1.Biennial Mammography Performance in the Korean National Cancer Screening Program From 2009 to 2020
Dong Jun KIM ; Nan-He YOON ; Jae Kwan JUN ; Mina SUH ; Sunhwa LEE ; Seongju KIM ; Horim A. HWANG ; Seung Eun JUNG ; Hooyeon LEE
Korean Journal of Radiology 2025;26(4):313-323
Objective:
Mammography is essential for reducing breast cancer mortality; however, its performance varies globally. This study aimed to evaluate mammography screening outcomes in Korea over 12 years and investigate regional variations.
Materials and Methods:
We analyzed mammography data from 42 million Korean women, aged 40 years and older, who participated in the Korean National Cancer Screening Program (KNCSP) from 2009 to 2020. Performance metrics—including recall rate (RR), positive predictive value (PPV), sensitivity, specificity, false positive rate (FPR), cancer detection rate (CDR), interval cancer rate (ICR), and dense breast rate (DBR), were computed. Twelve-year trends in these metrics were analyzed using Joinpoint regression. Regional variations were also examined across Korea’s 237 districts, stratified by age groups.
Results:
From 2009 to 2020, 42165405 mammography screenings were conducted through the KNCSP, increasing from 2821132 screenings in 2009 to 3596204 in 2020. The RR decreased from 17.2% in 2009 to 11.2% in 2020 (average annual percent change [AAPC] = -3.7%), while the PPV increased from 0.8% to 2.8%; AAPC = 10.7%), the CDR increased from 1.5 to 3.1 per 1000; AAPC = 7.3%), and the ICR rose from 0.9 to 1.6 per 1000; (AAPC = 5.2%). Regional variations were noted; however, differences in the RR, sensitivity, specificity, and FPR decreased over time.
Conclusion
While mammography performance improved from 2009 to 2020, the PPV and sensitivity remain suboptimal, underscoring the need for continuous monitoring. Regional disparities in performance, although reduced, persist. These findings provide essential baseline data for improving mammography quality and addressing inequities in breast cancer screening.
2.Establishment of Local Diagnostic Reference Levels for Pediatric Neck CT at Nine University Hospitals in South Korea
Jisun HWANG ; Hee Mang YOON ; Jae-Yeon HWANG ; Young Hun CHOI ; Yun Young LEE ; So Mi LEE ; Young Jin RYU ; Sun Kyoung YOU ; Ji Eun PARK ; Seok Kee LEE
Korean Journal of Radiology 2025;26(1):65-74
Objective:
To establish local diagnostic reference levels (DRLs) for pediatric neck CT based on age, weight, and water-equivalent diameter (WED) across multiple university hospitals in South Korea.
Materials and Methods:
This retrospective study analyzed pediatric neck CT examinations from nine university hospitals, involving patients aged 0–18 years. Data were categorized by age, weight, and WED, and radiation dose metrics, including volume CT dose index (CTDIvol) and dose length product, were recorded. Data retrieval and analysis were conducted using a commercially available dose-management system (Radimetrics, Bayer Healthcare). Local DRLs were established following the International Commission on Radiological Protection guidelines, using the 75th percentile as the reference value.
Results:
A total of 1159 CT examinations were analyzed, including 169 scans from Institution 1, 132 from Institution 2, 126 from Institution 3, 129 from Institution 4, 128 from Institution 5, 105 from Institution 6, 162 from Institution 7, 127 from Institution 8, and 81 from Institution 9. Radiation dose metrics increased with age, weight, and WED, showing significant variability both within and across institutions. For patients weighing less than 10 kg, the DRL for CTDIvol was 5.2 mGy. In the 10–19 kg group, the DRL was 5.8 mGy; in the 20–39 kg group, 7.6 mGy; in the 40–59 kg group, 11.0 mGy; and for patients weighing 60 kg or more, 16.2 mGy. DRLs for CTDIvol by age groups were as follows: 5.3 mGy for infants under 1 year, 5.7 mGy for children aged 1–4 years, 7.6 mGy for ages 5–9 years, 11.2 mGy for ages 10–14 years, and 15.6 mGy for patients 15 years or older.
