1.Outcomes of Deferring Percutaneous Coronary Intervention Without Physiologic Assessment for Intermediate Coronary Lesions
Jihoon KIM ; Seong-Hoon LIM ; Joo-Yong HAHN ; Jin-Ok JEONG ; Yong Hwan PARK ; Woo Jung CHUN ; Ju Hyeon OH ; Dae Kyoung CHO ; Yu Jeong CHOI ; Eul-Soon IM ; Kyung-Heon WON ; Sung Yun LEE ; Sang-Wook KIM ; Ki Hong CHOI ; Joo Myung LEE ; Taek Kyu PARK ; Jeong Hoon YANG ; Young Bin SONG ; Seung-Hyuk CHOI ; Hyeon-Cheol GWON
Korean Circulation Journal 2025;55(3):185-195
Background and Objectives:
Outcomes of deferring percutaneous coronary intervention (PCI) without invasive physiologic assessment for intermediate coronary lesions is uncertain.We sought to compare long-term outcomes between medical treatment and PCI of intermediate lesions without invasive physiologic assessment.
Methods:
A total of 899 patients with intermediate coronary lesions between 50% and 70% diameter-stenosis were randomized to the conservative group (n=449) or the aggressive group (n=450). For intermediate lesions, PCI was performed in the aggressive group, but was deferred in the conservative group. The primary endpoint was major adverse cardiac events (MACE, a composite of all-cause death, myocardial infarction [MI], or ischemia-driven any revascularization) at 3 years.
Results:
The number of treated lesions per patient was 0.8±0.9 in the conservative group and 1.7±0.9 in the aggressive group (p=0.001). At 3 years, the conservative group had a significantly higher incidence of MACE than the aggressive group (13.8% vs. 9.3%; hazard ratio [HR], 1.49; 95% confidence interval [CI], 1.00–2.21; p=0.049), mainly driven by revascularization of target intermediate lesion (6.5% vs. 1.1%; HR, 5.69; 95% CI, 2.20–14.73;p<0.001). Between 1 and 3 years after the index procedure, compared to the aggressive group, the conservative group had significantly higher incidence of cardiac death or MI (3.2% vs.0.7%; HR, 4.34; 95% CI, 1.24–15.22; p=0.022) and ischemia-driven any revascularization.
Conclusions
For intermediate lesions, medical therapy alone, guided only by angiography, was associated with a higher risk of MACE at 3 years compared with performing PCI, mainly due to increased revascularization.
2.Outcomes of Deferring Percutaneous Coronary Intervention Without Physiologic Assessment for Intermediate Coronary Lesions
Jihoon KIM ; Seong-Hoon LIM ; Joo-Yong HAHN ; Jin-Ok JEONG ; Yong Hwan PARK ; Woo Jung CHUN ; Ju Hyeon OH ; Dae Kyoung CHO ; Yu Jeong CHOI ; Eul-Soon IM ; Kyung-Heon WON ; Sung Yun LEE ; Sang-Wook KIM ; Ki Hong CHOI ; Joo Myung LEE ; Taek Kyu PARK ; Jeong Hoon YANG ; Young Bin SONG ; Seung-Hyuk CHOI ; Hyeon-Cheol GWON
Korean Circulation Journal 2025;55(3):185-195
Background and Objectives:
Outcomes of deferring percutaneous coronary intervention (PCI) without invasive physiologic assessment for intermediate coronary lesions is uncertain.We sought to compare long-term outcomes between medical treatment and PCI of intermediate lesions without invasive physiologic assessment.
Methods:
A total of 899 patients with intermediate coronary lesions between 50% and 70% diameter-stenosis were randomized to the conservative group (n=449) or the aggressive group (n=450). For intermediate lesions, PCI was performed in the aggressive group, but was deferred in the conservative group. The primary endpoint was major adverse cardiac events (MACE, a composite of all-cause death, myocardial infarction [MI], or ischemia-driven any revascularization) at 3 years.
