1.Hypothesis of Genetic Diversity Selection in the Occurrence and Development of Lung Cancer: Molecular Evolution and Clinical Significance.
Chinese Journal of Lung Cancer 2024;26(12):943-949
So far, the monoclonal hypothesis of tumor occurrence and development cannot be justified. The genetic diversity selection hypothesis for the occurrence and development of lung cancer links Mendelian genetics with Darwin's theory of evolution, suggesting that the genetic diversity of tumor cell populations with polyclonal origins-monoclonal selection-subclonal expansion is the result of selection pressure. Normal cells acquire mutations in oncogenic driver genes and have a selective advantage over other cells, becoming tumor initiating cells; In the interaction with the tumor microenvironment (TME), the vast majority of initiating cells are recognized and killed by the human immune system. If immune escape occurs, the incidence of malignant tumors will greatly increase, and subclonal expansion, intratumour heterogeneity, etc. will occur. This article proposed the hypothesis of genetic diversity selection and analyzed its clinical significance.
.
Humans
;
Lung Neoplasms/genetics*
;
Clinical Relevance
;
Evolution, Molecular
;
Mutation
;
Tumor Microenvironment
2.Persistent increase and improved survival of stage I lung cancer based on a large-scale real-world sample of 26,226 cases.
Chengdi WANG ; Jun SHAO ; Lujia SONG ; Pengwei REN ; Dan LIU ; Weimin LI
Chinese Medical Journal 2023;136(16):1937-1948
BACKGROUND:
Lung cancer prevails and induces high mortality around the world. This study provided real-world information on the evolution of clinicopathological profiles and survival outcomes of lung cancer, and provided survival information within stage I subtypes.
METHODS:
Patients pathologically confirmed with lung cancer between January 2009 and December 2018 were identified with complete clinicopathological information, molecular testing results, and follow-up data. Shifts in clinical characteristics were evaluated using χ2 tests. Overall survival (OS) was calculated through the Kaplan-Meier method.
RESULTS:
A total of 26,226 eligible lung cancer patients were included, among whom 62.55% were male and 52.89% were smokers. Non-smokers and elderly patients took increasingly larger proportions in the whole patient population. The proportion of adenocarcinoma increased from 51.63% to 71.80%, while that of squamous carcinoma decreased from 28.43% to 17.60%. Gene mutations including EGFR (52.14%), KRAS (12.14%), and ALK (8.12%) were observed. Female, younger, non-smoking, adenocarcinoma patients and those with mutated EGFR had better survival prognoses. Importantly, this study validated that early detection of early-stage lung cancer patients had contributed to pronounced survival benefits during the decade. Patients with stage I lung cancer, accounted for an increasingly considerable proportion, increasing from 15.28% to 40.25%, coinciding with the surgery rate increasing from 38.14% to 54.25%. Overall, period survival analyses found that 42.69% of patients survived 5 years, and stage I patients had a 5-year OS of 84.20%. Compared with that in 2009-2013, the prognosis of stage I patients in 2014-2018 was dramatically better, with 5-year OS increasing from 73.26% to 87.68%. Regarding the specific survival benefits among stage I patients, the 5-year survival rates were 95.28%, 93.25%, 82.08%, and 74.50% for stage IA1, IA2, IA3, and IB, respectively, far more promising than previous reports.
CONCLUSIONS
Crucial clinical and pathological changes have been observed in the past decade. Notably, the increased incidence of stage I lung cancer coincided with an improved prognosis, indicating actual benefits of early detection and management of lung cancer.
Humans
;
Male
;
Female
;
Aged
;
Lung Neoplasms/genetics*
;
Adenocarcinoma/pathology*
;
Prognosis
;
Survival Rate
;
Mutation
;
ErbB Receptors/genetics*
;
Neoplasm Staging
;
Retrospective Studies
3.Analysis of 59 cases of large vestibular aqueduct syndrome SLC26A4gene mutation frequency and new mutation sites.
