1.Enriched environment reduces pyramidal neuron excitability in the anterior cingulate cortex to alleviate restraint stress-induced anxiety-like behaviors in mice.
Changfeng CHEN ; Qin FANG ; Yinhuan GAO ; Liecheng WANG ; Lei CHEN
Journal of Southern Medical University 2025;45(5):962-968
OBJECTIVES:
To investigate the mechanism by which the pyramidal neurons of the anterior cingulate cortex (ACC) modulate the effects of enriched environment (EE) for relieving anxiety-like behaviors in mice.
METHODS:
C57BL/6J mice were randomly divided into control group, restraint stress (RS) group, and RS+EE group (n=8). The mice in the latter two groups were subjected to RS for 2 h daily for 3 days, and those in RS+EE group were housed in an EE during modeling. Anxiety-like behaviors of the mice were evaluated using the elevated plus-maze tests (EPM) and open field test (OFT). Changes in c-Fos expression in the ACC of the mice were detected with immunofluorescence assay, and pyramidal neuron excitability in the ACC (PynACC) was measured using patch-clamp technique. The miniature excitatory and inhibitory postsynaptic currents (mEPSC and mIPSC, respectively) were analyzed to assess synaptic transmission changes.
RESULTS:
Behavioral tests showed obvious anxiety-like behaviors in RS mice, and such behavioral changes were significantly improved in RS+EE mice. Immunofluorescence staining revealed significantly increased c-Fos expression in the ACC in RS mice but lowered c-Fos expression in RS+EE group. Compared with the control mice, the RS mice showed increased action potential firing rate of PynACC, which was significantly reduced in RS+EE group. Compared with the RS mice, the RS+EE mice showed also decreased frequency of mEPSCs of PynACC, but the amplitude exhibited no significant changes. No obvious changes in the frequency or amplitude of mIPSCs were observed in RS+EE mice.
CONCLUSIONS
EE reduces excitability of PynACC to alleviate anxiety-like behaviors induced by RS in mice.
Animals
;
Anxiety/physiopathology*
;
Gyrus Cinguli
;
Mice, Inbred C57BL
;
Mice
;
Pyramidal Cells/physiology*
;
Restraint, Physical
;
Stress, Psychological
;
Proto-Oncogene Proteins c-fos/metabolism*
;
Male
;
Behavior, Animal
;
Environment
;
Excitatory Postsynaptic Potentials
2.Associative Learning-Induced Synaptic Potentiation at the Two Major Hippocampal CA1 Inputs for Cued Memory Acquisition.
Bing-Ying WANG ; Bo WANG ; Bo CAO ; Ling-Ling GU ; Jiayu CHEN ; Hua HE ; Zheng ZHAO ; Fujun CHEN ; Zhiru WANG
Neuroscience Bulletin 2025;41(4):649-664
Learning-associated functional plasticity at hippocampal synapses remains largely unexplored. Here, in a single session of reward-based trace conditioning, we examine learning-induced synaptic plasticity in the dorsal CA1 hippocampus (dCA1). Local field-potential recording combined with selective optogenetic inhibition first revealed an increase of dCA1 synaptic responses to the conditioned stimulus (CS) induced during conditioning at both Schaffer collaterals to the stratum radiatum (Rad) and temporoammonic input to the lacunosum moleculare (LMol). At these dCA1 inputs, synaptic potentiation of CS-responding excitatory synapses was further demonstrated by locally blocking NMDA receptors during conditioning and whole-cell recording sensory-evoked synaptic responses in dCA1 neurons from naive animals. An overall similar time course of the induction of synaptic potentiation was found in the Rad and LMol by multiple-site recording; this emerged later and saturated earlier than conditioned behavioral responses. Our experiments demonstrate a cued memory-associated dCA1 synaptic plasticity induced at both Schaffer collaterals and temporoammonic pathways.
