1.Ultrafast MRI for Pediatric Brain Assessment in Routine Clinical Practice
Hee Eun MOON ; Ji Young HA ; Jae Won CHOI ; Seung Hyun LEE ; Jae-Yeon HWANG ; Young Hun CHOI ; Jung-Eun CHEON ; Yeon Jin CHO
Korean Journal of Radiology 2025;26(1):75-87
Objective:
To assess the feasibility of ultrafast brain magnetic resonance imaging (MRI) in pediatric patients.
Materials and Methods:
We retrospectively reviewed 194 pediatric patients aged 0 to 19 years (median 10.2 years) who underwent both ultrafast and conventional brain MRI between May 2019 and August 2020. Ultrafast MRI sequences included T1 and T2-weighted images (T1WI and T2WI), fluid-attenuated inversion recovery (FLAIR), T2*-weighted image (T2*WI), and diffusion-weighted image (DWI). Qualitative image quality and lesion evaluations were conducted on 5-point Likert scales by two blinded radiologists, with quantitative assessment of lesion count and size on T1WI, T2WI, and FLAIR sequences for each protocol. Wilcoxon signed-rank tests and intraclass correlation coefficient (ICC) analyses were used for comparison.
Results:
The total scan times for equivalent image contrasts were 1 minute 44 seconds for ultrafast MRI and 15 minutes 30 seconds for conventional MRI. Overall, image quality was lower in ultrafast MRI than in conventional MRI, with mean quality scores ranging from 2.0 to 4.8 for ultrafast MRI and 4.8 to 5.0 for conventional MRI across sequences (P < 0.001 for T1WI, T2WI, FLAIR, and T2*WI for both readers; P = 0.018 [reader 1] and 0.031 [reader 2] for DWI). Lesion detection rates on ultrafast MRI relative to conventional MRI were as follows: T1WI, 97.1%; T2WI, 99.6%; FLAIR, 92.9%; T2*WI, 74.1%; and DWI, 100%. The ICC (95% confidence interval) for lesion size measurements between ultrafast and conventional MRI was as follows: T1WI, 0.998 (0.996–0.999); T2WI, 0.998 (0.997–0.999); and FLAIR, 0.99 (0.985–0.994).
Conclusion
Ultrafast MRI significantly reduces scan time and provides acceptable results, albeit with slightly lower image quality than conventional MRI, for evaluating intracranial abnormalities in pediatric patients.
2.Ultrafast MRI for Pediatric Brain Assessment in Routine Clinical Practice
Hee Eun MOON ; Ji Young HA ; Jae Won CHOI ; Seung Hyun LEE ; Jae-Yeon HWANG ; Young Hun CHOI ; Jung-Eun CHEON ; Yeon Jin CHO
Korean Journal of Radiology 2025;26(1):75-87
Objective:
To assess the feasibility of ultrafast brain magnetic resonance imaging (MRI) in pediatric patients.
Materials and Methods:
We retrospectively reviewed 194 pediatric patients aged 0 to 19 years (median 10.2 years) who underwent both ultrafast and conventional brain MRI between May 2019 and August 2020. Ultrafast MRI sequences included T1 and T2-weighted images (T1WI and T2WI), fluid-attenuated inversion recovery (FLAIR), T2*-weighted image (T2*WI), and diffusion-weighted image (DWI). Qualitative image quality and lesion evaluations were conducted on 5-point Likert scales by two blinded radiologists, with quantitative assessment of lesion count and size on T1WI, T2WI, and FLAIR sequences for each protocol. Wilcoxon signed-rank tests and intraclass correlation coefficient (ICC) analyses were used for comparison.