Conclusion
Local DRLs for pediatric neck CT were established based on age, weight, and WED across nine university hospitals in South Korea.
3.Ultrafast MRI for Pediatric Brain Assessment in Routine Clinical Practice
Hee Eun MOON ; Ji Young HA ; Jae Won CHOI ; Seung Hyun LEE ; Jae-Yeon HWANG ; Young Hun CHOI ; Jung-Eun CHEON ; Yeon Jin CHO
Korean Journal of Radiology 2025;26(1):75-87
Objective:
To assess the feasibility of ultrafast brain magnetic resonance imaging (MRI) in pediatric patients.
Materials and Methods:
We retrospectively reviewed 194 pediatric patients aged 0 to 19 years (median 10.2 years) who underwent both ultrafast and conventional brain MRI between May 2019 and August 2020. Ultrafast MRI sequences included T1 and T2-weighted images (T1WI and T2WI), fluid-attenuated inversion recovery (FLAIR), T2*-weighted image (T2*WI), and diffusion-weighted image (DWI). Qualitative image quality and lesion evaluations were conducted on 5-point Likert scales by two blinded radiologists, with quantitative assessment of lesion count and size on T1WI, T2WI, and FLAIR sequences for each protocol. Wilcoxon signed-rank tests and intraclass correlation coefficient (ICC) analyses were used for comparison.
Results:
The total scan times for equivalent image contrasts were 1 minute 44 seconds for ultrafast MRI and 15 minutes 30 seconds for conventional MRI. Overall, image quality was lower in ultrafast MRI than in conventional MRI, with mean quality scores ranging from 2.0 to 4.8 for ultrafast MRI and 4.8 to 5.0 for conventional MRI across sequences (P < 0.001 for T1WI, T2WI, FLAIR, and T2*WI for both readers; P = 0.018 [reader 1] and 0.031 [reader 2] for DWI). Lesion detection rates on ultrafast MRI relative to conventional MRI were as follows: T1WI, 97.1%; T2WI, 99.6%; FLAIR, 92.9%; T2*WI, 74.1%; and DWI, 100%. The ICC (95% confidence interval) for lesion size measurements between ultrafast and conventional MRI was as follows: T1WI, 0.998 (0.996–0.999); T2WI, 0.998 (0.997–0.999); and FLAIR, 0.99 (0.985–0.994).
Conclusion
Ultrafast MRI significantly reduces scan time and provides acceptable results, albeit with slightly lower image quality than conventional MRI, for evaluating intracranial abnormalities in pediatric patients.
4.Far-Lateral Transforaminal Unilateral Biportal Endoscopic Lumbar Discectomy for Upper Lumbar Disc Herniations
Jin Seop HWANG ; Sang Hyub LEE ; Dain JEONG ; Jae-Won JANG ; Yong Eun CHO ; Dong-Geun LEE ; Choon Keun PARK ; Chung Kee CHOUGH
Neurospine 2025;22(1):14-27
Objective:
The upper lumbar region has distinctive anatomical characteristics that contribute to the challenges of performing discectomy. We introduce far-lateral transforaminal unilateral biportal endoscopic (UBE) lumbar discectomy for central or paracentral disc herniations in the upper lumbar region.
Methods:
We conducted retrospective review of the patients who underwent a far-lateral transforaminal UBE lumbar discectomy at our institution from January 2018 to September 2024. The electronic medical records, operative records, and radiologic images of the patients were reviewed.
Results:
A total of 27 patients underwent far-lateral transforaminal UBE lumbar discectomy for central or paracentral disc herniations in the upper lumbar region. The patient had a mean age of 54.0 ± 13.7 years. Operation was performed at the L1–2 level in 3 patients (11.1%), L2–3 in 9 patients (33.3%), and L3–4 in 15 patients (55.6%). The patients were followed-up for a mean of 27.7 ± 19.3 months. The Oswestry Disability Index was significantly decreased from 36.3 ± 6.8 preoperatively to 3.7 ± 3.3 at last follow-up (p < 0.001). The visual analogue scale (VAS) back was significantly decreased from 7.8 ± 0.9 preoperatively to 3.1 ± 0.6 postoperative day 2 (p < 0.001). The VAS leg was significantly decreased from 8.1 ± 0.8 preoperatively to 2.3 ± 0.7 postoperative day 2 (p < 0.001).
