1.Study on gene therapy for DPOAE and ABR threshold changes in adult Otof-/- mice.
Zijing WANG ; Qi CAO ; Shaowei HU ; Xintai FAN ; Jun LV ; Hui WANG ; Wuqing WANG ; Huawei LI ; Yilai SHU
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2024;38(1):49-56
Objective:This study aims to analyze the threshold changes in distortion product otoacoustic emissions(DPOAE) and auditory brainstem response(ABR) in adult Otof-/- mice before and after gene therapy, evaluating its effectiveness and exploring methods for assessing hearing recovery post-treatment. Methods:At the age of 4 weeks, adult Otof-/- mice received an inner ear injection of a therapeutic agent containing intein-mediated recombination of the OTOF gene, delivered via dual AAV vectors through the round window membrane(RWM). Immunofluorescence staining assessed the proportion of inner ear hair cells with restored otoferlin expression and the number of synapses.Statistical analysis was performed to compare the DPOAE and ABR thresholds before and after the treatment. Results:AAV-PHP. eB demonstrates high transduction efficiency in inner ear hair cells. The therapeutic regimen corrected hearing loss in adult Otof-/- mice without impacting auditory function in wild-type mice. The changes in DPOAE and ABR thresholds after gene therapy are significantly correlated at 16 kHz. Post-treatment,a slight increase in DPOAE was observeds,followed by a recovery trend at 2 months post-treatment. Conclusion:Gene therapy significantly restored hearing in adult Otof-/- mice, though the surgical delivery may cause transient hearing damage. Precise and gentle surgical techniques are essential to maximize gene therapy's efficacy.
Mice
;
Animals
;
Otoacoustic Emissions, Spontaneous/physiology*
;
Hearing/physiology*
;
Ear, Inner
;
Hearing Loss/therapy*
;
Genetic Therapy
;
Auditory Threshold/physiology*
;
Evoked Potentials, Auditory, Brain Stem/physiology*
;
Membrane Proteins
2.Preliminary application of combined auditory monitoring technique in resection of vestibular neurinoma.
Ding ZHANG ; Xiu Ying WANG ; Yu Yang LIU ; Jun ZHANG
Chinese Journal of Otorhinolaryngology Head and Neck Surgery 2023;58(6):589-595
Objective: To explore the value of electrically evoked auditory brainstem response (EABR) monitoring combined with brainstem auditory evoked potential (BAEP) and compound action potential (CAP) monitoring during vestibular schwannoma resection for the protection of the cochlear nerve. Methods: Clinical data from 12 patients with vestibular schwannomas who had useful hearing prior to surgery were analyzed at the PLA General Hospital from January to December 2021. Among them, there were 7 males and 5 females, ranging in age from 25 to 59 years. Before surgery, patients underwent audiology assessments (including pure tone audiometry, speech recognition rate, etc.), facial nerve function evaluation, and cranial MRI. They then underwent vestibular schwannoma resection via the retrosigmoid approach. EABR, BAEP, and CAP were simultaneously monitored during surgery, and patients' hearing preservation was observed and analyzed after surgery. Results: Prior to surgery, the average PTA threshold of the 12 patients ranged from11 to 49 dBHL, with a SDS of 80% to 100%. Six patients had grade A hearing, and six patients had grade B hearing. All 12 patients had House-Brackman grade I facial nerve function prior to surgery. The MRI indicated tumor diameters between 1.1 and 2.4 cm. Complete removal was achieved in 10/12 patients, while near-total removal was achieved in 2/12 patients. There were no serious complications at the one-month follow-up after surgery. At the three-month follow-up, all 12 patients had House-Brackman grade I or II facial nerve function. Under EABR with CAP and BAEP monitoring, successful preservation of the cochlear nerve was achieved in six of ten patients (2 with grade B hearing, 3 with grade C hearing, and 1 with grade D hearing). Successful preservation of the cochlear nerve was not achieved in another four patients (all with grade D hearing). In two patients, EABR monitoring was unsuccessful due to interference signals; however, Grade C or higher hearing was successfully preserved under BAEP and CAP monitoring. Conclusion: The application of EABR monitoring combined with BAEP and CAP monitoring during vestibular schwannoma resection can help improve postoperative preservation of the cochlear nerve and hearing.