Dong SU ; Fan LOU ; Rui HUANG ; Xia LI ; Ken LIN ; Guo LI ; Jing MA
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2023;37(11):909-915
Objective:To study the frequency of SLC26A4 gene mutation sites in children with enlarged vestibular aqueduct deafness in Yunnan, report the new mutation sites of SLC26A4 gene, further clarify the mutation spectrum of SLC26A4gene, and explore the association between biallelic and monoallelic mutations of SLC26A4 gene and CT phenotype of inner ear, so as to provide basis for clinical and genetic diagnosis of deafness. Methods:Review the results of temporal bone CT examination of 390 children after cochlear implantation in the Department of Otolaryngology, Kunming Children's Hospital from August 2016 to September 2021. Sanger sequencing of SLC26A4 gene was performed in 59 children with enlarged vestibular aqueduct. According to the genetic test results, the children who underwent temporal bone CT examination were divided into two groups: SLC26A4 biallelic mutation group(homozygous mutation and compound heterozygous mutation), monoallelic mutation group, and the association with inner ear CT phenotype was analyzed, and the new sites were summarized and analyzed. Results:The c.919-2a>g mutation was the most common mutation in children with enlarged vestibular aqueduct with SLC26A4 gene mutation. Three new variants of SLC26A4 gene were found; CT examination combined with genetic testing found that a part of children with enlarged vestibular aqueduct was associated with SLC26A4 monoallelic mutation or no SLC26A4 gene mutation was detected. Further research is needed to investigate the involvement of other pathogenic factors in the pathogenesis of EVA.
Child
;
Humans
;
Mutation Rate
;
Membrane Transport Proteins/genetics*
;
China
;
Hearing Loss, Sensorineural/diagnosis*
;
Mutation
;
Vestibular Aqueduct
;
Vestibular Diseases/pathology*
;
Deafness/genetics*
4.Comparative genomics on chloroplasts of Sinopodophyllum hexandrum.
Luhua MA ; Jiaqi NING ; Yongjie WANG ; Min ZHAO ; Yikang LI ; Huakun ZHOU
Chinese Journal of Biotechnology 2022;38(10):3695-3712
To explore the different chloroplast genome characteristics of Sinopodophyllum hexandrum, five chloroplast genome sequences of S. hexandrum were compared. Its genome map, repeat sequence, codon preference, inverted repeat (IR)/single-copy (SC) boundary, alignment of chloroplast genome sequences and phylogenetic were analyzed using bioinformatics tools. The results showed that: the total length of five chloroplast genomes of S. hexandrum, with a typical tetrad structure, were 157 203-157 940 bp, and a total of 133-137 genes were annotated, reflecting the diversity of chloroplast genomes of S. hexandrum. Different chloroplast genomes of S. hexandrum has different simple sequence repeat (SSR), where simple repeat of single nucleotide of A/T were the majority among the SSR detected. The interspersed repetitive sequences included direct, palindromic and inverted repeats. The value of effective number of codon (ENc) which was analyzed by using codon bias was 51.14~51.17, the proportion of GC and GC3s was less than 50%, the codon usage pattern tended towards frequently use of A/U-ending bases. Genome sequences and the IR/SC boundaries of five chloroplast genomes of S. hexandrum were relatively conservative. Phylogenetic analysis showed that S. hexandrum and Podophyllum pettatum had the closest genetic relationship. In summary, the chloroplast genome characteristics and evolutionary relationship of different chloroplast genomes of S. hexandrum were obtained, which may facilitate the utilization, protection, variety identification and genetic evolution of S. hexandrum resources.
Phylogeny
;
Genome, Chloroplast
;
Chloroplasts/genetics*
;
Genomics
;
Evolution, Molecular
5.Analysis on epidemiological characteristics of dengue fever and E gene evolution of dengue virus in Guangzhou, 2020.