Results:
The total scan times for equivalent image contrasts were 1 minute 44 seconds for ultrafast MRI and 15 minutes 30 seconds for conventional MRI. Overall, image quality was lower in ultrafast MRI than in conventional MRI, with mean quality scores ranging from 2.0 to 4.8 for ultrafast MRI and 4.8 to 5.0 for conventional MRI across sequences (P < 0.001 for T1WI, T2WI, FLAIR, and T2*WI for both readers; P = 0.018 [reader 1] and 0.031 [reader 2] for DWI). Lesion detection rates on ultrafast MRI relative to conventional MRI were as follows: T1WI, 97.1%; T2WI, 99.6%; FLAIR, 92.9%; T2*WI, 74.1%; and DWI, 100%. The ICC (95% confidence interval) for lesion size measurements between ultrafast and conventional MRI was as follows: T1WI, 0.998 (0.996–0.999); T2WI, 0.998 (0.997–0.999); and FLAIR, 0.99 (0.985–0.994).
Conclusion
Ultrafast MRI significantly reduces scan time and provides acceptable results, albeit with slightly lower image quality than conventional MRI, for evaluating intracranial abnormalities in pediatric patients.
3.Ultrafast MRI for Pediatric Brain Assessment in Routine Clinical Practice
Hee Eun MOON ; Ji Young HA ; Jae Won CHOI ; Seung Hyun LEE ; Jae-Yeon HWANG ; Young Hun CHOI ; Jung-Eun CHEON ; Yeon Jin CHO
Korean Journal of Radiology 2025;26(1):75-87
Objective:
To assess the feasibility of ultrafast brain magnetic resonance imaging (MRI) in pediatric patients.
Materials and Methods:
We retrospectively reviewed 194 pediatric patients aged 0 to 19 years (median 10.2 years) who underwent both ultrafast and conventional brain MRI between May 2019 and August 2020. Ultrafast MRI sequences included T1 and T2-weighted images (T1WI and T2WI), fluid-attenuated inversion recovery (FLAIR), T2*-weighted image (T2*WI), and diffusion-weighted image (DWI). Qualitative image quality and lesion evaluations were conducted on 5-point Likert scales by two blinded radiologists, with quantitative assessment of lesion count and size on T1WI, T2WI, and FLAIR sequences for each protocol. Wilcoxon signed-rank tests and intraclass correlation coefficient (ICC) analyses were used for comparison.
Results:
The total scan times for equivalent image contrasts were 1 minute 44 seconds for ultrafast MRI and 15 minutes 30 seconds for conventional MRI. Overall, image quality was lower in ultrafast MRI than in conventional MRI, with mean quality scores ranging from 2.0 to 4.8 for ultrafast MRI and 4.8 to 5.0 for conventional MRI across sequences (P < 0.001 for T1WI, T2WI, FLAIR, and T2*WI for both readers; P = 0.018 [reader 1] and 0.031 [reader 2] for DWI). Lesion detection rates on ultrafast MRI relative to conventional MRI were as follows: T1WI, 97.1%; T2WI, 99.6%; FLAIR, 92.9%; T2*WI, 74.1%; and DWI, 100%. The ICC (95% confidence interval) for lesion size measurements between ultrafast and conventional MRI was as follows: T1WI, 0.998 (0.996–0.999); T2WI, 0.998 (0.997–0.999); and FLAIR, 0.99 (0.985–0.994).
Conclusion
Ultrafast MRI significantly reduces scan time and provides acceptable results, albeit with slightly lower image quality than conventional MRI, for evaluating intracranial abnormalities in pediatric patients.
4.Dementia Overdiagnosis in Younger, Higher Educated Individuals Based on MMSE Alone: Analysis Using Deep Learning Technology
Hye-Geum KIM ; Dai-Seg BAI ; Bon-Hoon KOO ; Eun-Jin CHEON ; Seokho YUN ; So Hye JO ; Byoungyoung GU
Journal of Korean Medical Science 2025;40(9):e20-
Background:
Dementia is a multifaceted disorder that affects cognitive function, necessitating accurate diagnosis for effective management and treatment. Although the Mini-Mental State Examination (MMSE) is widely used to assess cognitive impairment, its standalone efficacy is debated. This study examined the effectiveness of the MMSE alone versus in combination with other cognitive assessments in predicting dementia diagnosis, with the aim of refining the diagnostic accuracy for dementia.
