1.Ultrafast MRI for Pediatric Brain Assessment in Routine Clinical Practice
Hee Eun MOON ; Ji Young HA ; Jae Won CHOI ; Seung Hyun LEE ; Jae-Yeon HWANG ; Young Hun CHOI ; Jung-Eun CHEON ; Yeon Jin CHO
Korean Journal of Radiology 2025;26(1):75-87
Objective:
To assess the feasibility of ultrafast brain magnetic resonance imaging (MRI) in pediatric patients.
Materials and Methods:
We retrospectively reviewed 194 pediatric patients aged 0 to 19 years (median 10.2 years) who underwent both ultrafast and conventional brain MRI between May 2019 and August 2020. Ultrafast MRI sequences included T1 and T2-weighted images (T1WI and T2WI), fluid-attenuated inversion recovery (FLAIR), T2*-weighted image (T2*WI), and diffusion-weighted image (DWI). Qualitative image quality and lesion evaluations were conducted on 5-point Likert scales by two blinded radiologists, with quantitative assessment of lesion count and size on T1WI, T2WI, and FLAIR sequences for each protocol. Wilcoxon signed-rank tests and intraclass correlation coefficient (ICC) analyses were used for comparison.
Results:
The total scan times for equivalent image contrasts were 1 minute 44 seconds for ultrafast MRI and 15 minutes 30 seconds for conventional MRI. Overall, image quality was lower in ultrafast MRI than in conventional MRI, with mean quality scores ranging from 2.0 to 4.8 for ultrafast MRI and 4.8 to 5.0 for conventional MRI across sequences (P < 0.001 for T1WI, T2WI, FLAIR, and T2*WI for both readers; P = 0.018 [reader 1] and 0.031 [reader 2] for DWI). Lesion detection rates on ultrafast MRI relative to conventional MRI were as follows: T1WI, 97.1%; T2WI, 99.6%; FLAIR, 92.9%; T2*WI, 74.1%; and DWI, 100%. The ICC (95% confidence interval) for lesion size measurements between ultrafast and conventional MRI was as follows: T1WI, 0.998 (0.996–0.999); T2WI, 0.998 (0.997–0.999); and FLAIR, 0.99 (0.985–0.994).
Conclusion
Ultrafast MRI significantly reduces scan time and provides acceptable results, albeit with slightly lower image quality than conventional MRI, for evaluating intracranial abnormalities in pediatric patients.
2.Ultrafast MRI for Pediatric Brain Assessment in Routine Clinical Practice
Hee Eun MOON ; Ji Young HA ; Jae Won CHOI ; Seung Hyun LEE ; Jae-Yeon HWANG ; Young Hun CHOI ; Jung-Eun CHEON ; Yeon Jin CHO
Korean Journal of Radiology 2025;26(1):75-87
Objective:
To assess the feasibility of ultrafast brain magnetic resonance imaging (MRI) in pediatric patients.
Materials and Methods:
We retrospectively reviewed 194 pediatric patients aged 0 to 19 years (median 10.2 years) who underwent both ultrafast and conventional brain MRI between May 2019 and August 2020. Ultrafast MRI sequences included T1 and T2-weighted images (T1WI and T2WI), fluid-attenuated inversion recovery (FLAIR), T2*-weighted image (T2*WI), and diffusion-weighted image (DWI). Qualitative image quality and lesion evaluations were conducted on 5-point Likert scales by two blinded radiologists, with quantitative assessment of lesion count and size on T1WI, T2WI, and FLAIR sequences for each protocol. Wilcoxon signed-rank tests and intraclass correlation coefficient (ICC) analyses were used for comparison.
Results:
The total scan times for equivalent image contrasts were 1 minute 44 seconds for ultrafast MRI and 15 minutes 30 seconds for conventional MRI. Overall, image quality was lower in ultrafast MRI than in conventional MRI, with mean quality scores ranging from 2.0 to 4.8 for ultrafast MRI and 4.8 to 5.0 for conventional MRI across sequences (P < 0.001 for T1WI, T2WI, FLAIR, and T2*WI for both readers; P = 0.018 [reader 1] and 0.031 [reader 2] for DWI). Lesion detection rates on ultrafast MRI relative to conventional MRI were as follows: T1WI, 97.1%; T2WI, 99.6%; FLAIR, 92.9%; T2*WI, 74.1%; and DWI, 100%. The ICC (95% confidence interval) for lesion size measurements between ultrafast and conventional MRI was as follows: T1WI, 0.998 (0.996–0.999); T2WI, 0.998 (0.997–0.999); and FLAIR, 0.99 (0.985–0.994).
