1.Interpretation, Reporting, Imaging-Based Workups, and Surveillance of Incidentally Detected Gallbladder Polyps and Gallbladder Wall Thickening: 2025 Recommendations From the Korean Society of Abdominal Radiology
Won CHANG ; Sunyoung LEE ; Yeun-Yoon KIM ; Jin Young PARK ; Sun Kyung JEON ; Jeong Eun LEE ; Jeongin YOO ; Seungchul HAN ; So Hyun PARK ; Jae Hyun KIM ; Hyo Jung PARK ; Jeong Hee YOON
Korean Journal of Radiology 2025;26(2):102-134
Incidentally detected gallbladder polyps (GBPs) and gallbladder wall thickening (GBWT) are frequently encountered in clinical practice. However, characterizing GBPs and GBWT in asymptomatic patients can be challenging and may result in overtreatment, including unnecessary follow-ups or surgeries. The Korean Society of Abdominal Radiology (KSAR) Clinical Practice Guideline Committee has developed expert recommendations that focus on standardized imaging interpretation and follow-up strategies for both GBPs and GBWT, with support from the Korean Society of Radiology and KSAR. These guidelines, which address 24 key questions, aim to standardize the approach for the interpretation of imaging findings, reporting, imaging-based workups, and surveillance of incidentally detected GBPs and GBWT. This recommendation promotes evidence-based practice, facilitates communication between radiologists and referring physicians, and reduces unnecessary interventions.
2.Imaging Findings of Complications of New Anticancer Drugs
Ji Sung JANG ; Hyo Jung PARK ; Chong Hyun SUH ; Sang Eun WON ; Eun Seong LEE ; Nari KIM ; Do-Wan LEE ; Kyung Won KIM
Korean Journal of Radiology 2025;26(2):156-168
The anticancer drugs have evolved significantly, spanning molecular targeted therapeutics (MTTs), immune checkpoint inhibitors (ICIs), chimeric antigen receptor T-cell (CAR-T) therapy, and antibody-drug conjugates (ADCs). Complications associated with these drugs vary widely based on their mechanisms of action. MTTs that target angiogenesis can often lead to complications related to ischemia or endothelial damage across various organs, whereas non-anti-angiogenic MTTs present unique complications derived from their specific pharmacological actions. ICIs are predominantly associated with immunerelated adverse events, such as pneumonitis, colitis, hepatitis, thyroid disorders, hypophysitis, and sarcoid-like reactions. CAR-T therapy causes unique and severe complications including cytokine release syndrome and immune effector cell-associated neurotoxicity syndrome. ADCs tend to cause complications associated with cytotoxic payloads. A comprehensive understanding of these drug-specific toxicities, particularly using medical imaging, is essential for providing optimal patient care. Based on this knowledge, radiologists can play a pivotal role in multidisciplinary teams. Therefore, radiologists must stay up-to-date on the imaging characteristics of these complications and the mechanisms underlying novel anticancer drugs.
3.Radiofrequency Ablation for Recurrent Thyroid Cancers:2025 Korean Society of Thyroid Radiology Guideline
Eun Ju HA ; Min Kyoung LEE ; Jung Hwan BAEK ; Hyun Kyung LIM ; Hye Shin AHN ; Seon Mi BAEK ; Yoon Jung CHOI ; Sae Rom CHUNG ; Ji-hoon KIM ; Jae Ho SHIN ; Ji Ye LEE ; Min Ji HONG ; Hyun Jin KIM ; Leehi JOO ; Soo Yeon HAHN ; So Lyung JUNG ; Chang Yoon LEE ; Jeong Hyun LEE ; Young Hen LEE ; Jeong Seon PARK ; Jung Hee SHIN ; Jin Yong SUNG ; Miyoung CHOI ; Dong Gyu NA ;
Korean Journal of Radiology 2025;26(1):10-28
Radiofrequency ablation (RFA) is a minimally invasive treatment modality used as an alternative to surgery in patients with benign thyroid nodules, recurrent thyroid cancers (RTCs), and primary thyroid microcarcinomas. The Korean Society of Thyroid Radiology (KSThR) initially developed recommendations for the optimal use of RFA for thyroid tumors in 2009 and revised them in 2012 and 2017. As new meaningful evidence has accumulated since 2017 and in response to a growing global interest in the use of RFA for treating malignant thyroid lesions, the task force committee members of the KSThR decided to update the guidelines on the use of RFA for the management of RTCs based on a comprehensive analysis of current literature and expert consensus.