Results:
The number of treated lesions per patient was 0.8±0.9 in the conservative group and 1.7±0.9 in the aggressive group (p=0.001). At 3 years, the conservative group had a significantly higher incidence of MACE than the aggressive group (13.8% vs. 9.3%; hazard ratio [HR], 1.49; 95% confidence interval [CI], 1.00–2.21; p=0.049), mainly driven by revascularization of target intermediate lesion (6.5% vs. 1.1%; HR, 5.69; 95% CI, 2.20–14.73;p<0.001). Between 1 and 3 years after the index procedure, compared to the aggressive group, the conservative group had significantly higher incidence of cardiac death or MI (3.2% vs.0.7%; HR, 4.34; 95% CI, 1.24–15.22; p=0.022) and ischemia-driven any revascularization.
Conclusions
For intermediate lesions, medical therapy alone, guided only by angiography, was associated with a higher risk of MACE at 3 years compared with performing PCI, mainly due to increased revascularization.
3.Outcomes of Deferring Percutaneous Coronary Intervention Without Physiologic Assessment for Intermediate Coronary Lesions
Jihoon KIM ; Seong-Hoon LIM ; Joo-Yong HAHN ; Jin-Ok JEONG ; Yong Hwan PARK ; Woo Jung CHUN ; Ju Hyeon OH ; Dae Kyoung CHO ; Yu Jeong CHOI ; Eul-Soon IM ; Kyung-Heon WON ; Sung Yun LEE ; Sang-Wook KIM ; Ki Hong CHOI ; Joo Myung LEE ; Taek Kyu PARK ; Jeong Hoon YANG ; Young Bin SONG ; Seung-Hyuk CHOI ; Hyeon-Cheol GWON
Korean Circulation Journal 2025;55(3):185-195
Background and Objectives:
Outcomes of deferring percutaneous coronary intervention (PCI) without invasive physiologic assessment for intermediate coronary lesions is uncertain.We sought to compare long-term outcomes between medical treatment and PCI of intermediate lesions without invasive physiologic assessment.
Methods:
A total of 899 patients with intermediate coronary lesions between 50% and 70% diameter-stenosis were randomized to the conservative group (n=449) or the aggressive group (n=450). For intermediate lesions, PCI was performed in the aggressive group, but was deferred in the conservative group. The primary endpoint was major adverse cardiac events (MACE, a composite of all-cause death, myocardial infarction [MI], or ischemia-driven any revascularization) at 3 years.
Results:
The number of treated lesions per patient was 0.8±0.9 in the conservative group and 1.7±0.9 in the aggressive group (p=0.001). At 3 years, the conservative group had a significantly higher incidence of MACE than the aggressive group (13.8% vs. 9.3%; hazard ratio [HR], 1.49; 95% confidence interval [CI], 1.00–2.21; p=0.049), mainly driven by revascularization of target intermediate lesion (6.5% vs. 1.1%; HR, 5.69; 95% CI, 2.20–14.73;p<0.001). Between 1 and 3 years after the index procedure, compared to the aggressive group, the conservative group had significantly higher incidence of cardiac death or MI (3.2% vs.0.7%; HR, 4.34; 95% CI, 1.24–15.22; p=0.022) and ischemia-driven any revascularization.
Conclusions
For intermediate lesions, medical therapy alone, guided only by angiography, was associated with a higher risk of MACE at 3 years compared with performing PCI, mainly due to increased revascularization.
4.Outcomes of Deferring Percutaneous Coronary Intervention Without Physiologic Assessment for Intermediate Coronary Lesions
Jihoon KIM ; Seong-Hoon LIM ; Joo-Yong HAHN ; Jin-Ok JEONG ; Yong Hwan PARK ; Woo Jung CHUN ; Ju Hyeon OH ; Dae Kyoung CHO ; Yu Jeong CHOI ; Eul-Soon IM ; Kyung-Heon WON ; Sung Yun LEE ; Sang-Wook KIM ; Ki Hong CHOI ; Joo Myung LEE ; Taek Kyu PARK ; Jeong Hoon YANG ; Young Bin SONG ; Seung-Hyuk CHOI ; Hyeon-Cheol GWON
Korean Circulation Journal 2025;55(3):185-195
Background and Objectives:
Outcomes of deferring percutaneous coronary intervention (PCI) without invasive physiologic assessment for intermediate coronary lesions is uncertain.We sought to compare long-term outcomes between medical treatment and PCI of intermediate lesions without invasive physiologic assessment.