Male
;
Female
;
Humans
;
Adult
;
Middle Aged
;
Neuroma, Acoustic/complications*
;
Hearing/physiology*
;
Evoked Potentials, Auditory, Brain Stem/physiology*
;
Cochlear Nerve
;
Hearing Loss, Sensorineural/etiology*
;
Retrospective Studies
;
Postoperative Complications/prevention & control*
3.Characteristics of responsiveness of cochlear nerve to electrical stimulation in patients with cochlear nerve deficiency.
Xiu Hua CHAO ; Jian Fen LUO ; Rui Jie WANG ; Zhao Min FAN ; Hai Bo WANG ; Lei XU
Chinese Journal of Otorhinolaryngology Head and Neck Surgery 2023;58(7):657-665
Objectives: This study aimed to evaluate the responsiveness of cochlear nerve to electrical stimulation in patients with cochlear nerve deficiency(CND), to compare their results with those measured in implanted children with normal-sized cochlear nerves, and to investigate the characteristics of the cochlear nerve injury of children with CND. Methods: Participants were children who underwent cochlear implantation at Shandong Provincial ENT Hospital from January 2012 to January 2020, including CND group and control group. The CND group included 51 subjects (male:20; female: 31) who were diagnosed with CND and had normal cochlea. For the CND group, four children had been bilaterally implanted, the mean implantation age was (2.7±1.5) years old. The control group included 21 subjects (male:10; femal:11) who had normal-sized cochlear nerve and normal cochlea. For the control group, all children had been unilaterally implanted except one, and the mean implantation age was (3.0±1.9)years old. Three subjects in the CND group used CI422 electrode arrays, and all the other subjects used CI24RECA/CI512 electrode arrays. The electrically evoked compound action potentials (ECAP) had been tried to record for each electrode using Custom Sound EP software (v. 4.3, Cochlear Ltd.) at least six months post first activation. Furthermore, ECAP amplitude growth functions (AGF) were measured at multiple electrode locations across the electrode array. Generalized linear mixed effect models with the subject group and electrode location as the fixed effects and subjects as the random effect were used to compare results of ECAP measurements. Results: In the control group, ECAP could been recorded at all electrodes (100%), but it could only be recorded in 71% (859/1 210) electrodes in the CND group. Additionally, the percentage of electrodes with measurable ECAP decreased from electrode 1 to electrode 22 in the CND group. Compared to the control group, the ECAP thresholds significantly increased, the ECAP amplitudes and AGF slopes significantly decreased, and the ECAP latency significantly increased in the CND group (P<0.01). GLMM showed that the stimulating site had a significant effect on the ECAP threshold, maximum amplitude, and AGF slope (P<0.01), but had no significant effect on the ECAP latency (P>0.05) in the CND group. However, the stimulating site had no significant effects on the ECAP measurements in the control group. Furthermore, the functional status of cochlear nerve varied greatly among CND group. From electrode 1 to electrode 22, the ECAP thresholds gradually increased, the ECAP maximum amplitudes and AGF slopes gradually decreased in the CND group. Conclusion: Compared with patients with normal-sized cochlear nerve, not only the number of residual spinal ganglion neurons reduce,but also the function of spinal ganglion neurons damages in CND patients. The degree of cochlea nerve deterioration varies greatly among CND patients. Generally, the deterioration of cochlear nerve tends to increase from the basal to the apical site of the cochlea.
Child, Preschool
;
Female
;
Humans
;
Infant
;
Male
;
Cochlea
;
Cochlear Implantation/methods*
;
Cochlear Implants
;
Cochlear Nerve
;
Electric Stimulation
;
Evoked Potentials, Auditory/physiology*
4.Implicit, But Not Explicit, Emotion Regulation Relieves Unpleasant Neural Responses Evoked by High-Intensity Negative Images.
