2.miR-34b-3p Inhibition of eIF4E Causes Post-stroke Depression in Adult Mice.
Xiao KE ; Manfei DENG ; Zhuoze WU ; Hongyan YU ; Dian YU ; Hao LI ; Youming LU ; Kai SHU ; Lei PEI
Neuroscience Bulletin 2023;39(2):194-212
Post-stroke depression (PSD) is a serious and common complication of stroke, which seriously affects the rehabilitation of stroke patients. To date, the pathogenesis of PSD is unclear and effective treatments remain unavailable. Here, we established a mouse model of PSD through photothrombosis-induced focal ischemia. By using a combination of brain imaging, transcriptome sequencing, and bioinformatics analysis, we found that the hippocampus of PSD mice had a significantly lower metabolic level than other brain regions. RNA sequencing revealed a significant reduction of miR34b-3p, which was expressed in hippocampal neurons and inhibited the translation of eukaryotic translation initiation factor 4E (eIF4E). Furthermore, silencing eIF4E inactivated microglia, inhibited neuroinflammation, and abolished the depression-like behaviors in PSD mice. Together, our data demonstrated that insufficient miR34b-3p after stroke cannot inhibit eIF4E translation, which causes PSD by the activation of microglia in the hippocampus. Therefore, miR34b-3p and eIF4E may serve as potential therapeutic targets for the treatment of PSD.
Animals
;
Mice
;
Depression
;
Eukaryotic Initiation Factor-4E/metabolism*
;
MicroRNAs/metabolism*
;
Neurons/metabolism*
;
Stroke/metabolism*
3.5'-tiRNA-Gln inhibits hepatocellular carcinoma progression by repressing translation through the interaction with eukaryotic initiation factor 4A-I.
Chengdong WU ; Dekai LIU ; Lufei ZHANG ; Jingjie WANG ; Yuan DING ; Zhongquan SUN ; Weilin WANG
Frontiers of Medicine 2023;17(3):476-492
tRNA-derived small RNAs (tsRNAs) are novel non-coding RNAs that are involved in the occurrence and progression of diverse diseases. However, their exact presence and function in hepatocellular carcinoma (HCC) remain unclear. Here, differentially expressed tsRNAs in HCC were profiled. A novel tsRNA, tRNAGln-TTG derived 5'-tiRNA-Gln, is significantly downregulated, and its expression level is correlated with progression in patients. In HCC cells, 5'-tiRNA-Gln overexpression impaired the proliferation, migration, and invasion in vitro and in vivo, while 5'-tiRNA-Gln knockdown yielded opposite results. 5'-tiRNA-Gln exerted its function by binding eukaryotic initiation factor 4A-I (EIF4A1), which unwinds complex RNA secondary structures during translation initiation, causing the partial inhibition of translation. The suppressed downregulated proteins include ARAF, MEK1/2 and STAT3, causing the impaired signaling pathway related to HCC progression. Furthermore, based on the construction of a mutant 5'-tiRNA-Gln, the sequence of forming intramolecular G-quadruplex structure is crucial for 5'-tiRNA-Gln to strongly bind EIF4A1 and repress translation. Clinically, 5'-tiRNA-Gln expression level is negatively correlated with ARAF, MEK1/2, and STAT3 in HCC tissues. Collectively, these findings reveal that 5'-tiRJNA-Gln interacts with EIF4A1 to reduce related mRNA binding through the intramolecular G-quadruplex structure, and this process partially inhibits translation and HCC progression.
Humans
;
Carcinoma, Hepatocellular/pathology*
;
Liver Neoplasms/pathology*
;
Eukaryotic Initiation Factor-4A/genetics*
;
Cell Line
;
RNA, Transfer/metabolism*
;
RNA
;
Cell Proliferation
4.Effect of eIF4B knockout on apoptosis of mouse fetal liver cells.