Conclusion
Ultrafast MRI significantly reduces scan time and provides acceptable results, albeit with slightly lower image quality than conventional MRI, for evaluating intracranial abnormalities in pediatric patients.
3.Ultrafast MRI for Pediatric Brain Assessment in Routine Clinical Practice
Hee Eun MOON ; Ji Young HA ; Jae Won CHOI ; Seung Hyun LEE ; Jae-Yeon HWANG ; Young Hun CHOI ; Jung-Eun CHEON ; Yeon Jin CHO
Korean Journal of Radiology 2025;26(1):75-87
Objective:
To assess the feasibility of ultrafast brain magnetic resonance imaging (MRI) in pediatric patients.
Materials and Methods:
We retrospectively reviewed 194 pediatric patients aged 0 to 19 years (median 10.2 years) who underwent both ultrafast and conventional brain MRI between May 2019 and August 2020. Ultrafast MRI sequences included T1 and T2-weighted images (T1WI and T2WI), fluid-attenuated inversion recovery (FLAIR), T2*-weighted image (T2*WI), and diffusion-weighted image (DWI). Qualitative image quality and lesion evaluations were conducted on 5-point Likert scales by two blinded radiologists, with quantitative assessment of lesion count and size on T1WI, T2WI, and FLAIR sequences for each protocol. Wilcoxon signed-rank tests and intraclass correlation coefficient (ICC) analyses were used for comparison.
Results:
The total scan times for equivalent image contrasts were 1 minute 44 seconds for ultrafast MRI and 15 minutes 30 seconds for conventional MRI. Overall, image quality was lower in ultrafast MRI than in conventional MRI, with mean quality scores ranging from 2.0 to 4.8 for ultrafast MRI and 4.8 to 5.0 for conventional MRI across sequences (P < 0.001 for T1WI, T2WI, FLAIR, and T2*WI for both readers; P = 0.018 [reader 1] and 0.031 [reader 2] for DWI). Lesion detection rates on ultrafast MRI relative to conventional MRI were as follows: T1WI, 97.1%; T2WI, 99.6%; FLAIR, 92.9%; T2*WI, 74.1%; and DWI, 100%. The ICC (95% confidence interval) for lesion size measurements between ultrafast and conventional MRI was as follows: T1WI, 0.998 (0.996–0.999); T2WI, 0.998 (0.997–0.999); and FLAIR, 0.99 (0.985–0.994).
Conclusion
Ultrafast MRI significantly reduces scan time and provides acceptable results, albeit with slightly lower image quality than conventional MRI, for evaluating intracranial abnormalities in pediatric patients.
4.Dementia Overdiagnosis in Younger, Higher Educated Individuals Based on MMSE Alone: Analysis Using Deep Learning Technology
Hye-Geum KIM ; Dai-Seg BAI ; Bon-Hoon KOO ; Eun-Jin CHEON ; Seokho YUN ; So Hye JO ; Byoungyoung GU
Journal of Korean Medical Science 2025;40(9):e20-
Background:
Dementia is a multifaceted disorder that affects cognitive function, necessitating accurate diagnosis for effective management and treatment. Although the Mini-Mental State Examination (MMSE) is widely used to assess cognitive impairment, its standalone efficacy is debated. This study examined the effectiveness of the MMSE alone versus in combination with other cognitive assessments in predicting dementia diagnosis, with the aim of refining the diagnostic accuracy for dementia.
Methods:
A total of 2,863 participants with subjective cognitive complaints who underwent comprehensive neuropsychological assessments were included. We developed two random forest models: one using only the MMSE and another incorporating additional cognitive tests.These models were evaluated based on their accuracy, precision, recall, F1-score, and area under the receiver operating characteristic curve (AUC) on a 70:30 training-to-testing split.