Conclusion
The far-lateral transforaminal UBE lumbar discectomy would be a viable surgical option for upper lumbar disc herniations.
5.Predisposing Risk Factors Affecting Reversibility of Left Ventricular Diastolic Filling Pattern in Patients with Preserved Ejection Fraction
Dong-Gil KIM ; Sungsoo CHO ; Seongjin PARK ; Gi Rim KIM ; Kyu-Yong KO ; Sung Eun KIM ; Ji-won HWANG ; Joon-Hyung DOH ; Sung Uk KWON ; Jae-Jin KWAK ; June NAMGUNG ; Sung Woo CHO
Yonsei Medical Journal 2025;66(1):1-8
Purpose:
Improvement of left ventricular (LV) diastolic dysfunction (DD) is known to be a good prognostic factor in patients with heart failure with reduced ejection fraction (EF). In the present study, we investigated the predisposing risk factors affecting the reversibility of LV diastolic filling pattern (DFP) in patients with preserved EF.
Materials and Methods:
A total of 600 patients with pseudonormal LVDFP and preserved EF who underwent follow-up echocardiography were enrolled between 2011 and 2020. We compared their index and follow-up echocardiography findings and determined the predisposing risk factor affecting the reversibility of LVDFP.
Results:
Comparing the index and follow-up echocardiography findings showed that 379 (63%) patients had improved to normal or impaired relaxation LVDFP (improved group) and 221 (37%) patients had maintained or worsened LVDFP (unimproved group).The incidence of paroxysmal atrial fibrillation (PAF) was significantly higher in the unimproved group than in the improved group (4.7% vs. 9.5%, p=0.026). After adjustment for relevant clinical risk factors of diastolic dysfunction, PAF was determined to be an independent predisposing risk factor for the unimproved LVDFP (odds ratio: 2.10, 95% confidence interval: 1.06–4.15, p=0.033).Among the parameters of diastolic dysfunction in follow-up echocardiography, the left atrial volume index, mean E/A ratio, and E/e' were significantly improved in patients without PAF but remained in patients with PAF.
Conclusion
We identified that PAF was an independent predisposing risk factor of the unimproved LVDFP in patients with pseudonormal LVDFP and preserved EF. Therefore, early detection and management of PAF might be required in patients with LVDD and preserved EF to prevent adverse cardiovascular events.
6.Biennial Mammography Performance in the Korean National Cancer Screening Program From 2009 to 2020
Dong Jun KIM ; Nan-He YOON ; Jae Kwan JUN ; Mina SUH ; Sunhwa LEE ; Seongju KIM ; Horim A. HWANG ; Seung Eun JUNG ; Hooyeon LEE
Korean Journal of Radiology 2025;26(4):313-323
Objective:
Mammography is essential for reducing breast cancer mortality; however, its performance varies globally. This study aimed to evaluate mammography screening outcomes in Korea over 12 years and investigate regional variations.
Materials and Methods:
We analyzed mammography data from 42 million Korean women, aged 40 years and older, who participated in the Korean National Cancer Screening Program (KNCSP) from 2009 to 2020. Performance metrics—including recall rate (RR), positive predictive value (PPV), sensitivity, specificity, false positive rate (FPR), cancer detection rate (CDR), interval cancer rate (ICR), and dense breast rate (DBR), were computed. Twelve-year trends in these metrics were analyzed using Joinpoint regression. Regional variations were also examined across Korea’s 237 districts, stratified by age groups.