Yueyao ZHANG ; Sijin LI ; Kexiang GAO ; Yiwei LI ; Jiajin YUAN ; Dandan ZHANG
Neuroscience Bulletin 2023;39(8):1278-1288
Evidence suggests that explicit reappraisal has limited regulatory effects on high-intensity emotions, mainly due to the depletion of cognitive resources occupied by the high-intensity emotional stimulus itself. The implicit form of reappraisal has proved to be resource-saving and therefore might be an ideal strategy to achieve the desired regulatory effect in high-intensity situations. In this study, we explored the regulatory effect of explicit and implicit reappraisal when participants encountered low- and high-intensity negative images. The subjective emotional rating indicated that both explicit and implicit reappraisal down-regulated negative experiences, irrespective of intensity. However, the amplitude of the parietal late positive potential (LPP; a neural index of experienced emotional intensity) showed that only implicit reappraisal had significant regulatory effects in the high-intensity context, though both explicit and implicit reappraisal successfully reduced the emotional neural responses elicited by low-intensity negative images. Meanwhile, implicit reappraisal led to a smaller frontal LPP amplitude (an index of cognitive cost) compared to explicit reappraisal, indicating that the implementation of implicit reappraisal consumes limited cognitive control resources. Furthermore, we found a prolonged effect of implicit emotion regulation introduced by training procedures. Taken together, these findings not only reveal that implicit reappraisal is suitable to relieve high-intensity negative experiences as well as neural responses, but also highlight the potential benefit of trained implicit regulation in clinical populations whose frontal control resources are limited.
Humans
;
Emotional Regulation
;
Electroencephalography
;
Evoked Potentials/physiology*
;
Cognition/physiology*
;
Emotions/physiology*
5.A comparative study of detection methods for assessing superior and inferior vestibular nerve damages in patients with vestibular neuritis.
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2023;37(10):829-836
Objective:This study aims to compare the examination results of the vestibular evoked myogenic potential(VEMP) and video head impulse testing(vHIT) in patients with vestibular neuritis(VN), thus exploring the methods to distinguish superior and inferior vestibular nerve damages in VN patients, and their feasibility. Methods:A total of 25 patients with unilateral VN treated in the Otology Department of the First Hospital of Qinhuangdao from May 2018 to July 2021 were recruited. They were respectively tested for ocular VEMP(oVEMP), cervical VEMP(cVEMP) and vHIT, and the examination results were analyzed. Results:Examination results of oVEMP showed that 96%(24/25) patients had one-ear abnormalities with the amplitude decline or no waveform introduced, and 4%(1/25) patient had no waveform introduced of both ears. The overall abnormal rate examined by oVEMP was 100%(26/26). Examination results of cVEMP showed that 36%(9/25) patients had one-ear abnormalities with the amplitude decline or no waveform introduced, and 4%(1/25) patients had no waveform introduced of both ears. The overall abnormal rate examined by cVEMP was 40%(10/25), and 60%(15/25) patients had normal waveforms of both ears. Examination results of vHIT showed that 100%(25/25) patients had semicircular canal gain decline of one side, 92%(23/25) had anterior Semicircular canal decline of one side, and 36%(9/25) had posterior semicircular canal decline of one side. VEMP and vHIT results were compared. Examination results of VEMP showed that 60%(15/25) VN patients had superior vestibular nerve damage, and 40%(10/25) had both superior and inferior vestibular nerve damages. Examination results of vHIT showed that 64%(16/25) VN patients had superior vestibular nerve damage, and 36%(9/25) had both superior and inferior vestibular nerve damages. There was no significant difference in the ratio of VN patients with superior and inferior vestibular nerve damages examined by VEMP or vHIT(χ²=0.085, P>0.05). The matching ratio of VEMP and vHIT results was 80%(20/25), and the non-matching ratio was 20%(5/25). Conclusion:Consistent results obtained from both VEMP and vHIT can preliminarily identify the type of vestibular nerve damage. If their results are not consistent, it is recommended not to identify the scope of the vestibular nerve damage.