Methods:
A total of 899 patients with intermediate coronary lesions between 50% and 70% diameter-stenosis were randomized to the conservative group (n=449) or the aggressive group (n=450). For intermediate lesions, PCI was performed in the aggressive group, but was deferred in the conservative group. The primary endpoint was major adverse cardiac events (MACE, a composite of all-cause death, myocardial infarction [MI], or ischemia-driven any revascularization) at 3 years.
Results:
The number of treated lesions per patient was 0.8±0.9 in the conservative group and 1.7±0.9 in the aggressive group (p=0.001). At 3 years, the conservative group had a significantly higher incidence of MACE than the aggressive group (13.8% vs. 9.3%; hazard ratio [HR], 1.49; 95% confidence interval [CI], 1.00–2.21; p=0.049), mainly driven by revascularization of target intermediate lesion (6.5% vs. 1.1%; HR, 5.69; 95% CI, 2.20–14.73;p<0.001). Between 1 and 3 years after the index procedure, compared to the aggressive group, the conservative group had significantly higher incidence of cardiac death or MI (3.2% vs.0.7%; HR, 4.34; 95% CI, 1.24–15.22; p=0.022) and ischemia-driven any revascularization.
Conclusions
For intermediate lesions, medical therapy alone, guided only by angiography, was associated with a higher risk of MACE at 3 years compared with performing PCI, mainly due to increased revascularization.
5.Added Value of Contrast Leakage Information over the CBV Value of DSC Perfusion MRI to Differentiate between Pseudoprogression and True Progression after Concurrent Chemoradiotherapy in Glioblastoma Patients
Elena PAK ; Seung Hong CHOI ; Chul-Kee PARK ; Tae Min KIM ; Sung-Hye PARK ; Jae-Kyung WON ; Joo Ho LEE ; Soon-Tae LEE ; Inpyeong HWANG ; Roh-Eul YOO ; Koung Mi KANG ; Tae Jin YUN
Investigative Magnetic Resonance Imaging 2022;26(1):10-19
Purpose:
To evaluate whether the added value of contrast leakage information from dynamic susceptibility contrast magnetic resonance imaging (DSC MRI) is a better prognostic imaging biomarker than the cerebral blood volume (CBV) value in distinguishing true progression from pseudoprogression in glioblastoma patients.
Materials and Methods:
Forty-nine glioblastoma patients who had undergone MRI after concurrent chemoradiotherapy with temozolomide were enrolled in this retrospective study. Twenty features were extracted from the normalized relative CBV (nCBV) and extraction fraction (EF) map of the contrast-enhancing region in each patient. After univariable analysis, we used multivariable stepwise logistic regression analysis to identify significant predictors for differentiating between pseudoprogression and true progression. Receiver operating characteristic (ROC) analysis was employed to determine the best cutoff values for the nCBV and EF features. Finally, leave-one-out cross-validation was used to validate the best predictor in differentiating between true progression and pseudoprogression.
Results:
Multivariable stepwise logistic regression analysis showed that MGMT (O 6 -methylguanine-DNA methyltransferase) and EF max were independent differentiating variables (P = 0.004 and P = 0.02, respectively). ROC analysis yielded the best cutoff value of 95.75 for the EF max value for differentiating the two groups (sensitivity, 61%; specificity, 84.6%; AUC, 0.681 ± 0.08; 95% CI, 0.524-0.837; P = 0.03). In the leave-one-out cross-validation of the EF max value, the cross-validated values for predicting true progression and pseudoprogression accuracies were 69.4% and 71.4%,respectively.
Conclusion
We demonstrated that contrast leakage information parameter from DSC MRI showed significance in differentiating true progression from pseudoprogression in glioblastoma patients.
6.Prediction of Prognosis in Glioblastoma Using Radiomics Features of Dynamic Contrast-Enhanced MRI
Elena PAK ; Kyu Sung CHOI ; Seung Hong CHOI ; Chul-Kee PARK ; Tae Min KIM ; Sung-Hye PARK ; Joo Ho LEE ; Soon-Tae LEE ; Inpyeong HWANG ; Roh-Eul YOO ; Koung Mi KANG ; Tae Jin YUN ; Ji-Hoon KIM ; Chul-Ho SOHN
Korean Journal of Radiology 2021;22(9):1514-1524
Objective:
To develop a radiomics risk score based on dynamic contrast-enhanced (DCE) MRI for prognosis prediction in patients with glioblastoma.