Results:
From 2009 to 2020, 42165405 mammography screenings were conducted through the KNCSP, increasing from 2821132 screenings in 2009 to 3596204 in 2020. The RR decreased from 17.2% in 2009 to 11.2% in 2020 (average annual percent change [AAPC] = -3.7%), while the PPV increased from 0.8% to 2.8%; AAPC = 10.7%), the CDR increased from 1.5 to 3.1 per 1000; AAPC = 7.3%), and the ICR rose from 0.9 to 1.6 per 1000; (AAPC = 5.2%). Regional variations were noted; however, differences in the RR, sensitivity, specificity, and FPR decreased over time.
Conclusion
While mammography performance improved from 2009 to 2020, the PPV and sensitivity remain suboptimal, underscoring the need for continuous monitoring. Regional disparities in performance, although reduced, persist. These findings provide essential baseline data for improving mammography quality and addressing inequities in breast cancer screening.
7.Establishment of Local Diagnostic Reference Levels for Pediatric Neck CT at Nine University Hospitals in South Korea
Jisun HWANG ; Hee Mang YOON ; Jae-Yeon HWANG ; Young Hun CHOI ; Yun Young LEE ; So Mi LEE ; Young Jin RYU ; Sun Kyoung YOU ; Ji Eun PARK ; Seok Kee LEE
Korean Journal of Radiology 2025;26(1):65-74
Objective:
To establish local diagnostic reference levels (DRLs) for pediatric neck CT based on age, weight, and water-equivalent diameter (WED) across multiple university hospitals in South Korea.
Materials and Methods:
This retrospective study analyzed pediatric neck CT examinations from nine university hospitals, involving patients aged 0–18 years. Data were categorized by age, weight, and WED, and radiation dose metrics, including volume CT dose index (CTDIvol) and dose length product, were recorded. Data retrieval and analysis were conducted using a commercially available dose-management system (Radimetrics, Bayer Healthcare). Local DRLs were established following the International Commission on Radiological Protection guidelines, using the 75th percentile as the reference value.
Results:
A total of 1159 CT examinations were analyzed, including 169 scans from Institution 1, 132 from Institution 2, 126 from Institution 3, 129 from Institution 4, 128 from Institution 5, 105 from Institution 6, 162 from Institution 7, 127 from Institution 8, and 81 from Institution 9. Radiation dose metrics increased with age, weight, and WED, showing significant variability both within and across institutions. For patients weighing less than 10 kg, the DRL for CTDIvol was 5.2 mGy. In the 10–19 kg group, the DRL was 5.8 mGy; in the 20–39 kg group, 7.6 mGy; in the 40–59 kg group, 11.0 mGy; and for patients weighing 60 kg or more, 16.2 mGy. DRLs for CTDIvol by age groups were as follows: 5.3 mGy for infants under 1 year, 5.7 mGy for children aged 1–4 years, 7.6 mGy for ages 5–9 years, 11.2 mGy for ages 10–14 years, and 15.6 mGy for patients 15 years or older.
Conclusion
Local DRLs for pediatric neck CT were established based on age, weight, and WED across nine university hospitals in South Korea.
8.Ultrafast MRI for Pediatric Brain Assessment in Routine Clinical Practice
Hee Eun MOON ; Ji Young HA ; Jae Won CHOI ; Seung Hyun LEE ; Jae-Yeon HWANG ; Young Hun CHOI ; Jung-Eun CHEON ; Yeon Jin CHO
Korean Journal of Radiology 2025;26(1):75-87
Objective:
To assess the feasibility of ultrafast brain magnetic resonance imaging (MRI) in pediatric patients.
Materials and Methods:
We retrospectively reviewed 194 pediatric patients aged 0 to 19 years (median 10.2 years) who underwent both ultrafast and conventional brain MRI between May 2019 and August 2020. Ultrafast MRI sequences included T1 and T2-weighted images (T1WI and T2WI), fluid-attenuated inversion recovery (FLAIR), T2*-weighted image (T2*WI), and diffusion-weighted image (DWI). Qualitative image quality and lesion evaluations were conducted on 5-point Likert scales by two blinded radiologists, with quantitative assessment of lesion count and size on T1WI, T2WI, and FLAIR sequences for each protocol. Wilcoxon signed-rank tests and intraclass correlation coefficient (ICC) analyses were used for comparison.