Animals
;
CA1 Region, Hippocampal/physiology*
;
Male
;
Association Learning/physiology*
;
Neuronal Plasticity/physiology*
;
Cues
;
Memory/physiology*
;
Synapses/physiology*
;
Conditioning, Classical/physiology*
;
Excitatory Postsynaptic Potentials/physiology*
;
Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors*
;
Rats
;
Optogenetics
3.USP47 Regulates Excitatory Synaptic Plasticity and Modulates Seizures in Murine Models by Blocking Ubiquitinated AMPAR Degradation.
Juan YANG ; Haiqing ZHANG ; You WANG ; Yuemei LUO ; Weijin ZHENG ; Yong LIU ; Qian JIANG ; Jing DENG ; Qiankun LIU ; Peng ZHANG ; Hao HUANG ; Changyin YU ; Zucai XU ; Yangmei CHEN
Neuroscience Bulletin 2025;41(10):1805-1823
Epilepsy is a chronic neurological disorder affecting ~65 million individuals worldwide. Abnormal synaptic plasticity is one of the most important pathological features of this condition. We investigated how ubiquitin-specific peptidase 47 (USP47) influences synaptic plasticity and its link to epilepsy. We found that USP47 enhanced excitatory postsynaptic transmission and increased the density of total dendritic spines and the proportion of mature dendritic spines. Furthermore, USP47 inhibited the degradation of the ubiquitinated α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) subunit glutamate receptor 1 (GluR1), which is associated with synaptic plasticity. In addition, elevated levels of USP47 were found in epileptic mice, and USP47 knockdown reduced the frequency and duration of seizure-like events and alleviated epileptic seizures. To summarize, we present a new mechanism whereby USP47 regulates excitatory postsynaptic plasticity through the inhibition of ubiquitinated GluR1 degradation. Modulating USP47 may offer a potential approach for controlling seizures and modifying disease progression in future therapeutic strategies.
Animals
;
Receptors, AMPA/metabolism*
;
Neuronal Plasticity/physiology*
;
Seizures/physiopathology*
;
Disease Models, Animal
;
Mice, Inbred C57BL
;
Mice
;
Ubiquitin Thiolesterase/genetics*
;
Male
;
Excitatory Postsynaptic Potentials/physiology*
;
Ubiquitination
;
Dendritic Spines/metabolism*
;
Hippocampus/metabolism*
4.Impaired Hypothalamic Regulation of Sympathetic Outflow in Primary Hypertension.
Jing-Jing ZHOU ; Hui-Jie MA ; Jian-Ying SHAO ; Hui-Lin PAN ; De-Pei LI
Neuroscience Bulletin 2019;35(1):124-132
The hypothalamic paraventricular nucleus (PVN) is a crucial region involved in maintaining homeostasis through the regulation of cardiovascular, neuroendocrine, and other functions. The PVN provides a dominant source of excitatory drive to the sympathetic outflow through innervation of the brainstem and spinal cord in hypertension. We discuss current findings on the role of the PVN in the regulation of sympathetic output in both normotensive and hypertensive conditions. The PVN seems to play a major role in generating the elevated sympathetic vasomotor activity that is characteristic of multiple forms of hypertension, including primary hypertension in humans. Recent studies in the spontaneously hypertensive rat model have revealed an imbalance of inhibitory and excitatory synaptic inputs to PVN pre-sympathetic neurons as indicated by impaired inhibitory and enhanced excitatory synaptic inputs in hypertension. This imbalance of inhibitory and excitatory synaptic inputs in the PVN forms the basis for elevated sympathetic outflow in hypertension. In this review, we discuss the disruption of balance between glutamatergic and GABAergic inputs and the associated cellular and molecular alterations as mechanisms underlying the hyperactivity of PVN pre-sympathetic neurons in hypertension.