4.Performance of Digital Mammography-Based Artificial Intelligence Computer-Aided Diagnosis on Synthetic Mammography From Digital Breast Tomosynthesis
Kyung Eun LEE ; Sung Eun SONG ; Kyu Ran CHO ; Min Sun BAE ; Bo Kyoung SEO ; Soo-Yeon KIM ; Ok Hee WOO
Korean Journal of Radiology 2025;26(3):217-229
Objective:
To test the performance of an artificial intelligence-based computer-aided diagnosis (AI-CAD) designed for fullfield digital mammography (FFDM) when applied to synthetic mammography (SM).
Materials and Methods:
We analyzed 501 women (mean age, 57 ± 11 years) who underwent preoperative mammography and breast cancer surgery. This cohort consisted of 1002 breasts, comprising 517 with cancer and 485 without. All patients underwent digital breast tomosynthesis (DBT) and FFDM during the preoperative workup. The SM is routinely reconstructed using DBT. Commercial AI-CAD (Lunit Insight MMG, version 1.1.7.2) was retrospectively applied to SM and FFDM to calculate the abnormality scores for each breast. The median abnormality scores were compared for the 517 breasts with cancer using the Wilcoxon signed-rank test. Calibration curves of abnormality scores were evaluated. The discrimination performance was analyzed using the area under the receiver operating characteristic curve (AUC), sensitivity, and specificity using a 10% preset threshold. Sensitivity and specificity were further analyzed according to the mammographic and pathological characteristics.The results of SM and FFDM were compared.
Results:
AI-CAD demonstrated a significantly lower median abnormality score (71% vs. 96%, P < 0.001) and poorer calibration performance for SM than for FFDM. SM exhibited lower sensitivity (76.2% vs. 82.8%, P < 0.001), higher specificity (95.5% vs.91.8%, P < 0.001), and comparable AUC (0.86 vs. 0.87, P = 0.127) than FFDM. SM showed lower sensitivity than FFDM in asymptomatic breasts, dense breasts, ductal carcinoma in situ, T1, N0, and hormone receptor-positive/human epidermal growth factor receptor 2-negative cancers but showed higher specificity in non-cancerous dense breasts.
Conclusion
AI-CAD showed lower abnormality scores and reduced calibration performance for SM than for FFDM.Furthermore, the 10% preset threshold resulted in different discrimination performances for the SM. Given these limitations, off-label application of the current AI-CAD to SM should be avoided.
5.Frequently Asked Questions on Imaging in Chimeric Antigen Receptor T-Cell Therapy Clinical Trials
Sang Eun WON ; Eun Sung LEE ; Chong Hyun SUH ; Sinae KIM ; Hyo Jung PARK ; Kyung Won KIM ; Jeffrey P. GUENETTE
Korean Journal of Radiology 2025;26(5):471-484
Clinical trials for chimeric antigen receptor (CAR) T-cell therapy are in the early stages but are expected to progress alongside new treatment approaches. This suggests that imaging will play an important role in monitoring disease progression, treatment response, and treatment-related side effects. There are, however, challenges that remain unresolved, regarding imaging in CAR T-cell therapy. We herein discuss the role of imaging, focusing on how tumor response evaluation varies according to cancer type and target antigens in CAR T-cell therapy. CAR T-cell therapy often produces rapid and significant responses, and imaging is vital for identifying side effects such as cytokine release syndrome and neurotoxicity. Radiologists should be aware of drug mechanisms, response assessments, and associated toxicities to effectively support these therapies. Additionally, this article highlights the importance of the Lugano criteria, which is essential for standardized assessment of treatment response, particularly in lymphoma therapies, and also explores other factors influencing imaging-based evaluation, including emerging methodologies and their potential to improve the accuracy and consistency of response assessments.