Results:
The total scan times for equivalent image contrasts were 1 minute 44 seconds for ultrafast MRI and 15 minutes 30 seconds for conventional MRI. Overall, image quality was lower in ultrafast MRI than in conventional MRI, with mean quality scores ranging from 2.0 to 4.8 for ultrafast MRI and 4.8 to 5.0 for conventional MRI across sequences (P < 0.001 for T1WI, T2WI, FLAIR, and T2*WI for both readers; P = 0.018 [reader 1] and 0.031 [reader 2] for DWI). Lesion detection rates on ultrafast MRI relative to conventional MRI were as follows: T1WI, 97.1%; T2WI, 99.6%; FLAIR, 92.9%; T2*WI, 74.1%; and DWI, 100%. The ICC (95% confidence interval) for lesion size measurements between ultrafast and conventional MRI was as follows: T1WI, 0.998 (0.996–0.999); T2WI, 0.998 (0.997–0.999); and FLAIR, 0.99 (0.985–0.994).
Conclusion
Ultrafast MRI significantly reduces scan time and provides acceptable results, albeit with slightly lower image quality than conventional MRI, for evaluating intracranial abnormalities in pediatric patients.
9.Far-Lateral Transforaminal Unilateral Biportal Endoscopic Lumbar Discectomy for Upper Lumbar Disc Herniations
Jin Seop HWANG ; Sang Hyub LEE ; Dain JEONG ; Jae-Won JANG ; Yong Eun CHO ; Dong-Geun LEE ; Choon Keun PARK ; Chung Kee CHOUGH
Neurospine 2025;22(1):14-27
Objective:
The upper lumbar region has distinctive anatomical characteristics that contribute to the challenges of performing discectomy. We introduce far-lateral transforaminal unilateral biportal endoscopic (UBE) lumbar discectomy for central or paracentral disc herniations in the upper lumbar region.
Methods:
We conducted retrospective review of the patients who underwent a far-lateral transforaminal UBE lumbar discectomy at our institution from January 2018 to September 2024. The electronic medical records, operative records, and radiologic images of the patients were reviewed.
Results:
A total of 27 patients underwent far-lateral transforaminal UBE lumbar discectomy for central or paracentral disc herniations in the upper lumbar region. The patient had a mean age of 54.0 ± 13.7 years. Operation was performed at the L1–2 level in 3 patients (11.1%), L2–3 in 9 patients (33.3%), and L3–4 in 15 patients (55.6%). The patients were followed-up for a mean of 27.7 ± 19.3 months. The Oswestry Disability Index was significantly decreased from 36.3 ± 6.8 preoperatively to 3.7 ± 3.3 at last follow-up (p < 0.001). The visual analogue scale (VAS) back was significantly decreased from 7.8 ± 0.9 preoperatively to 3.1 ± 0.6 postoperative day 2 (p < 0.001). The VAS leg was significantly decreased from 8.1 ± 0.8 preoperatively to 2.3 ± 0.7 postoperative day 2 (p < 0.001).
Conclusion
The far-lateral transforaminal UBE lumbar discectomy would be a viable surgical option for upper lumbar disc herniations.
10.Erratum: Induction of apoptotic cell death in human bladder cancer cells by ethanol extract of Zanthoxylum schinifolium leaf, through ROSdependent inactivation of the PI3K/ Akt signaling pathway
Cheol PARK ; Eun Ok CHOI ; Hyun HWANGBO ; Hyesook LEE ; Jin-Woo JEONG ; Min Ho HAN ; Sung-Kwon MOON ; Seok Joong YUN ; Wun-Jae KIM ; Gi-Young KIM ; Hye-Jin HWANG ; Yung Hyun CHOI
Nutrition Research and Practice 2025;19(2):328-330

Result Analysis
Print
Save
E-mail