceptibility to various diseases. Effective endogenous therapeutic strategies for anti-aging and related diseases remain limited. Exercise confers multifaceted benefits to physical health by augmenting osteogenic and myogenic processes, enhancing cardiovascular and nervous system function, and attenuating chronic inflammation. Angiogenesis and lymphangiogenesis play pivotal roles in anti-aging, tissue repair, and immune response modulation, underscoring their potential as therapeutic targets for age-related diseases. Modulating angiogenic and lymphangiogenic pathways may provide a promising strategy for mitigating vascular decline and immune system dysfunction associated with aging. Exercise-induced endogenous angiogenesis and lymphangiogenesis can exert beneficial effects on physiological function, thereby representing a potential therapeutic paradigm for combating age-related decline and diseases. This review offers a thorough summary of the present knowledge regarding angiogenesis and lymphangiogenesis induced by exercise, encompassing the underlying mechanisms and the effects in different organs. In addition, it explores the potential of physical activity as a non-pharmacological intervention for anti-aging strategies and disease management, offering novel insights into the intersection of physical activity, aging, and disease progression.
Humans
;
Lymphangiogenesis/physiology*
;
Aging/physiology*
;
Exercise/physiology*
;
Animals
;
Neovascularization, Physiologic/physiology*
;
Angiogenesis
3.Genders characteristics of aerobic endurance exercise performance and autonomic regulation in cold environments.
Peng HAN ; Yun-Ran WANG ; Yuan-Yuan LYU ; Li ZHAO
Acta Physiologica Sinica 2025;77(1):25-34
This study examined the regulatory effects of autonomic nervous system on aerobic endurance exercise performance in cold exposure, focusing on heart rate recovery (HRR) and heart rate variability (HRV) across genders. Thirty participants (17 males and 13 females) from a university track endurance program, classified as exercise grade II or above, underwent monitoring of HRV in time domain, frequency domain, nonlinear correlation indices and 1 min HRR. Measurements were taken before, during, and after aerobic endurance exercise in cold and normal environments, respectively. The results were as follows. (1) The duration of aerobic endurance exercise completed by all the subjects in cold environment was significantly increased compared with that in normal environment. The 1 min HRR after aerobic endurance exercise in cold environment was significantly lower than that in normal environment, and the decrease in the males was significantly higher than that in the females. (2) The time domain analysis results showed that, prior to the aerobic endurance exercise, there were no significant difference of standard deviation from the mean value of normal to normal intervals (SDNN), root mean square of successive differences (RMSSD), and percentage of adjacent normal-to-normal intervals differing by more than 50 ms (pNN50) between cold and normal environments. During aerobic endurance exercise in cold environment, SDNN, RMSSD and pNN50 were significantly higher than those in normal environment, with the females showing significantly greater increases compared with those of the males. The levels of SDNN, RMSSD and pNN50 in the males at different time points under different environments were significantly lower than those in the quiet state; The levels of SDNN and RMSSD of the females at different time points under different environments were significantly lower than those in the quiet state, while the pNN50 at different time points under cold environments was significantly lower than that in the quiet state. (3) Frequency domain analysis results showed that, prior to the aerobic endurance exercise, there was no significant difference of high frequency normalized units [HF (n.u.)], low frequency normalized units [LF (n.u.)] and LF/HF ratio between cold and normal environments. During aerobic endurance exercise in cold environment, the levels of HF (n.u.) significantly increased compared to normal environment in the females, while LF (n.u.) and LF/HF ratio levels significantly decreased compared to normal environments. The levels of HF (n.u.), LF (n.u.) and LF/HF ratio of different genders at different time points in the different environments showed no significant changes, compared to those in the quiet state. (4) Non-linear analysis results showed a significant increase in SD1 (standard deviation perpendicular to the line-of-identity)/SD2 (standard deviation along the line-of-identity) ratio during aerobic endurance exercise in cold environment in the females, while no significant changes were observed in the males. SD1/SD2 ratios in the males at different time points and in the females at 1 min under cold environments were significantly higher than those in the quiet state. These findings suggest that aerobic endurance performance increases during cold exposure, accompanied by gender-specific differences in the regulation of autonomic nervous system. Females exhibit higher vagal activity and faster autonomic nervous system recovery compared to males.