Methods:
A total of 2,863 participants with subjective cognitive complaints who underwent comprehensive neuropsychological assessments were included. We developed two random forest models: one using only the MMSE and another incorporating additional cognitive tests.These models were evaluated based on their accuracy, precision, recall, F1-score, and area under the receiver operating characteristic curve (AUC) on a 70:30 training-to-testing split.
Results:
The MMSE-alone model predicted dementia with an accuracy of 86% and AUC of 0.872. The expanded model demonstrated increased accuracy (88%) and an AUC of 0.934.Notably, 17.46% of the cases were reclassified from dementia to non-dementia category upon including additional tests. Higher educational level and younger age were associated with these shifts.
Conclusion
The findings suggest that although the MMSE is a valuable screening tool, it should not be used in isolation to determine dementia severity. The addition of diverse cognitive assessments can significantly enhance diagnostic precision, particularly in younger and more educated populations. Future diagnostic protocols should integrate multifaceted cognitive evaluations to reflect the complexity of dementia accurately.
5.Dementia Overdiagnosis in Younger, Higher Educated Individuals Based on MMSE Alone: Analysis Using Deep Learning Technology
Hye-Geum KIM ; Dai-Seg BAI ; Bon-Hoon KOO ; Eun-Jin CHEON ; Seokho YUN ; So Hye JO ; Byoungyoung GU
Journal of Korean Medical Science 2025;40(9):e20-
Background:
Dementia is a multifaceted disorder that affects cognitive function, necessitating accurate diagnosis for effective management and treatment. Although the Mini-Mental State Examination (MMSE) is widely used to assess cognitive impairment, its standalone efficacy is debated. This study examined the effectiveness of the MMSE alone versus in combination with other cognitive assessments in predicting dementia diagnosis, with the aim of refining the diagnostic accuracy for dementia.
Methods:
A total of 2,863 participants with subjective cognitive complaints who underwent comprehensive neuropsychological assessments were included. We developed two random forest models: one using only the MMSE and another incorporating additional cognitive tests.These models were evaluated based on their accuracy, precision, recall, F1-score, and area under the receiver operating characteristic curve (AUC) on a 70:30 training-to-testing split.
Results:
The MMSE-alone model predicted dementia with an accuracy of 86% and AUC of 0.872. The expanded model demonstrated increased accuracy (88%) and an AUC of 0.934.Notably, 17.46% of the cases were reclassified from dementia to non-dementia category upon including additional tests. Higher educational level and younger age were associated with these shifts.
Conclusion
The findings suggest that although the MMSE is a valuable screening tool, it should not be used in isolation to determine dementia severity. The addition of diverse cognitive assessments can significantly enhance diagnostic precision, particularly in younger and more educated populations. Future diagnostic protocols should integrate multifaceted cognitive evaluations to reflect the complexity of dementia accurately.
6.Dementia Overdiagnosis in Younger, Higher Educated Individuals Based on MMSE Alone: Analysis Using Deep Learning Technology
Hye-Geum KIM ; Dai-Seg BAI ; Bon-Hoon KOO ; Eun-Jin CHEON ; Seokho YUN ; So Hye JO ; Byoungyoung GU
Journal of Korean Medical Science 2025;40(9):e20-
Background:
Dementia is a multifaceted disorder that affects cognitive function, necessitating accurate diagnosis for effective management and treatment. Although the Mini-Mental State Examination (MMSE) is widely used to assess cognitive impairment, its standalone efficacy is debated. This study examined the effectiveness of the MMSE alone versus in combination with other cognitive assessments in predicting dementia diagnosis, with the aim of refining the diagnostic accuracy for dementia.
Methods:
A total of 2,863 participants with subjective cognitive complaints who underwent comprehensive neuropsychological assessments were included. We developed two random forest models: one using only the MMSE and another incorporating additional cognitive tests.These models were evaluated based on their accuracy, precision, recall, F1-score, and area under the receiver operating characteristic curve (AUC) on a 70:30 training-to-testing split.
Results:
The MMSE-alone model predicted dementia with an accuracy of 86% and AUC of 0.872. The expanded model demonstrated increased accuracy (88%) and an AUC of 0.934.Notably, 17.46% of the cases were reclassified from dementia to non-dementia category upon including additional tests. Higher educational level and younger age were associated with these shifts.