Li Yun JIANG ; Yuan LIU ; Wen Zhe SU ; Yi Min CAO ; Wen Hui LIU ; Biao DI ; Zhi Cong YANG
Chinese Journal of Epidemiology 2022;43(5):716-721
Objective: To assess the incidence of dengue fever and E gene evolution of dengue virus in Guangzhou in 2020 and understand the local epidemiological characteristics of dengue fever and spreading of dengue virus. Methods: The information of dengue fever cases in Guangzhou in 2020 was collected from Notifiable Infectious Disease System of Chinese Center for Disease Control and Prevention Information System. Serum samples from the cases were detected by real-time PCR. The E gene was sequenced and analyzed. Maximum likelihood phylogenetic trees were constructed using software MEGA 5.05. The statistical analysis was conducted using software SPSS 20.0. Results: A total of 33 dengue fever cases were reported in Guangzhou in 2020, including 31 (93.94%) imported cases and 2 (6.06%) local cases. Compared with the data during 2016 to 2019, the number of cases, overall incidence and local incidence all decreased with statistically significant differences (all P<0.05). The imported cases from Southeast Asia constituted 90.32% (28/31) of imported cases. The E gene sequences and the phylogenetic trees of imported and local cases demonstrated close relationship with the virus sequences from Southeast Asian, and they were less homologous with the sequences of dengue virus isolated in Guangzhou in previous years. Conclusions: The incidence of dengue in Guangzhou in 2020 was significantly affected by the imported cases, especially those from Southeast Asian countries. The study result demonstrated that dengue fever was not endemic in Guangzhou and it was caused by imported ones.
China/epidemiology*
;
Dengue/epidemiology*
;
Dengue Virus/genetics*
;
Disease Outbreaks
;
Evolution, Molecular
;
Genotype
;
Humans
;
Phylogeny
6.Enzyme ancestral sequence reconstruction and directed evolution.
Kun ZHANG ; Yifei DAI ; Jindi SUN ; Jiachen LU ; Kequan CHEN
Chinese Journal of Biotechnology 2021;37(12):4187-4200
The amino acid sequence of ancestral enzymes from extinct organisms can be deduced through in silico approach termed ancestral sequence reconstruction (ASR). ASR usually has six steps, which are the collection of nucleic acid/amino acid sequences of modern enzymes, multiple sequence alignment, phylogenetic tree construction, computational deduction of ancestral enzyme sequence, gene cloning, and characterization of enzyme properties. This method is widely used to study the adaptation and evolution mechanism of molecules to the changing environmental conditions on planetary time scale. As enzymes play key roles in biocatalysis, this method has become a powerful method for studying the relationship among the sequence, structure, and function of enzymes. Notably, most of the ancestral enzymes show better temperature stability and mutation stability, making them ideal protein scaffolds for further directed evolution. This article summarizes the computer algorithms, applications, and commonly used computer software of ASR, and discusses the potential application in directed evolution of enzymes.
Amino Acid Sequence
;
Evolution, Molecular
;
Phylogeny
;
Proteins/genetics*
;
Sequence Alignment
7.Chinese Medicine in Fighting against Covid-19: Role and Inspiration.
Chinese journal of integrative medicine 2021;27(1):3-6
Covid-19 pandemic has caused hundreds of thousands deaths and millions of infections and continued spreading violently. Although researchers are racing to find or develop effective drugs or vaccines, no drugs from modern medical system have been proven effective and the high mutant rates of the virus may lead it resistant to whatever drugs or vaccines developed following modern drug development procedure. Current evidence has demonstrated impressive healing effects of several Chinese medicines (CMs) for Covid-19, which urges us to reflect on the role of CM in the era of modern medicine. Undoubtedly, CM could be promising resources for developing drug candidates for the treatment of Covid-19 in a way similar to the development of artemisinin. But the theory that builds CM, like the emphasis of driving away exogenous pathogen (virus, etc.) by restoring self-healing capacity rather than killing the pathogen directly from the inside and the 'black-box' mode of diagnosing and treating patients, is as important, yet often ignored, an treasure as CM herbs and should be incorporated into modern medicine for future advancement and innovation of medical science.