Humans
;
Vestibular Neuronitis/diagnosis*
;
Vestibular Nerve
;
Head Impulse Test/methods*
;
Semicircular Canals
;
Vestibular Evoked Myogenic Potentials/physiology*
6.Application Progress of Objective Audiological Detection Techniques in Forensic Clinical Medicine.
Fei FAN ; Juan WU ; Zhen-Hua DENG
Journal of Forensic Medicine 2023;39(4):360-366
The qualitative, quantitative, and localization analysis of hearing loss is one of the important contents of forensic clinical research and identification. Pure-tone audiometry is the "gold standard" for hearing loss assessment, but it is affected by the subjective cooperation of the assessed person. Due to the complexity of the auditory pathway and the diversity of hearing loss, the assessment of hearing loss requires the combination of various subjective and objective audiometric techniques, along with comprehensive evaluation based on the case situation, clinical symptoms, and other examinations to ensure the scientificity, accuracy and reliability of forensic hearing impairment assessment. Objective audiometry includes acoustic impedance, otoacoustic emission, and various auditory evoked potentials. The frequency-specific auditory brainstem response (ABR), 40 Hz auditory event related potential, and auditory steady-state response are commonly used for objective hearing threshold assessment. The combined application of acoustic impedance, otoacoustic emission and ABR can be used to locate hearing loss and determine whether it is located in the middle ear, cochlea, or posterior cochlea. This article reviews the application value of objective audiometry techniques in hearing threshold assessment and hearing loss localization, aiming to provide reference for forensic identification of hearing loss.
Humans
;
Reproducibility of Results
;
Auditory Threshold/physiology*
;
Evoked Potentials, Auditory, Brain Stem/physiology*
;
Hearing Loss/diagnosis*
;
Audiometry, Pure-Tone/methods*
;
Clinical Medicine
7.The Value of VR-PVEP in Objective Evaluation of Monocular Refractive Visual Impairment.
Hong-Xia HAO ; Jie-Min CHEN ; Rong-Rong WANG ; Xiao-Ying YU ; Meng WANG ; Zhi-Lu ZHOU ; Yan-Liang SHENG ; Wen-Tao XIA
Journal of Forensic Medicine 2023;39(4):382-387
OBJECTIVES:
To study the virtual reality-pattern visual evoked potential (VR-PVEP) P100 waveform characteristics of monocular visual impairment with different impaired degrees under simultaneous binocular perception and monocular stimulations.
METHODS:
A total of 55 young volunteers with normal vision (using decimal recording method, far vision ≥0.8 and near vision ≥0.5) were selected to simulate three groups of monocular refractive visual impairment by interpolation method. The sum of near and far vision ≤0.2 was Group A, the severe visual impairment group; the sum of near and far vision <0.8 was Group B, the moderate visual impairment group; and the sum of near and far vision ≥0.8 was Group C, the mild visual impairment group. The volunteers' binocular normal visions were set as the control group. The VR-PVEP P100 peak times measured by simultaneous binocular perception and monocular stimulation were compared at four spatial frequencies 16×16, 24×24, 32×32 and 64×64.
RESULTS:
In Group A, the differences between P100 peak times of simulant visual impairment eyes and simultaneous binocular perception at 24×24, 32×32 and 64×64 spatial frequencies were statistically significant (P<0.05); and the P100 peak time of normal vision eyes at 64×64 spatial frequency was significantly different from the simulant visual impairment eyes (P<0.05). In Group B, the differences between P100 peak times of simulant visual impairment eyes and simultaneous binocular perception at 16×16, 24×24 and 64×64 spatial frequencies were statistically significant (P<0.05); and the P100 peak time of normal vision eyes at 64×64 spatial frequency was significantly different from the simulant visual impairment eyes (P<0.05). In Group C, there was no significant difference between P100 peak times of simulant visual impairment eyes and simultaneous binocular perception at all spatial frequencies (P>0.05). There was no significant difference in the P100 peak times measured at all spatial frequencies between simulant visual impairment eyes and simultaneous binocular perception in the control group (P>0.05).