Guoqing WANG ; Biao CHEN ; Yuhai CHEN ; Qianwen ZHU ; Min PENG ; Guijie GUO ; Jilong CHEN
Chinese Journal of Biotechnology 2022;38(9):3489-3500
Eukaryotic translation initiation factor 4B (eIF4B) plays an important role in mRNA translation initiation, cell survival and proliferation in vitro, but the in vivo function is poorly understood. In this study, via various experimental techniques such as hematoxylin-eosin (HE) staining, flow cytometry, Western blotting, and immunohistochemistry, we investigated the role of eIF4B in mouse embryo development using an eIF4B knockout (KO) mouse model and explored the mechanism. We found that the livers, but not lungs, brain, stomach, or pancreas, derived from eIF4B KO mouse embryos displayed severe pathological changes characterized by enhanced apoptosis and necrosis. Accordingly, high expression of cleaved-caspase 3, and excessive activation of mTOR signaling as evidenced by increased expression and phosphorylation of p70S6K and enhanced phosphorylation of 4EBP1, were observed in mouse embryonic fibroblasts and fetal livers from eIF4B KO mice. These results uncover a critical role of eIF4B in mouse embryo development and provide important insights into the biological functions of eIF4B in vivo.
Animals
;
Apoptosis/genetics*
;
Caspase 3
;
Eosine Yellowish-(YS)
;
Eukaryotic Initiation Factors/metabolism*
;
Fibroblasts
;
Hematoxylin
;
Liver/metabolism*
;
Mice
;
Ribosomal Protein S6 Kinases, 70-kDa/genetics*
;
TOR Serine-Threonine Kinases
5.UPF1 increases amino acid levels and promotes cell proliferation in lung adenocarcinoma via the eIF2α-ATF4 axis.
Lei FANG ; Huan QI ; Peng WANG ; Shiqing WANG ; Tianjiao LI ; Tian XIA ; Hailong PIAO ; Chundong GU
Journal of Zhejiang University. Science. B 2022;23(10):863-875
Up-frameshift 1 (UPF1), as the most critical factor in nonsense-mediated messenger RNA (mRNA) decay (NMD), regulates tumor-associated molecular pathways in many cancers. However, the role of UPF1 in lung adenocarcinoma (LUAD) amino acid metabolism remains largely unknown. In this study, we found that UPF1 was significantly correlated with a portion of amino acid metabolic pathways in LUAD by integrating bioinformatics and metabolomics. We further confirmed that UPF1 knockdown inhibited activating transcription factor 4 (ATF4) and Ser51 phosphorylation of eukaryotic translation initiation factor 2α (eIF2α), the core proteins in amino acid metabolism reprogramming. In addition, UPF1 promotes cell proliferation by increasing the amino-acid levels of LUAD cells, which depends on the function of ATF4. Clinically, UPF1 mRNA expression is abnormal in LUAD tissues, and higher expression of UPF1 and ATF4 was significantly correlated with poor overall survival (OS) in LUAD patients. Our findings reveal that UPF1 is a potential regulator of tumor-associated amino acid metabolism and may be a therapeutic target for LUAD.
Activating Transcription Factor 4/genetics*
;
Adenocarcinoma of Lung
;
Amino Acids
;
Cell Proliferation
;
Eukaryotic Initiation Factor-2
;
Humans
;
Lung Neoplasms
;
RNA Helicases/metabolism*
;
RNA, Messenger/metabolism*
;
Trans-Activators/metabolism*
6.Effect of eIF4E on Autophagy of CD138 Cells in Multiple Myeloma.
Journal of Experimental Hematology 2019;27(5):1556-1560
OBJECTIVE:
To investigate the effect of eukaryotic translation initiation factor 4E(eIF4E) on the autophagy of CD138 plasma cells in multiple myeloma(MM).
METHODS:
Multiple myeloma CD138 plasma cells were treated with eIF4E inhibitor 4EGI, the changes of autophagy-related factors LC3-II and Beclin1 were detected by fluorescent quantitative PCR and Western blot, the changes of cell proliferation inhibition were detected by MTT assay, and cell apoptosis was detected by flow cytometry.