Humans
;
Male
;
Female
;
Heart Rate/physiology*
;
Cold Temperature
;
Exercise/physiology*
;
Physical Endurance/physiology*
;
Autonomic Nervous System/physiology*
;
Young Adult
;
Adult
;
Sex Factors
4.Research progress on the effects of sedentary behavior and physical activity on diabetes mellitus.
Qi CHEN ; Chuan-Fen LI ; Wen JING
Acta Physiologica Sinica 2025;77(1):62-74
Diabetes mellitus (DM) has become one of the most serious and common chronic diseases around the world, leading to various complications and a reduction in life expectancy. Increased sedentary behavior (SB) and decreased physical activity (PA) are important contributors to the rising prevalence of DM. This article reviews the research progress on the pathogenesis of DM, the effects of SB and PA on the risk of DM, aiming to explore the influence of different PA intensities, amounts, frequencies, durations and types on the incidence of DM. Research has shown that blood glucose levels tend to increase with the prolongation of SB. Within a certain range, PA intensity and amount are negatively correlated with the risk of DM; Performing PA for more than 3 days per week maintains normal glucose tolerance and lower blood pressure; Engaging in 150-300 min of moderate-intensity exercise or 75-150 min of high-intensity exercise per week reduces the risk of DM; PA during leisure time reduces the risk of DM, while PA during work increases the risk of DM; Both aerobic training and resistance training reduce the risk of DM, and the combination of the two training methods produces better benefits; Various types of exercises, such as cycling, soccer, aerobics, yoga and tai chi, all reduce the risk of DM. In summary, prolonged SB increases the risk of DM, while appropriate PA reduces the risk of DM. As the intensity, amount, and frequency of PA increase, the effect of reducing DM risk becomes more significant. Different exercise methods have different effects on reducing DM risk.
Humans
;
Sedentary Behavior
;
Exercise/physiology*
;
Diabetes Mellitus/prevention & control*
5.The neurophysiological mechanisms of exercise-induced improvements in cognitive function.
Jian-Xiu LIU ; Bai-Le WU ; Di-Zhi WANG ; Xing-Tian LI ; Yan-Wei YOU ; Lei-Zi MIN ; Xin-Dong MA
Acta Physiologica Sinica 2025;77(3):504-522
The neurophysiological mechanisms by which exercise improves cognitive function have not been fully elucidated. A comprehensive and systematic review of current domestic and international neurophysiological evidence on exercise improving cognitive function was conducted from multiple perspectives. At the molecular level, exercise promotes nerve cell regeneration and synaptogenesis and maintains cellular development and homeostasis through the modulation of a variety of neurotrophic factors, receptor activity, neuropeptides, and monoamine neurotransmitters, and by decreasing the levels of inflammatory factors and other modulators of neuroplasticity. At the cellular level, exercise enhances neural activation and control and improves brain structure through nerve regeneration, synaptogenesis, improved glial cell function and angiogenesis. At the structural level of the brain, exercise promotes cognitive function by affecting white and gray matter volumes, neural activation and brain region connectivity, as well as increasing cerebral blood flow. This review elucidates how exercise improves the internal environment at the molecular level, promotes cell regeneration and functional differentiation, and enhances the brain structure and neural efficiency. It provides a comprehensive, multi-dimensional explanation of the neurophysiological mechanisms through which exercise promotes cognitive function.
Animals
;
Humans
;
Brain/physiology*
;
Cognition/physiology*
;
Exercise/physiology*
;
Nerve Regeneration/physiology*
;
Neuronal Plasticity/physiology*
6.Effects of resistance combined with aerobic chrono-exercise on common carotid artery elasticity and hemodynamics in young men.