Animals
;
Blood Pressure
;
physiology
;
Excitatory Postsynaptic Potentials
;
physiology
;
Humans
;
Hypertension
;
physiopathology
;
Hypothalamus
;
physiology
;
Neurons
;
physiology
;
Paraventricular Hypothalamic Nucleus
;
physiology
5.Influence of cefuroxime sodium on synaptic plasticity of parallel fiber-Purkinje cells in young rats.
Hai-Yan HE ; Ying-Ge REN ; Ling LI ; Fu-Li JIN ; Yong-Ping DU ; Yue-Ping ZHANG
Chinese Journal of Contemporary Pediatrics 2016;18(6):558-563
OBJECTIVETo investigate the influence of cefuroxime sodium (CS) on the electrophysiological function of cerebellar Purkinje cells (PCs) in Sprague-Dawley rats.
METHODSPostnatal day 7 (P7) Sprague-Dawley rats were divided into early administration I and II groups (administered from P7 to P14) and late administration group (administered from P14 to P21), and all the groups received intraperitoneally injected CS. The control groups for early and late administration groups were also established and treated with intraperitoneally injected normal saline of the same volume. There were 10 rats in each group. The rats in the early administration I group and early administration control group were sacrificed on P15, and those in the early administration II group, late administration group, and late administration control group were sacrificed on P22. The whole-cell patch-clamp technique was used to record inward current and action potential of PCs on cerebellar slices, as well as the long-term depression (LTD) of excitatory postsynaptic current (EPSC) in PCs induced by low-frequency stimulation of parallel fiber (PF).
RESULTSCompared with the control groups, the early and late administration groups had a slightly higher magnitude of inward current and a slightly higher amplitude of action potential of PCs (P>0.05). All administration groups had a significantly higher degree of EPSC inhibition than the control groups (P<0.01), and the early administration II group had a significantly greater degree of EPSC inhibition than the late administration group (P<0.01).
CONCLUSIONSEarly CS exposure after birth affects the synaptic plasticity of PF-PCs in the cerebellum of young rats, which persists after drug withdrawal.
Animals ; Anti-Bacterial Agents ; pharmacology ; Cefuroxime ; pharmacology ; Excitatory Postsynaptic Potentials ; drug effects ; Neuronal Plasticity ; drug effects ; Purkinje Cells ; drug effects ; physiology ; Rats ; Rats, Sprague-Dawley
6.Protective effect of succinic acid on cerebellar Purkinje cells of neonatal rats with convulsion.
Jing ZHANG ; Jing CHEN ; Xiao-Li TAN ; Ying-Ge REN ; Yong-Ping DU ; Yue-Ping ZHANG
Chinese Journal of Contemporary Pediatrics 2016;18(1):85-93
OBJECTIVETo investigate the protective effect of succinic acid (SA) on the cerebellar Purkinje cells (PCs) of neonatal rats with convulsion.
METHODSA total of 120 healthy neonatal Sprague-Dawley rats aged 7 days were randomly divided into a neonatal period group and a developmental period group. Each of the two groups were further divided into 6 sub-groups: normal control, convulsion model, low-dose phenobarbital (PB) (30 mg/kg), high-dose PB (120 mg/kg), low-dose SA (30 mg/kg), and high-dose SA (120 mg/kg). Intraperitoneal injection of pentylenetetrazole was performed to establish the convulsion model. The normal control group was treated with normal saline instead. The rats in the neonatal group were sacrificed at 30 minutes after the injection of PB, SA, or normal saline, and the cerebellum was obtained. Those in the developmental group were sacrificed 30 days after the injection of PB, SA, or normal saline, and the cerebellum was obtained. Whole cell patch clamp technique was used to record the action potential (AP) of PCs in the cerebellar slices of neonatal rats; the parallel fibers (PF) were stimulated at a low frequency to induce excitatory postsynaptic current (EPSC). The effect of SA on long-term depression (LTD) of PCs was observed.