Antiviral Agents/therapeutic use*
;
COVID-19/therapy*
;
Disease Outbreaks
;
Drug Development/standards*
;
Drug Resistance, Viral/genetics*
;
Drug Therapy, Combination
;
Drugs, Chinese Herbal/therapeutic use*
;
Humans
;
Medicine, Chinese Traditional/trends*
;
Mutation Rate
;
Pandemics
;
Phytotherapy/methods*
;
SARS-CoV-2/physiology*
8.ADP-ribosylhydrolases: from DNA damage repair to COVID-19.
Lily YU ; Xiuhua LIU ; Xiaochun YU
Journal of Zhejiang University. Science. B 2021;22(1):21-30
Adenosine diphosphate (ADP)-ribosylation is a unique post-translational modification that regulates many biological processes, such as DNA damage repair. During DNA repair, ADP-ribosylation needs to be reversed by ADP-ribosylhydrolases. A group of ADP-ribosylhydrolases have a catalytic domain, namely the macrodomain, which is conserved in evolution from prokaryotes to humans. Not all macrodomains remove ADP-ribosylation. One set of macrodomains loses enzymatic activity and only binds to ADP-ribose (ADPR). Here, we summarize the biological functions of these macrodomains in DNA damage repair and compare the structure of enzymatically active and inactive macrodomains. Moreover, small molecular inhibitors have been developed that target macrodomains to suppress DNA damage repair and tumor growth. Macrodomain proteins are also expressed in pathogens, such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, these domains may not be directly involved in DNA damage repair in the hosts or pathogens. Instead, they play key roles in pathogen replication. Thus, by targeting macrodomains it may be possible to treat pathogen-induced diseases, such as coronavirus disease 2019 (COVID-19).
ADP-Ribosylation
;
COVID-19/metabolism*
;
DNA Repair/physiology*
;
Evolution, Molecular
;
Humans
;
Models, Biological
;
Models, Molecular
;
N-Glycosyl Hydrolases/metabolism*
;
Poly(ADP-ribose) Polymerases/metabolism*
;
Protein Domains
;
SARS-CoV-2/pathogenicity*
9.Advances of high-throughput screening system in reengineering of biological entities.
Jianhua YANG ; Xiaolan SU ; Leilei ZHU
Chinese Journal of Biotechnology 2021;37(7):2197-2210
Enzymes and cell factories are the core of industrial biotechnology. They play important roles in various fields such as medicine, chemical industry, food, agriculture, and energy. Usually, natural enzymes and cells need to be engineered to improve the catalytic efficiency, stability and enantioselectivity. Directed evolution makes it possible to rapidly improve the properties of enzymes and cell factories. Sensitive and reliable high-throughput screening approaches are the key for successful and efficient engineering of enzymes and cell factories. In this review, we first summarize the advantages and disadvantages of different screening methods and signal generation strategies as well as their application scope; we then describe the latest advances of ultra-high throughput screening technology applied in the directed evolution of enzymes and cell factories in the past three years. On this basis, we discuss the limiting factors that need to be further improved for high-throughput screening systems and forecast the future development trends of high-throughput screening methods, hoping that researchers in various fields including biotechnology and instrument development can cooperate closely to enhance the reliability and applicability of the high-throughput screening techniques.
Biotechnology
;
Directed Molecular Evolution
;
Enzymes
;
High-Throughput Screening Assays
;
Reproducibility of Results
10.Progress in the construction and screening of random mutation library.
Jue CHEN ; Jiamin HUANG ; Tianhe YAN ; Xiaoyu PENG ; Jun LIN
Chinese Journal of Biotechnology 2021;37(1):163-177
Directed evolution is a cyclic process that alternates between constructing different genes and screening functional gene variants. It has been widely used in optimization and analysis of DNA sequence, gene function and protein structure. It includes random gene libraries construction, gene expression in suitable hosts and mutant libraries screening. The key to construct gene library is the storage capacity and mutation diversity, to screen is high sensitivity and high throughput. This review discusses the latest advances in directed evolution. These new technologies greatly accelerate and simplify the traditional directional evolution process and promote the development of directed evolution.
Base Sequence
;
Directed Molecular Evolution
;
Gene Library
;
Mutation
;
Proteins/genetics*

Result Analysis
Print
Save
E-mail