Materials and Methods:
One hundred and fifty patients (92 male [61.3%]; mean age ± standard deviation, 60.5 ± 13.5 years) with glioblastoma who underwent preoperative MRI were enrolled in the study. Six hundred and forty-two radiomic features were extracted from volume transfer constant (Ktrans), fractional volume of vascular plasma space (Vp), and fractional volume of extravascular extracellular space (Ve) maps of DCE MRI, wherein the regions of interest were based on both T1-weighted contrast-enhancing areas and non-enhancing T2 hyperintense areas. Using feature selection algorithms, salient radiomic features were selected from the 642 features. Next, a radiomics risk score was developed using a weighted combination of the selected features in the discovery set (n = 105); the risk score was validated in the validation set (n = 45) by investigating the difference in prognosis between the “radiomics risk score” groups. Finally, multivariable Cox regression analysis for progression-free survival was performed using the radiomics risk score and clinical variables as covariates.
Results:
16 radiomic features obtained from non-enhancing T2 hyperintense areas were selected among the 642 features identified. The radiomics risk score was used to stratify high- and low-risk groups in both the discovery and validation sets (both p < 0.001 by the log-rank test). The radiomics risk score and presence of isocitrate dehydrogenase (IDH) mutation showed independent associations with progression-free survival in opposite directions (hazard ratio, 3.56; p = 0.004 and hazard ratio, 0.34; p = 0.022, respectively).
Conclusion
We developed and validated the “radiomics risk score” from the features of DCE MRI based on non-enhancing T2 hyperintense areas for risk stratification of patients with glioblastoma. It was associated with progression-free survival independently of IDH mutation status.
7.Comparison of Genetic Profiles and Prognosis of High-Grade Gliomas Using Quantitative and Qualitative MRI Features: A Focus on G3 Gliomas
Eun Kyoung HONG ; Seung Hong CHOI ; Dong Jae SHIN ; Sang Won JO ; Roh-Eul YOO ; Koung Mi KANG ; Tae Jin YUN ; Ji-hoon KIM ; Chul-Ho SOHN ; Sung-Hye PARK ; Jae-Kyoung WON ; Tae Min KIM ; Chul-Kee PARK ; Il Han KIM ; Soon-Tae LEE
Korean Journal of Radiology 2021;22(2):233-242
Objective:
To evaluate the association of MRI features with the major genomic profiles and prognosis of World Health Organization grade III (G3) gliomas compared with those of glioblastomas (GBMs).
Materials and Methods:
We enrolled 76 G3 glioma and 155 GBM patients with pathologically confirmed disease who had pretreatment brain MRI and major genetic information of tumors. Qualitative and quantitative imaging features, including volumetrics and histogram parameters, such as normalized cerebral blood volume (nCBV), cerebral blood flow (nCBF), and apparent diffusion coefficient (nADC) were evaluated. The G3 gliomas were divided into three groups for the analysis: with this isocitrate dehydrogenase (IDH)-mutation, IDH mutation and a chromosome arm 1p/19q-codeleted (IDHmut1p/19qdel), IDH mutation, 1p/19q-nondeleted (IDHmut1p/19qnondel), and IDH wildtype (IDHwt). A prediction model for the genetic profiles of G3 gliomas was developed and validated on a separate cohort. Both the quantitative and qualitative imaging parameters and progression-free survival (PFS) of G3 gliomas were compared and survival analysis was performed. Moreover, the imaging parameters and PFS between IDHwt G3 gliomas and GBMs were compared.
Results:
IDHmut G3 gliomas showed a larger volume (p = 0.017), lower nCBF (p = 0.048), and higher nADC (p = 0.007) than IDHwt. Between the IDHmut tumors, IDHmut1p/19qdel G3 gliomas had higher nCBV (p = 0.024) and lower nADC (p = 0.002) than IDHmut1p/19qnondel G3 gliomas. Moreover, IDHmut1p/19qdel tumors had the best prognosis and IDHwt tumors had the worst prognosis among G3 gliomas (p < 0.001). PFS was significantly associated with the 95th percentile values of nCBV and nCBF in G3 gliomas. There was no significant difference in neither PFS nor imaging features between IDHwt G3 gliomas and IDHwt GBMs.