Results:
The MMSE-alone model predicted dementia with an accuracy of 86% and AUC of 0.872. The expanded model demonstrated increased accuracy (88%) and an AUC of 0.934.Notably, 17.46% of the cases were reclassified from dementia to non-dementia category upon including additional tests. Higher educational level and younger age were associated with these shifts.
Conclusion
The findings suggest that although the MMSE is a valuable screening tool, it should not be used in isolation to determine dementia severity. The addition of diverse cognitive assessments can significantly enhance diagnostic precision, particularly in younger and more educated populations. Future diagnostic protocols should integrate multifaceted cognitive evaluations to reflect the complexity of dementia accurately.
5.Dementia Overdiagnosis in Younger, Higher Educated Individuals Based on MMSE Alone: Analysis Using Deep Learning Technology
Hye-Geum KIM ; Dai-Seg BAI ; Bon-Hoon KOO ; Eun-Jin CHEON ; Seokho YUN ; So Hye JO ; Byoungyoung GU
Journal of Korean Medical Science 2025;40(9):e20-
Background:
Dementia is a multifaceted disorder that affects cognitive function, necessitating accurate diagnosis for effective management and treatment. Although the Mini-Mental State Examination (MMSE) is widely used to assess cognitive impairment, its standalone efficacy is debated. This study examined the effectiveness of the MMSE alone versus in combination with other cognitive assessments in predicting dementia diagnosis, with the aim of refining the diagnostic accuracy for dementia.
Methods:
A total of 2,863 participants with subjective cognitive complaints who underwent comprehensive neuropsychological assessments were included. We developed two random forest models: one using only the MMSE and another incorporating additional cognitive tests.These models were evaluated based on their accuracy, precision, recall, F1-score, and area under the receiver operating characteristic curve (AUC) on a 70:30 training-to-testing split.
Results:
The MMSE-alone model predicted dementia with an accuracy of 86% and AUC of 0.872. The expanded model demonstrated increased accuracy (88%) and an AUC of 0.934.Notably, 17.46% of the cases were reclassified from dementia to non-dementia category upon including additional tests. Higher educational level and younger age were associated with these shifts.
Conclusion
The findings suggest that although the MMSE is a valuable screening tool, it should not be used in isolation to determine dementia severity. The addition of diverse cognitive assessments can significantly enhance diagnostic precision, particularly in younger and more educated populations. Future diagnostic protocols should integrate multifaceted cognitive evaluations to reflect the complexity of dementia accurately.
6.Dementia Overdiagnosis in Younger, Higher Educated Individuals Based on MMSE Alone: Analysis Using Deep Learning Technology
Hye-Geum KIM ; Dai-Seg BAI ; Bon-Hoon KOO ; Eun-Jin CHEON ; Seokho YUN ; So Hye JO ; Byoungyoung GU
Journal of Korean Medical Science 2025;40(9):e20-
Background:
Dementia is a multifaceted disorder that affects cognitive function, necessitating accurate diagnosis for effective management and treatment. Although the Mini-Mental State Examination (MMSE) is widely used to assess cognitive impairment, its standalone efficacy is debated. This study examined the effectiveness of the MMSE alone versus in combination with other cognitive assessments in predicting dementia diagnosis, with the aim of refining the diagnostic accuracy for dementia.
Methods:
A total of 2,863 participants with subjective cognitive complaints who underwent comprehensive neuropsychological assessments were included. We developed two random forest models: one using only the MMSE and another incorporating additional cognitive tests.These models were evaluated based on their accuracy, precision, recall, F1-score, and area under the receiver operating characteristic curve (AUC) on a 70:30 training-to-testing split.
Results:
The MMSE-alone model predicted dementia with an accuracy of 86% and AUC of 0.872. The expanded model demonstrated increased accuracy (88%) and an AUC of 0.934.Notably, 17.46% of the cases were reclassified from dementia to non-dementia category upon including additional tests. Higher educational level and younger age were associated with these shifts.
Conclusion
The findings suggest that although the MMSE is a valuable screening tool, it should not be used in isolation to determine dementia severity. The addition of diverse cognitive assessments can significantly enhance diagnostic precision, particularly in younger and more educated populations. Future diagnostic protocols should integrate multifaceted cognitive evaluations to reflect the complexity of dementia accurately.