RESULTSCompared with the normal control groups, the neonatal and developmental rats with convulsion had a significantly higher AP frequency of PCs (P<0.05), and the developmental rats with convulsion had a significantly decreased threshold stimulus (P<0.01) and a significantly greater inhibition of the amplitude of EPSC in PCs (P<0.05). Compared with the normal control groups, the neonatal and developmental rats with convulsion in the high-dose PB groups had a significantly decreased threshold stimulus (P<0.01), a significantly higher AP frequency of PCs (P<0.05), and a significantly greater inhibition of EPSC in PCs (P<0.05). Compared with the neonatal and developmental rats in the convulsion model groups, those in the high-dose SA groups had a significantly decreased AP frequency of PCs (P<0.05). The developmental rats in the low- and high-dose SA groups had a significantly higher AP threshold than those in the convulsion model group (P<0.05).
CONCLUSIONSThe high excitability of PCs and the abnormal PF-PC synaptic plasticity caused by convulsion in neonatal rats may last to the developmental period, which can be aggravated by PB, while SA can reduce the excitability of PCs in neonatal rats with convulsion and repair the short- and long-term abnormalities of LTD of PCs caused by convulsion.
Action Potentials ; drug effects ; Animals ; Animals, Newborn ; Cytoprotection ; Excitatory Postsynaptic Potentials ; drug effects ; Purkinje Cells ; drug effects ; physiology ; Rats ; Rats, Sprague-Dawley ; Seizures ; drug therapy ; physiopathology ; Succinic Acid ; pharmacology
7.Receptor kinetics analyses of long-term potentiation of synaptic transmission in spinal cord motoneurons in vitro.
Hao LUO ; Wen QIN ; Yan ZHANG ; Bang-An WANG ; Meng-Ya WANG
Acta Physiologica Sinica 2014;66(2):129-134
The aim of the present study is to observe the receptor kinetics property of long-term potentiation (LTP) of excitatory postsynaptic potential (EPSP) in spinal cord motoneurons (MNs) by descending activation. The intracellular recording techniques were conducted in spinal cord MNs of neonatal rats aged 8-14 days. The changes of EPSP induced by ipsilateral ventrolateral funiculus (iVLF) stimulation (iVLF-EPSPs) were observed, and receptor kinetics of iVLF-EPSPs were analyzed. The results showed that, the amplitude, area under curve and maximum left slope of EPSP were positively correlated with stimulus intensity (P < 0.05 or P < 0.01), while the apparent receptor kinetic parameters apparent dissociation rate constant (K(2)), apparent equilibrium dissociation constant (K(T)) of EPSP were negatively correlated with stimulus intensity (P < 0.01 or P < 0.05). The iVLF-EPSPs were persistently increased after tetanic stimulation (100 Hz, 50 pulses/train, duration 0.4-1.0 ms, 6 trains, main interval 10 s, 10-100 V) in 5 of 11 tested MNs. The amplitude of iVLF-EPSPs was potentiated to more than 120% of baseline and lasted at least 30 min, which could be referred to as iVLF-LTP. Meanwhile, the area under curve and maximum left slope of EPSPs were also increased to more than 120% of baseline. During iVLF-LTP, apparent receptor kinetics analyses of iVLF-EPSPs indicated that K(2) and KT were decreased significantly to less than 80% of the baseline within 10 min and gradually and partially recovered in 3 MNs. These results of receptor kinetics analyses of iVLF-EPSPs suggest a possible enhancement in affinity of postsynaptic receptors in the early stage of iVLF-LTP in some MNs.
Animals
;
Excitatory Postsynaptic Potentials
;
Kinetics
;
Long-Term Potentiation
;
Motor Neurons
;
physiology
;
Rats
;
Spinal Cord
;
cytology
;
Synaptic Transmission
8.Facilitation of synaptic transmission and connections of entorhinal-hippocampal pathway by 5-HT2C receptor subtype: multi-electrode array recordings.