Conclusion
We found significant differences in MRI features, including volumetrics, CBV, and ADC, in G3 gliomas, according to IDH mutation and 1p/19q codeletion status, which can be utilized for the prediction of genomic profiles and the prognosis of G3 glioma patients. The MRI signatures and prognosis of IDHwt G3 gliomas tend to follow those of IDHwt GBMs.
8.Prediction of Prognosis in Glioblastoma Using Radiomics Features of Dynamic Contrast-Enhanced MRI
Elena PAK ; Kyu Sung CHOI ; Seung Hong CHOI ; Chul-Kee PARK ; Tae Min KIM ; Sung-Hye PARK ; Joo Ho LEE ; Soon-Tae LEE ; Inpyeong HWANG ; Roh-Eul YOO ; Koung Mi KANG ; Tae Jin YUN ; Ji-Hoon KIM ; Chul-Ho SOHN
Korean Journal of Radiology 2021;22(9):1514-1524
Objective:
To develop a radiomics risk score based on dynamic contrast-enhanced (DCE) MRI for prognosis prediction in patients with glioblastoma.
Materials and Methods:
One hundred and fifty patients (92 male [61.3%]; mean age ± standard deviation, 60.5 ± 13.5 years) with glioblastoma who underwent preoperative MRI were enrolled in the study. Six hundred and forty-two radiomic features were extracted from volume transfer constant (Ktrans), fractional volume of vascular plasma space (Vp), and fractional volume of extravascular extracellular space (Ve) maps of DCE MRI, wherein the regions of interest were based on both T1-weighted contrast-enhancing areas and non-enhancing T2 hyperintense areas. Using feature selection algorithms, salient radiomic features were selected from the 642 features. Next, a radiomics risk score was developed using a weighted combination of the selected features in the discovery set (n = 105); the risk score was validated in the validation set (n = 45) by investigating the difference in prognosis between the “radiomics risk score” groups. Finally, multivariable Cox regression analysis for progression-free survival was performed using the radiomics risk score and clinical variables as covariates.
Results:
16 radiomic features obtained from non-enhancing T2 hyperintense areas were selected among the 642 features identified. The radiomics risk score was used to stratify high- and low-risk groups in both the discovery and validation sets (both p < 0.001 by the log-rank test). The radiomics risk score and presence of isocitrate dehydrogenase (IDH) mutation showed independent associations with progression-free survival in opposite directions (hazard ratio, 3.56; p = 0.004 and hazard ratio, 0.34; p = 0.022, respectively).
Conclusion
We developed and validated the “radiomics risk score” from the features of DCE MRI based on non-enhancing T2 hyperintense areas for risk stratification of patients with glioblastoma. It was associated with progression-free survival independently of IDH mutation status.
9.Safety and Efficacy of Biodegradable Polymer-biolimus-eluting Stents (BP-BES) Compared with Durable Polymer-everolimus-eluting Stents (DP-EES) in Patients Undergoing Complex Percutaneous Coronary Intervention
Pil Sang SONG ; Kyu Tae PARK ; Min Jeong KIM ; Ki Hyun JEON ; Jin Sik PARK ; Rak Kyeong CHOI ; Young Bin SONG ; Seung Hyuk CHOI ; Jin Ho CHOI ; Sang Hoon LEE ; Hyeon Cheol GWON ; Jin Ok JEONG ; Eul Soon IM ; Sang Wook KIM ; Woo Jung CHUN ; Ju Hyeon OH ; Joo Yong HAHN
Korean Circulation Journal 2019;49(1):69-80