CONCLUSIONS
VR-PVEP can be used for visual acuity evaluation of patients with severe and moderate monocular visual impairment, which can reflect the visual impairment degree caused by ametropia. VR-PVEP has application value in the objective evaluation of visual function and forensic clinical identification.
Humans
;
Evoked Potentials, Visual
;
Vision, Ocular
;
Vision, Binocular/physiology*
;
Vision Disorders/diagnosis*
;
Virtual Reality
8.Asymmetric response mechanism of auditory event related potentials.
Xiao-Fei LAI ; Zheng YAN ; Li-Cheng SHAO ; Fang DUAN
Acta Physiologica Sinica 2022;74(4):563-573
The classical auditory oddball paradigm is a commonly used experimental paradigm for evoking event related potentials (ERPs). The present study was aimed to explore the auditory cognitive processing mechanism of space perception of human brain. We employed an auditory oddball paradigm of binaural unbiased and biased sound intensity to compare and analyze the response characteristics of ERP. By focusing on the spatial lateralization characteristics of P300 and mismatch negativity (MMN) components, we analyzed their lateralization trends according to the laterality index. We found that both P300 and MMN components showed right-hemisphere lateralization phenomenon under the stimulation of asymmetric intensity of auditory acoustic. The results suggested that the right hemisphere of human brain played a key role in spatial information processing. The results also indicated that the hemispherical characteristics of the brain were not related to the actual spatial direction of the auditory stimulus, but were determined by the hemispherical functions of the brain. Furthermore, the results suggested that the MMN components induced by spatial differences were stronger in females than those in males.
Acoustic Stimulation
;
Auditory Perception/physiology*
;
Brain Mapping
;
Electroencephalography
;
Evoked Potentials
;
Evoked Potentials, Auditory/physiology*
;
Female
;
Humans
;
Male
9.Research progress of the regulation of cochlear sensitivity to noise by circadian rhythm.
Bao-Ling JIN ; Jing WU ; Zhong-Dan CUI ; Jia TANG ; Qi-Cai CHEN ; Zi-Ying FU
Acta Physiologica Sinica 2022;74(3):489-494
High level noise can damage cochlear hair cells, auditory nerve and synaptic connections between cochlear hair cells and auditory nerve, resulting in noise-induced hearing loss (NIHL). Recent studies have shown that animal cochleae have circadian rhythm, which makes them different in sensitivity to noise throughout the day. Cochlear circadian rhythm has a certain relationship with brain-derived neurotrophic factor and glucocorticoids, which affects the degree of hearing loss after exposure to noise. In this review, we summarize the research progress of the regulation of cochlear sensitivity to noise by circadian rhythm and prospect the future research direction.
Animals
;
Auditory Threshold
;
Circadian Rhythm
;
Cochlea
;
Evoked Potentials, Auditory, Brain Stem/physiology*
;
Hair Cells, Auditory
;
Hearing Loss, Noise-Induced
;
Noise/adverse effects*
10.Formation of the Looming-evoked Innate Defensive Response during Postnatal Development in Mice.
Shanping CHEN ; Huiying TAN ; Zhijie WANG ; Yu-Ting TSENG ; Xiaotao LI ; Liping WANG
Neuroscience Bulletin 2022;38(7):741-752
Environmental threats often trigger innate defensive responses in mammals. However, the gradual development of functional properties of these responses during the postnatal development stage remains unclear. Here, we report that looming stimulation in mice evoked flight behavior commencing at P14-16 and had fully developed by P20-24. The visual-evoked innate defensive response was not significantly altered by sensory deprivation at an early postnatal stage. Furthermore, the percentages of wide-field and horizontal cells in the superior colliculus were notably elevated at P20-24. Our findings define a developmental time window for the formation of the visual innate defense response during the early postnatal period and provide important insight into the underlying mechanism.
Animals
;
Evoked Potentials, Visual
;
Fear/physiology*
;
Mammals
;
Mice
;
Mice, Inbred C57BL
;
Neurons/physiology*
;
Superior Colliculi/physiology*

Result Analysis
Print
Save
E-mail