Yan XU ; Jian-Hui JIN ; Yan WANG ; Rui-Rui WANG ; Zhen LI ; Jun CHEN
Acta Physiologica Sinica 2012;64(3):259-268
Using 64-channels (8 × 8) multi-electrode array technique (MED-64 system), the modulatory actions of 5-hydroxytryptamine (5-HT) 2C receptor subtype on the entorhinal (EC)-hippocampal synaptic transmission and connections were studied. One of freshly dissociated acute hippocampal slices of rats which was placed on the MED-64 probe, was subject to constant perfusion with oxygenated artificial cerebrospinal fluid (ACSF, 95% O2 and 5% CO2). Two hours after ACSF incubation, simultaneous multi-site electrophysiological recordings were performed. One electrode was selected to be used for perforant path (PP) stimulation, and the remaining 63 electrodes were used for recordings of network field excitatory postsynaptic potentials (fEPSPs) within both CA1 and dentate gyrus (DG) that have been previously proved to be mediated by glutamate non-NMDA receptors. After stability of network fEPSPs was achieved, (±)-1(2, 5-Dimethoxy-4-iodophenyl)-2-aminopropane hydrochloride (DOI, an agonist of 5-HT2C receptor subtype), or SB242084 (6-Chloro-2,3-dihydro-5-methyl-N-[6-[(2-methyl-3-pyridinyl)oxy]-3-pyridinyl]-1H-indole-1-carboxyamide dihydrochloride hydrate) (a selective antagonist of 5-HT2C receptor subtype) was applied for 10 min perfusion, respectively. Two-dimensional current source density (2D-CSD) analysis was also transformed by bilinear interpolation at each point of the 64 electrodes for spatial imaging of the fEPSP network responses. Based upon the polarities of fEPSP and 2D-CSD imaging, it was clearly shown that synaptic activations were evoked to occur within the molecular layer of DG and pyramidal cell layer of CA1 by the PP stimulation in which negative-going field potentials and current sink (blue) could be recorded. While, positive-going field potentials and current source (yellow) were mainly localized within the granule cell layer and hilus of DG and alveus of CA1, reflecting spread of electrical signals derived from depolarized region toward CA3 area or subiculum and fimbria along the axons. Perfusion of the hippocampal slices with DOI resulted in a significant enlargement of synaptic connection size at network level and enhancement of synaptic efficacy. However, on the contrary, perfusion with SB242084 produced reversal effect with either reduction in synaptic network size or decreased magnitude of fEPSPs (amplitude and slope) in the CA1 and DG. These results suggest that endogenous 5-HT causes facilitation of EC-CA1 and EC-DG synaptic transmission and connections via acting on 5-HT2C receptor subtype, leading to gain in synaptic transmission and enlargement of synaptic connections.
Animals
;
CA1 Region, Hippocampal
;
physiology
;
Dentate Gyrus
;
physiology
;
Electrodes
;
Entorhinal Cortex
;
physiology
;
Excitatory Postsynaptic Potentials
;
Perforant Pathway
;
Pyramidal Cells
;
physiology
;
Rats
;
Receptor, Serotonin, 5-HT2C
;
physiology
;
Receptors, Glutamate
;
physiology
;
Serotonin
;
physiology
;
Synaptic Transmission
9.Repeated morphine pretreatment reduces glutamatergic synaptic potentiation in the nucleus accumbens induced by acute morphine exposure.