Conclusion
The findings suggest that although the MMSE is a valuable screening tool, it should not be used in isolation to determine dementia severity. The addition of diverse cognitive assessments can significantly enhance diagnostic precision, particularly in younger and more educated populations. Future diagnostic protocols should integrate multifaceted cognitive evaluations to reflect the complexity of dementia accurately.
7.Ultrafast MRI for Pediatric Brain Assessment in Routine Clinical Practice
Hee Eun MOON ; Ji Young HA ; Jae Won CHOI ; Seung Hyun LEE ; Jae-Yeon HWANG ; Young Hun CHOI ; Jung-Eun CHEON ; Yeon Jin CHO
Korean Journal of Radiology 2025;26(1):75-87
Objective:
To assess the feasibility of ultrafast brain magnetic resonance imaging (MRI) in pediatric patients.
Materials and Methods:
We retrospectively reviewed 194 pediatric patients aged 0 to 19 years (median 10.2 years) who underwent both ultrafast and conventional brain MRI between May 2019 and August 2020. Ultrafast MRI sequences included T1 and T2-weighted images (T1WI and T2WI), fluid-attenuated inversion recovery (FLAIR), T2*-weighted image (T2*WI), and diffusion-weighted image (DWI). Qualitative image quality and lesion evaluations were conducted on 5-point Likert scales by two blinded radiologists, with quantitative assessment of lesion count and size on T1WI, T2WI, and FLAIR sequences for each protocol. Wilcoxon signed-rank tests and intraclass correlation coefficient (ICC) analyses were used for comparison.
Results:
The total scan times for equivalent image contrasts were 1 minute 44 seconds for ultrafast MRI and 15 minutes 30 seconds for conventional MRI. Overall, image quality was lower in ultrafast MRI than in conventional MRI, with mean quality scores ranging from 2.0 to 4.8 for ultrafast MRI and 4.8 to 5.0 for conventional MRI across sequences (P < 0.001 for T1WI, T2WI, FLAIR, and T2*WI for both readers; P = 0.018 [reader 1] and 0.031 [reader 2] for DWI). Lesion detection rates on ultrafast MRI relative to conventional MRI were as follows: T1WI, 97.1%; T2WI, 99.6%; FLAIR, 92.9%; T2*WI, 74.1%; and DWI, 100%. The ICC (95% confidence interval) for lesion size measurements between ultrafast and conventional MRI was as follows: T1WI, 0.998 (0.996–0.999); T2WI, 0.998 (0.997–0.999); and FLAIR, 0.99 (0.985–0.994).
Conclusion
Ultrafast MRI significantly reduces scan time and provides acceptable results, albeit with slightly lower image quality than conventional MRI, for evaluating intracranial abnormalities in pediatric patients.
8.Dementia Overdiagnosis in Younger, Higher Educated Individuals Based on MMSE Alone: Analysis Using Deep Learning Technology
Hye-Geum KIM ; Dai-Seg BAI ; Bon-Hoon KOO ; Eun-Jin CHEON ; Seokho YUN ; So Hye JO ; Byoungyoung GU
Journal of Korean Medical Science 2025;40(9):e20-
Background:
Dementia is a multifaceted disorder that affects cognitive function, necessitating accurate diagnosis for effective management and treatment. Although the Mini-Mental State Examination (MMSE) is widely used to assess cognitive impairment, its standalone efficacy is debated. This study examined the effectiveness of the MMSE alone versus in combination with other cognitive assessments in predicting dementia diagnosis, with the aim of refining the diagnostic accuracy for dementia.
Methods:
A total of 2,863 participants with subjective cognitive complaints who underwent comprehensive neuropsychological assessments were included. We developed two random forest models: one using only the MMSE and another incorporating additional cognitive tests.These models were evaluated based on their accuracy, precision, recall, F1-score, and area under the receiver operating characteristic curve (AUC) on a 70:30 training-to-testing split.