6.Interpretation, Reporting, Imaging-Based Workups, and Surveillance of Incidentally Detected Gallbladder Polyps and Gallbladder Wall Thickening: 2025 Recommendations From the Korean Society of Abdominal Radiology
Won CHANG ; Sunyoung LEE ; Yeun-Yoon KIM ; Jin Young PARK ; Sun Kyung JEON ; Jeong Eun LEE ; Jeongin YOO ; Seungchul HAN ; So Hyun PARK ; Jae Hyun KIM ; Hyo Jung PARK ; Jeong Hee YOON
Korean Journal of Radiology 2025;26(2):102-134
Incidentally detected gallbladder polyps (GBPs) and gallbladder wall thickening (GBWT) are frequently encountered in clinical practice. However, characterizing GBPs and GBWT in asymptomatic patients can be challenging and may result in overtreatment, including unnecessary follow-ups or surgeries. The Korean Society of Abdominal Radiology (KSAR) Clinical Practice Guideline Committee has developed expert recommendations that focus on standardized imaging interpretation and follow-up strategies for both GBPs and GBWT, with support from the Korean Society of Radiology and KSAR. These guidelines, which address 24 key questions, aim to standardize the approach for the interpretation of imaging findings, reporting, imaging-based workups, and surveillance of incidentally detected GBPs and GBWT. This recommendation promotes evidence-based practice, facilitates communication between radiologists and referring physicians, and reduces unnecessary interventions.
7.Imaging Findings of Complications of New Anticancer Drugs
Ji Sung JANG ; Hyo Jung PARK ; Chong Hyun SUH ; Sang Eun WON ; Eun Seong LEE ; Nari KIM ; Do-Wan LEE ; Kyung Won KIM
Korean Journal of Radiology 2025;26(2):156-168
The anticancer drugs have evolved significantly, spanning molecular targeted therapeutics (MTTs), immune checkpoint inhibitors (ICIs), chimeric antigen receptor T-cell (CAR-T) therapy, and antibody-drug conjugates (ADCs). Complications associated with these drugs vary widely based on their mechanisms of action. MTTs that target angiogenesis can often lead to complications related to ischemia or endothelial damage across various organs, whereas non-anti-angiogenic MTTs present unique complications derived from their specific pharmacological actions. ICIs are predominantly associated with immunerelated adverse events, such as pneumonitis, colitis, hepatitis, thyroid disorders, hypophysitis, and sarcoid-like reactions. CAR-T therapy causes unique and severe complications including cytokine release syndrome and immune effector cell-associated neurotoxicity syndrome. ADCs tend to cause complications associated with cytotoxic payloads. A comprehensive understanding of these drug-specific toxicities, particularly using medical imaging, is essential for providing optimal patient care. Based on this knowledge, radiologists can play a pivotal role in multidisciplinary teams. Therefore, radiologists must stay up-to-date on the imaging characteristics of these complications and the mechanisms underlying novel anticancer drugs.
8.Radiofrequency Ablation for Recurrent Thyroid Cancers:2025 Korean Society of Thyroid Radiology Guideline
Eun Ju HA ; Min Kyoung LEE ; Jung Hwan BAEK ; Hyun Kyung LIM ; Hye Shin AHN ; Seon Mi BAEK ; Yoon Jung CHOI ; Sae Rom CHUNG ; Ji-hoon KIM ; Jae Ho SHIN ; Ji Ye LEE ; Min Ji HONG ; Hyun Jin KIM ; Leehi JOO ; Soo Yeon HAHN ; So Lyung JUNG ; Chang Yoon LEE ; Jeong Hyun LEE ; Young Hen LEE ; Jeong Seon PARK ; Jung Hee SHIN ; Jin Yong SUNG ; Miyoung CHOI ; Dong Gyu NA ;
Korean Journal of Radiology 2025;26(1):10-28
Radiofrequency ablation (RFA) is a minimally invasive treatment modality used as an alternative to surgery in patients with benign thyroid nodules, recurrent thyroid cancers (RTCs), and primary thyroid microcarcinomas. The Korean Society of Thyroid Radiology (KSThR) initially developed recommendations for the optimal use of RFA for thyroid tumors in 2009 and revised them in 2012 and 2017. As new meaningful evidence has accumulated since 2017 and in response to a growing global interest in the use of RFA for treating malignant thyroid lesions, the task force committee members of the KSThR decided to update the guidelines on the use of RFA for the management of RTCs based on a comprehensive analysis of current literature and expert consensus.