Miao-Xin JIAO ; Bing-Yi SHEN ; Hai-Bin LIU ; Li-Hong CHEN ; Guang-Rui YANG
Acta Physiologica Sinica 2025;77(4):741-751
The purpose of the present study was to investigate the effects of resistance combined with aerobic chrono-exercise on the common carotid artery elasticity and hemodynamics. 24 healthy young men (21.96±0.43 years old) underwent a single acute resistance combined with aerobic exercise intervention at eight time periods (6, 8, 10, 12, 14, 16, 18, and 20 o'clock). The axial flow velocity and diameter waveforms of the common carotid artery were measured, and the hemodynamics were calculated using the classical hemodynamic theory before exercise, immediately after exercise, 10 min and 20 min after exercise. The results showed that during exercise recovery, systolic and mean pressures decreased more markedly after exercise at 8 o'clock (P < 0.05); At 20 min post-exercise, arterial stiffness index and pressure-strain elastic modulus after exercise at 6 o'clock were reduced compared with the resting state, but were significantly elevated after exercise at 20 o'clock (P < 0.05). Immediately after exercise, the pressure rise was higher after exercise at 6 o'clock and the mean wall shear stress was higher after exercise at 20 o'clock (P < 0.05). These results suggest that resistance combined with aerobic chrono-exercise produces different effects on common carotid artery hemodynamics in young men. A single acute session of resistance combined with aerobic exercise at 8 o'clock is more effective in lowering blood pressure. Exercise at 6 o'clock is beneficial to improve arterial elasticity but is not recommended for young male individuals with cardiovascular disease risks because of the excessive increase in blood pressure immediately after exercise. Exercise at 20 o'clock is more effective in improving wall shear stress but is accompanied by elevated arterial stiffness indices and pressure-strain elastic modulus. These results provide a scientific basis for healthy young men in choosing the time of exercise by exploring the common carotid artery elasticity and hemodynamic-related indices.
Humans
;
Male
;
Young Adult
;
Exercise/physiology*
;
Carotid Artery, Common/physiology*
;
Hemodynamics/physiology*
;
Vascular Stiffness/physiology*
;
Elasticity
;
Resistance Training
;
Adult
7.Recent advances in the mechanism of insulin-like growth factor-1-mediated exercise-induced improvement of skeletal muscle atrophy.
Qian WANG ; Yi-Min HE ; Yu-Mo DONG ; Hua-Duo WU ; Yi ZHANG ; Ning JIANG
Acta Physiologica Sinica 2025;77(5):969-978
Skeletal muscle atrophy is characterized by a reduction in both the size and quantity of skeletal muscle fibers, resulting in impaired muscle strength and function. It mainly includes disuse muscle atrophy, aging muscle atrophy, denervated muscle atrophy and muscle atrophy caused by disease etc. As a cost-effective way, exercise has been widely used in the prevention and treatment of skeletal muscle atrophy, but its mechanism for improving skeletal muscle atrophy remains unclear. Recent studies have indicated that insulin-like growth factor 1 (IGF-1) plays an important role in improving muscle atrophy through exercise, in addition to promoting the survival of neurons, lowering blood sugar, and anti-inflammation. This article reviews recent findings on the mechanisms by which IGF-1 mediates exercise-induced improvement in skeletal muscle atrophy, providing a theoretical basis for the prevention and treatment of this disease.
Insulin-Like Growth Factor I/physiology*
;
Muscular Atrophy/therapy*
;
Humans
;
Exercise/physiology*
;
Muscle, Skeletal
;
Animals
;
Insulin-Like Peptides
8.Assessment of upper limb rehabilitation exercise participation based on trajectory errors and surface electromyography signals.