7.Ultrafast MRI for Pediatric Brain Assessment in Routine Clinical Practice
Hee Eun MOON ; Ji Young HA ; Jae Won CHOI ; Seung Hyun LEE ; Jae-Yeon HWANG ; Young Hun CHOI ; Jung-Eun CHEON ; Yeon Jin CHO
Korean Journal of Radiology 2025;26(1):75-87
Objective:
To assess the feasibility of ultrafast brain magnetic resonance imaging (MRI) in pediatric patients.
Materials and Methods:
We retrospectively reviewed 194 pediatric patients aged 0 to 19 years (median 10.2 years) who underwent both ultrafast and conventional brain MRI between May 2019 and August 2020. Ultrafast MRI sequences included T1 and T2-weighted images (T1WI and T2WI), fluid-attenuated inversion recovery (FLAIR), T2*-weighted image (T2*WI), and diffusion-weighted image (DWI). Qualitative image quality and lesion evaluations were conducted on 5-point Likert scales by two blinded radiologists, with quantitative assessment of lesion count and size on T1WI, T2WI, and FLAIR sequences for each protocol. Wilcoxon signed-rank tests and intraclass correlation coefficient (ICC) analyses were used for comparison.
Results:
The total scan times for equivalent image contrasts were 1 minute 44 seconds for ultrafast MRI and 15 minutes 30 seconds for conventional MRI. Overall, image quality was lower in ultrafast MRI than in conventional MRI, with mean quality scores ranging from 2.0 to 4.8 for ultrafast MRI and 4.8 to 5.0 for conventional MRI across sequences (P < 0.001 for T1WI, T2WI, FLAIR, and T2*WI for both readers; P = 0.018 [reader 1] and 0.031 [reader 2] for DWI). Lesion detection rates on ultrafast MRI relative to conventional MRI were as follows: T1WI, 97.1%; T2WI, 99.6%; FLAIR, 92.9%; T2*WI, 74.1%; and DWI, 100%. The ICC (95% confidence interval) for lesion size measurements between ultrafast and conventional MRI was as follows: T1WI, 0.998 (0.996–0.999); T2WI, 0.998 (0.997–0.999); and FLAIR, 0.99 (0.985–0.994).
Conclusion
Ultrafast MRI significantly reduces scan time and provides acceptable results, albeit with slightly lower image quality than conventional MRI, for evaluating intracranial abnormalities in pediatric patients.
8.Dementia Overdiagnosis in Younger, Higher Educated Individuals Based on MMSE Alone: Analysis Using Deep Learning Technology
Hye-Geum KIM ; Dai-Seg BAI ; Bon-Hoon KOO ; Eun-Jin CHEON ; Seokho YUN ; So Hye JO ; Byoungyoung GU
Journal of Korean Medical Science 2025;40(9):e20-
Background:
Dementia is a multifaceted disorder that affects cognitive function, necessitating accurate diagnosis for effective management and treatment. Although the Mini-Mental State Examination (MMSE) is widely used to assess cognitive impairment, its standalone efficacy is debated. This study examined the effectiveness of the MMSE alone versus in combination with other cognitive assessments in predicting dementia diagnosis, with the aim of refining the diagnostic accuracy for dementia.
Methods:
A total of 2,863 participants with subjective cognitive complaints who underwent comprehensive neuropsychological assessments were included. We developed two random forest models: one using only the MMSE and another incorporating additional cognitive tests.These models were evaluated based on their accuracy, precision, recall, F1-score, and area under the receiver operating characteristic curve (AUC) on a 70:30 training-to-testing split.
Results:
The MMSE-alone model predicted dementia with an accuracy of 86% and AUC of 0.872. The expanded model demonstrated increased accuracy (88%) and an AUC of 0.934.Notably, 17.46% of the cases were reclassified from dementia to non-dementia category upon including additional tests. Higher educational level and younger age were associated with these shifts.
Conclusion
The findings suggest that although the MMSE is a valuable screening tool, it should not be used in isolation to determine dementia severity. The addition of diverse cognitive assessments can significantly enhance diagnostic precision, particularly in younger and more educated populations. Future diagnostic protocols should integrate multifaceted cognitive evaluations to reflect the complexity of dementia accurately.