Results:
The MMSE-alone model predicted dementia with an accuracy of 86% and AUC of 0.872. The expanded model demonstrated increased accuracy (88%) and an AUC of 0.934.Notably, 17.46% of the cases were reclassified from dementia to non-dementia category upon including additional tests. Higher educational level and younger age were associated with these shifts.
Conclusion
The findings suggest that although the MMSE is a valuable screening tool, it should not be used in isolation to determine dementia severity. The addition of diverse cognitive assessments can significantly enhance diagnostic precision, particularly in younger and more educated populations. Future diagnostic protocols should integrate multifaceted cognitive evaluations to reflect the complexity of dementia accurately.
9.Ultrafast MRI for Pediatric Brain Assessment in Routine Clinical Practice
Hee Eun MOON ; Ji Young HA ; Jae Won CHOI ; Seung Hyun LEE ; Jae-Yeon HWANG ; Young Hun CHOI ; Jung-Eun CHEON ; Yeon Jin CHO
Korean Journal of Radiology 2025;26(1):75-87
Objective:
To assess the feasibility of ultrafast brain magnetic resonance imaging (MRI) in pediatric patients.
Materials and Methods:
We retrospectively reviewed 194 pediatric patients aged 0 to 19 years (median 10.2 years) who underwent both ultrafast and conventional brain MRI between May 2019 and August 2020. Ultrafast MRI sequences included T1 and T2-weighted images (T1WI and T2WI), fluid-attenuated inversion recovery (FLAIR), T2*-weighted image (T2*WI), and diffusion-weighted image (DWI). Qualitative image quality and lesion evaluations were conducted on 5-point Likert scales by two blinded radiologists, with quantitative assessment of lesion count and size on T1WI, T2WI, and FLAIR sequences for each protocol. Wilcoxon signed-rank tests and intraclass correlation coefficient (ICC) analyses were used for comparison.
Results:
The total scan times for equivalent image contrasts were 1 minute 44 seconds for ultrafast MRI and 15 minutes 30 seconds for conventional MRI. Overall, image quality was lower in ultrafast MRI than in conventional MRI, with mean quality scores ranging from 2.0 to 4.8 for ultrafast MRI and 4.8 to 5.0 for conventional MRI across sequences (P < 0.001 for T1WI, T2WI, FLAIR, and T2*WI for both readers; P = 0.018 [reader 1] and 0.031 [reader 2] for DWI). Lesion detection rates on ultrafast MRI relative to conventional MRI were as follows: T1WI, 97.1%; T2WI, 99.6%; FLAIR, 92.9%; T2*WI, 74.1%; and DWI, 100%. The ICC (95% confidence interval) for lesion size measurements between ultrafast and conventional MRI was as follows: T1WI, 0.998 (0.996–0.999); T2WI, 0.998 (0.997–0.999); and FLAIR, 0.99 (0.985–0.994).
Conclusion
Ultrafast MRI significantly reduces scan time and provides acceptable results, albeit with slightly lower image quality than conventional MRI, for evaluating intracranial abnormalities in pediatric patients.
10.Pediatric Hip Disorders
Seunghyun LEE ; Young Hun CHOI ; Jung-Eun CHEON ; Seul Bi LEE ; Yeon Jin CHO
Journal of the Korean Society of Radiology 2024;85(3):531-548
Developmental dysplasia of the hip is a condition characterized by hip joint instability due to acetabular dysplasia in infancy, necessitating precise ultrasound examination. LeggCalvé-Perthes disease is caused by a temporary disruption in blood flow to the femoral head during childhood, progressing through avascular, fragmentation, re-ossification, and residual stages. Slipped capital femoral epiphysis is a condition where the femoral head shifts medially along the epiphyseal line during adolescence due to stress, such as weight-bearing.Differentiating between transient hip synovitis and septic arthritis may require joint fluid aspiration. Osteomyelitis can be associated with soft tissue edema and osteolysis. When multiple lesions are present, it is essential to distinguish between Langerhans cell histiocytosis and metastatic neuroblastoma. This review will introduce imaging techniques and typical findings for these conditions.

Result Analysis
Print
Save
E-mail