Xiaohong WANG ; Jian LYU ; Shengbo FANG
Journal of Biomedical Engineering 2025;42(2):308-317
At present, upper limb motor rehabilitation relies on specific rehabilitation aids, ignoring the initiative of upper limb motor of patients in the middle and late stages of rehabilitation. This paper proposes a fuzzy evaluation method for active participation based on trajectory error and surface electromyography (sEMG) for patients who gradually have the ability to generate active force. First, the level of motor participation was evaluated using trajectory error signals represented by computer vision. Then, the level of physiological participation was quantified based on muscle activation (MA) characterized by sEMG. Finally, the motor performance and physiological response parameters were input into the fuzzy inference system (FIS). This system was then used to construct the fuzzy decision tree (FDT), which ultimately outputs the active participation level. A controlled experiment of upper limb flexion and extension exercise in 16 healthy subjects demonstrated that the method presented in this paper was effective in quantifying difference in the active participation level of the upper limb in different force-generating states. The calculation results of this method and the active participation assessment method based on sEMG during the task cycle showed that the active participation evaluation values of both methods peaked in the initial cycle: (82.34 ± 9.3) % for this paper's method and (78.44 ± 7.31) % for the sEMG method. In the subsequent cycles, the values of both showed a dynamic change trend of rising first and then falling. Trend consistency verifies the effectiveness of the active participation assessment strategy in this paper, providing a new idea for quantifying the participation level of patients in middle and late stages of upper limb rehabilitation without special equipment mediation.
Humans
;
Electromyography/methods*
;
Upper Extremity/physiology*
;
Fuzzy Logic
;
Exercise Therapy/methods*
;
Muscle, Skeletal/physiology*
;
Male
9.Optimization and validation of a mathematical model for precise assessment of personalized exercise load based on wearable devices.
Wenxing WANG ; Yuanhui ZHAO ; Wenlang YU ; Hong REN
Journal of Biomedical Engineering 2025;42(4):739-747
Exercise intervention is an important non-pharmacological intervention for various diseases, and establishing precise exercise load assessment techniques can improve the quality of exercise intervention and the efficiency of disease prevention and control. Based on data collection from wearable devices, this study conducts nonlinear optimization and empirical verification of the original "Fitness-Fatigue Model". By constructing a time-varying attenuation function and specific coefficients, this study develops an optimized mathematical model that reflects the nonlinear characteristics of training responses. Thirteen participants underwent 12 weeks of moderate-intensity continuous cycling, three times per week. For each training session, external load (actual work done) and internal load (heart rate variability index) data were collected for each individual to conduct a performance comparison between the optimized model and the original model. The results show that the optimized model demonstrates a significantly improved overall goodness of fit and superior predictive ability. In summary, the findings of this study can support dynamic adjustments to participants' training programs and aid in the prevention and control of chronic diseases.
Humans
;
Wearable Electronic Devices
;
Exercise/physiology*
;
Models, Theoretical
;
Heart Rate/physiology*
;
Exercise Therapy
10.Impact of physical activity on semen quality: a review of current evidence.
Jing CHEN ; Jin-Ming GUO ; Bang-Jian JIANG ; Fan-Yuan SUN ; Yong-Cun QU
Asian Journal of Andrology 2025;27(5):574-580
A growing global trend indicates a decline in semen quality, with a lack of physical activity identified as one of the contributing factors. Exercise is medication, and numerous studies have explored its effects on semen quality. However, there is no consensus on the most effective type and intensity of exercise for improving semen quality, owing to inconsistent findings across studies. These discrepancies may be attributable to variations in study populations ( e.g. , healthy versus infertile individuals) and research methodologies ( e.g., observational versus interventional studies). This paper reviews the existing literature from the databases PubMed, Web of Science, and Google Scholar, reclassifying articles on their subject and research designs to delineate the relationship between exercise and semen quality. It also summarizes the mechanisms through which exercise influences semen quality, including hormonal regulation, oxidative stress, and inflammatory factors.
Humans
;
Semen Analysis
;
Male
;
Exercise/physiology*
;
Oxidative Stress/physiology*
;
Infertility, Male/physiopathology*
;
Sperm Motility/physiology*

Result Analysis
Print
Save
E-mail