9.Ultrafast MRI for Pediatric Brain Assessment in Routine Clinical Practice
Hee Eun MOON ; Ji Young HA ; Jae Won CHOI ; Seung Hyun LEE ; Jae-Yeon HWANG ; Young Hun CHOI ; Jung-Eun CHEON ; Yeon Jin CHO
Korean Journal of Radiology 2025;26(1):75-87
Objective:
To assess the feasibility of ultrafast brain magnetic resonance imaging (MRI) in pediatric patients.
Materials and Methods:
We retrospectively reviewed 194 pediatric patients aged 0 to 19 years (median 10.2 years) who underwent both ultrafast and conventional brain MRI between May 2019 and August 2020. Ultrafast MRI sequences included T1 and T2-weighted images (T1WI and T2WI), fluid-attenuated inversion recovery (FLAIR), T2*-weighted image (T2*WI), and diffusion-weighted image (DWI). Qualitative image quality and lesion evaluations were conducted on 5-point Likert scales by two blinded radiologists, with quantitative assessment of lesion count and size on T1WI, T2WI, and FLAIR sequences for each protocol. Wilcoxon signed-rank tests and intraclass correlation coefficient (ICC) analyses were used for comparison.
Results:
The total scan times for equivalent image contrasts were 1 minute 44 seconds for ultrafast MRI and 15 minutes 30 seconds for conventional MRI. Overall, image quality was lower in ultrafast MRI than in conventional MRI, with mean quality scores ranging from 2.0 to 4.8 for ultrafast MRI and 4.8 to 5.0 for conventional MRI across sequences (P < 0.001 for T1WI, T2WI, FLAIR, and T2*WI for both readers; P = 0.018 [reader 1] and 0.031 [reader 2] for DWI). Lesion detection rates on ultrafast MRI relative to conventional MRI were as follows: T1WI, 97.1%; T2WI, 99.6%; FLAIR, 92.9%; T2*WI, 74.1%; and DWI, 100%. The ICC (95% confidence interval) for lesion size measurements between ultrafast and conventional MRI was as follows: T1WI, 0.998 (0.996–0.999); T2WI, 0.998 (0.997–0.999); and FLAIR, 0.99 (0.985–0.994).
Conclusion
Ultrafast MRI significantly reduces scan time and provides acceptable results, albeit with slightly lower image quality than conventional MRI, for evaluating intracranial abnormalities in pediatric patients.
10.Dry Eye Syndrome in Children during the COVID-19 Pandemic
Yun Kyeong HWANG ; Tae-Eun LEE ; In Cheon YOU ; Jong Seung KIM ; Cha Dong YEO ; Haeng-Jin LEE
Korean Journal of Ophthalmology 2024;38(6):441-449
Purpose:
The aim of this study was to investigate the occurrence of dry eye syndrome (DES) in children under 18 years old before and during the COVID-19 pandemic using nationwide population-based cohort analysis.
Methods:
This study utilized the database provided by the Korea Disease Control and Prevention Agency and the Korean National Health Insurance Service. We used claims-based data for patients diagnosed with COVID-19 between October 8, 2020, and December 31, 2021, and those without a diagnosis of COVID-19. DES cases were defined as having at least one diagnosis of H0411 or H1621 based on the International Classification of Diseases, 10th Revision codes. The primary outcome was the evaluation of the hazard ratio for DES between the COVID-19 season and the non–COVID-19 season.
Results:
A total of 198,486 individuals from the COVID-19 season cohort and 211,828 individuals from the non–COVID-19 season cohort were included in the study. There were no differences in characteristics between the COVID-19 season cohort and the non–COVID-19 season cohort (all standardized mean difference, <0.1). The cumulative incidence of DES during the COVID-19 season was significantly higher than that during the non–COVID-19 season. The COVID-19 season DES incidence rate was 6,419.64 per 100,000 person-years and non–COVID-19 season DES incidence rate was 5,804.88 per 100,000 person-years. In addition, children aged 13 to 18 years, female sex, those living in metropolitan areas, and those with diabetes mellitus had a higher risk of DES.
Conclusions
The prevalence of diagnosed DES in children increased during the COVID-19 pandemic compared to previous years. Children aged 13 to 18 years, female sex, those living in metropolitan areas, and those with diabetes mellitus had a higher risk of DES. Further studies are needed to directly analyze the potential factors associated with the increased prevalence of DES.

Result Analysis
Print
Save
E-mail