BACKGROUND AND OBJECTIVES: There are no data comparing clinical outcomes of complex percutaneous coronary intervention (PCI) between biodegradable polymer-biolimus-eluting stents (BP-BES) and durable polymer-everolimus-eluting stents (DP-EES). We sought to evaluate the safety and efficacy of BP-BES compared with DP-EES in patients undergoing complex PCI. METHODS: Patients enrolled in the SMART-DESK registry were stratified into 2 categories based on the complexity of PCI. Complex PCI was defined as having at least one of the following features: unprotected left main lesion, ≥2 lesions treated, total stent length >40 mm, minimal stent diameter ≤2.5 mm, or bifurcation as target lesion. The primary outcome was target lesion failure (TLF), defined as a composite of cardiac death, target vessel-related myocardial infarction (TV-MI), or target lesion revascularization (TLR) at 2 years of follow-up. RESULTS: Of 1,999 patients, 1,145 (57.3%) underwent complex PCI: 521 patients were treated with BP-BES and 624 with DP-EES. In propensity-score matching analysis (481 pairs), the risks of TLF (3.8% vs. 5.2%, adjusted hazard ratio [HR], 0.578; 95% confidence interval [CI], 0.246–1.359; p=0.209), cardiac death (2.5% vs. 2.5%, adjusted HR, 0.787; 95% CI, 0.244–2.539; p=0.689), TV-MI (0.5% vs. 0.4%, adjusted HR, 1.128; 95% CI, 0.157–8.093; p=0.905), and TLR (1.1% vs. 2.9%, adjusted HR, 0.390; 95% CI, 0.139–1.095; p=0.074) did not differ between 2 stent groups after complex PCI. CONCLUSIONS: Clinical outcomes of BP-BES were comparable to those of DP-EES at 2 years after complex PCI. Our data suggest that use of BP-BES is acceptable, even for complex PCI.
Coronary Artery Disease
;
Death
;
Drug-Eluting Stents
;
Follow-Up Studies
;
Humans
;
Myocardial Infarction
;
Percutaneous Coronary Intervention
;
Stents
10.Safety and Efficacy of Biodegradable Polymer-biolimus-eluting Stents (BP-BES) Compared with Durable Polymer-everolimus-eluting Stents (DP-EES) in Patients Undergoing Complex Percutaneous Coronary Intervention
Pil Sang SONG ; Kyu Tae PARK ; Min Jeong KIM ; Ki Hyun JEON ; Jin Sik PARK ; Rak Kyeong CHOI ; Young Bin SONG ; Seung Hyuk CHOI ; Jin Ho CHOI ; Sang Hoon LEE ; Hyeon Cheol GWON ; Jin Ok JEONG ; Eul Soon IM ; Sang Wook KIM ; Woo Jung CHUN ; Ju Hyeon OH ; Joo Yong HAHN
Korean Circulation Journal 2019;49(1):69-80
BACKGROUND AND OBJECTIVES:
There are no data comparing clinical outcomes of complex percutaneous coronary intervention (PCI) between biodegradable polymer-biolimus-eluting stents (BP-BES) and durable polymer-everolimus-eluting stents (DP-EES). We sought to evaluate the safety and efficacy of BP-BES compared with DP-EES in patients undergoing complex PCI.
METHODS:
Patients enrolled in the SMART-DESK registry were stratified into 2 categories based on the complexity of PCI. Complex PCI was defined as having at least one of the following features: unprotected left main lesion, ≥2 lesions treated, total stent length >40 mm, minimal stent diameter ≤2.5 mm, or bifurcation as target lesion. The primary outcome was target lesion failure (TLF), defined as a composite of cardiac death, target vessel-related myocardial infarction (TV-MI), or target lesion revascularization (TLR) at 2 years of follow-up.
RESULTS:
Of 1,999 patients, 1,145 (57.3%) underwent complex PCI: 521 patients were treated with BP-BES and 624 with DP-EES. In propensity-score matching analysis (481 pairs), the risks of TLF (3.8% vs. 5.2%, adjusted hazard ratio [HR], 0.578; 95% confidence interval [CI], 0.246–1.359; p=0.209), cardiac death (2.5% vs. 2.5%, adjusted HR, 0.787; 95% CI, 0.244–2.539; p=0.689), TV-MI (0.5% vs. 0.4%, adjusted HR, 1.128; 95% CI, 0.157–8.093; p=0.905), and TLR (1.1% vs. 2.9%, adjusted HR, 0.390; 95% CI, 0.139–1.095; p=0.074) did not differ between 2 stent groups after complex PCI.
CONCLUSIONS
Clinical outcomes of BP-BES were comparable to those of DP-EES at 2 years after complex PCI. Our data suggest that use of BP-BES is acceptable, even for complex PCI.

Result Analysis
Print
Save
E-mail