9.Performance of Digital Mammography-Based Artificial Intelligence Computer-Aided Diagnosis on Synthetic Mammography From Digital Breast Tomosynthesis
Kyung Eun LEE ; Sung Eun SONG ; Kyu Ran CHO ; Min Sun BAE ; Bo Kyoung SEO ; Soo-Yeon KIM ; Ok Hee WOO
Korean Journal of Radiology 2025;26(3):217-229
Objective:
To test the performance of an artificial intelligence-based computer-aided diagnosis (AI-CAD) designed for fullfield digital mammography (FFDM) when applied to synthetic mammography (SM).
Materials and Methods:
We analyzed 501 women (mean age, 57 ± 11 years) who underwent preoperative mammography and breast cancer surgery. This cohort consisted of 1002 breasts, comprising 517 with cancer and 485 without. All patients underwent digital breast tomosynthesis (DBT) and FFDM during the preoperative workup. The SM is routinely reconstructed using DBT. Commercial AI-CAD (Lunit Insight MMG, version 1.1.7.2) was retrospectively applied to SM and FFDM to calculate the abnormality scores for each breast. The median abnormality scores were compared for the 517 breasts with cancer using the Wilcoxon signed-rank test. Calibration curves of abnormality scores were evaluated. The discrimination performance was analyzed using the area under the receiver operating characteristic curve (AUC), sensitivity, and specificity using a 10% preset threshold. Sensitivity and specificity were further analyzed according to the mammographic and pathological characteristics.The results of SM and FFDM were compared.
Results:
AI-CAD demonstrated a significantly lower median abnormality score (71% vs. 96%, P < 0.001) and poorer calibration performance for SM than for FFDM. SM exhibited lower sensitivity (76.2% vs. 82.8%, P < 0.001), higher specificity (95.5% vs.91.8%, P < 0.001), and comparable AUC (0.86 vs. 0.87, P = 0.127) than FFDM. SM showed lower sensitivity than FFDM in asymptomatic breasts, dense breasts, ductal carcinoma in situ, T1, N0, and hormone receptor-positive/human epidermal growth factor receptor 2-negative cancers but showed higher specificity in non-cancerous dense breasts.
Conclusion
AI-CAD showed lower abnormality scores and reduced calibration performance for SM than for FFDM.Furthermore, the 10% preset threshold resulted in different discrimination performances for the SM. Given these limitations, off-label application of the current AI-CAD to SM should be avoided.
10.Frequently Asked Questions on Imaging in Chimeric Antigen Receptor T-Cell Therapy Clinical Trials
Sang Eun WON ; Eun Sung LEE ; Chong Hyun SUH ; Sinae KIM ; Hyo Jung PARK ; Kyung Won KIM ; Jeffrey P. GUENETTE
Korean Journal of Radiology 2025;26(5):471-484
Clinical trials for chimeric antigen receptor (CAR) T-cell therapy are in the early stages but are expected to progress alongside new treatment approaches. This suggests that imaging will play an important role in monitoring disease progression, treatment response, and treatment-related side effects. There are, however, challenges that remain unresolved, regarding imaging in CAR T-cell therapy. We herein discuss the role of imaging, focusing on how tumor response evaluation varies according to cancer type and target antigens in CAR T-cell therapy. CAR T-cell therapy often produces rapid and significant responses, and imaging is vital for identifying side effects such as cytokine release syndrome and neurotoxicity. Radiologists should be aware of drug mechanisms, response assessments, and associated toxicities to effectively support these therapies. Additionally, this article highlights the importance of the Lugano criteria, which is essential for standardized assessment of treatment response, particularly in lymphoma therapies, and also explores other factors influencing imaging-based evaluation, including emerging methodologies and their potential to improve the accuracy and consistency of response assessments.

Result Analysis
Print
Save
E-mail