Xiao-Jie WU ; Jing ZHANG ; Chun-Ling WEI ; Zhi-Qiang LIU ; Wei REN
Acta Physiologica Sinica 2012;64(2):170-176
Repeated exposure to morphine leads to the addiction, which influences its clinical application seriously. The glutamatergic projection from prefrontal cortex (PFC) to the nucleus accumbens (NAc) plays an important role in rewarding effects. It is still unknown whether morphine exposure changes PFC-NAc synaptic transmission. To address this question, in vivo field excitatory postsynaptic potentials (fEPSPs) induced by electric stimulating PFC-NAc projection fibers were recorded to evaluate the effect of acute morphine exposure (10 mg/kg, s.c.) on glutamatergic synaptic transmission in NAc shell of repeated saline/morphine pretreated rats. It was showed that acute morphine exposure enhanced fEPSP amplitude and reduced paired-pulse ratio (PPR) in saline pretreated rats, which could be reversed by following naloxone injection (1 mg/kg, i.p.), an opiate receptor antagonist. However, repeated morphine pretreatment significantly inhibited both the enhancement of fEPSP amplitude and reduction of PPR induced by acute morphine exposure. Those results indicate that the initial morphine exposure enhances PFC-NAc synaptic transmission by pre-synaptic mechanisms, whereas morphine pretreatment occludes this effect.
Animals
;
Excitatory Postsynaptic Potentials
;
drug effects
;
physiology
;
Female
;
Glutamate Plasma Membrane Transport Proteins
;
metabolism
;
Glutamates
;
metabolism
;
Morphine
;
administration & dosage
;
Morphine Dependence
;
physiopathology
;
Nucleus Accumbens
;
physiopathology
;
Prefrontal Cortex
;
physiopathology
;
Rats
;
Rats, Sprague-Dawley
10.Effects of etomidate on descending activation of motoneurons in neonatal rat spinal cord in vitro.
Acta Physiologica Sinica 2012;64(2):155-162
Descending activation pathways in spinal cord are essential for inducing and modulating autokinesis, but whether the effects of general anesthetic agents on the descending pathways are involved in initiation of skeletal muscle relaxation or not, as well as the underlying mechanisms on excitatory amino acid receptors still remain unclear. In order to explore the mechanisms underlying etomidate's effects on descending activation of spinal cord motoneurons (MNs), the conventional intracellular recording techniques in MNs of spinal cord slices isolated from neonatal rats (7-14 days old) were performed to observe and analyze the actions of etomidate on excitatory postsynaptic potential (EPSP) elicited by electrical stimulation of the ipsilateral ventrolateral funiculus (VLF), which was named VLF-EPSP. Etomidate at 0.3, 3.0 (correspond to clinical concentration) and 30.0 µmol/L were in turn perfused to MN with steadily recorded VLF-EPSPs. At low concentration (0.3 µmol/L), etomidate increased duration, area under curve and/or half-width of VLF-EPSP and N-methyl-D-aspartate (NMDA) receptor-mediated VLF-EPSP component (all P < 0.05), as well as amplitude, area under curve and half-width of non-NMDA receptor-mediated VLF-EPSP component (all P < 0.05), or decreased amplitude and area under curve of VLF-EPSP, its NMDA receptor component, and non-NMDA receptor component (all P < 0.05). However, at 3.0 and 30.0 µmol/L, it was only observed that etomidate exerted inhibitory effects on amplitude and/or duration and/or area under curve of VLF-EPSP (P < 0.05 or P < 0.01) with concentration- and time-dependent properties. Moreover, NMDA receptor-mediated VLF-EPSP component was more sensitive to etomidate at ≥ 3.0 µmol/L than non-NMDA receptor-mediated VLF-EPSP component did. As a conclusion, etomidate, at different concentrations, exerts differential effects on VLF-EPSP and glutamate receptors mediating the synaptic transmission of descending activation of MNs in neonatal rat spinal cord in vitro.
Anesthetics, Intravenous
;
pharmacology
;
Animals
;
Animals, Newborn
;
Efferent Pathways
;
physiology
;
Electric Stimulation
;
Etomidate
;
pharmacology
;
Excitatory Postsynaptic Potentials
;
drug effects
;
physiology
;
Female
;
In Vitro Techniques
;
Male
;
Motor Neurons
;
physiology
;
Rats
;
Rats, Sprague-Dawley
;
Receptors, N-Methyl-D-Aspartate
;
drug effects
;
physiology
;
Spinal Cord
;
physiology

Result Analysis
Print
Save
E-mail