RESULTS:
Quantitative fluorescence PCR showed that after treatment of myeloma cells with 4EGI, the expression levels of LC3-II and Beclin1 mRNA gradually increased with the enhancomer of 4EGI concentration and the prolongation of action time, and the differences were statistically significant (48 h: LC3-Ⅱ,r=0.942, Beclin1,r=0.952; 80 μg/ml: LC3-Ⅱ,r=0.966, Beclin1,r=0.998); Western blot showed that with the enhancement of 4EGI concentration, the expression of LC3-II and Beclin1 protein gradually increased(LC3-Ⅱ,r=0.923, Beclin1,r=0.977); CCK-8 showed that the inhibition rate of cells gradually increased (r=0.996); the apoptotic rate of 4EGI-treated groups (23.23±4.47, 7.59±1.67, 2.03±0.19) was significantly different from that of control group (0.03±0.04) (P<0.05).
CONCLUSION
The inhibition of eIF4E can activate the autophagy of CD138 plasma cells in multiple myeloma and induce the death of myeloma cells.
Autophagy
;
Beclin-1
;
Cell Line, Tumor
;
Eukaryotic Initiation Factor-4E
;
Humans
;
Multiple Myeloma
7.Correlation Between Vanishing White Matter Disease and Novel Heterozygous EIF2B3 Variants Using Next-Generation Sequencing: A Case Report
Sung Eun HYUN ; Byung Se CHOI ; Ja Hyun JANG ; Inpyo JEON ; Dae Hyun JANG ; Ju Seok RYU
Annals of Rehabilitation Medicine 2019;43(2):234-238
Vanishing white matter (VWM) disease is an autosomal recessive disorder that affects the central nervous system of a patient, and is caused by the development of pathogenic mutations in any of the EIF2B1-5 genes. Any dysfunction of the EIF2B1-5 gene encoded eIF2B causes stress-provoked episodic rapid neurological deterioration in the patient, followed by a chronic progressive disease course. We present the case of a patient with an infantile-onset VWM with the pre-described specific clinical course, subsequent neurological aggravation induced by each viral infection, and the noted consequent progression into a comatose state. Although the initial brain magnetic resonance imaging did not reveal specific pathognomonic signs of VWM to distinguish it from other types of demyelinating leukodystrophy, the next-generation sequencing studies identified heterozygous missense variants in EIF2B3, including a novel variant in exon 7 (C706G), as well as a 0.008% frequency reported variant in exon 2 (T89C). Hence, the characteristic of unbiased genomic sequencing can clinically affect patient care and decisionmaking, especially in terms of the consideration of genetic disorders such as leukoencephalopathy in pediatric patients.
Brain
;
Central Nervous System
;
Coma
;
Eukaryotic Initiation Factor-2B
;
Exome
;
Exons
;
Humans
;
Leukoencephalopathies
;
Magnetic Resonance Imaging
;
Patient Care
;
White Matter
8.High levels of glucose induce epithelial-mesenchymal transition in renal proximal tubular cells through PERK-eIF2α pathway.
Yan BAO ; Ying AO ; Bo YI ; Jo BATUBAYIER
Chinese Medical Journal 2019;132(7):868-872
Animals
;
Cell Line
;
Diabetic Nephropathies
;
metabolism
;
Epithelial-Mesenchymal Transition
;
drug effects
;
Eukaryotic Initiation Factor-2
;
metabolism
;
Glucose
;
pharmacology
;
Humans
;
Kidney
;
drug effects
;
metabolism
;
pathology
;
Kidney Tubules, Proximal
;
drug effects
;
metabolism
;
Rats
;
Signal Transduction
;
drug effects
9.Total Saponins of Rubus Parvifolius L. Exhibited Anti-Leukemia Effect in vivo through STAT3 and eIF4E Signaling Pathways.
Xiao-Feng XU ; Ru-Bin CHENG ; Xue-Jin ZHANG ; Rui-Lan GAO
Chinese journal of integrative medicine 2018;24(12):920-924
OBJECTIVE:
To investigate the anti-leukemia effect of total saponins of Rubus parvifolius L. (TSRP) on K562 cell xenografts in nude mice and the mechanisms of action.
METHODS:
The K562 cell xenografts in nude mice were established, and then randomly divided into 5 groups, the control group, the cytosine arabinoside group(Ara-c) and 3 TSRP groups (20, 40 and 100 mg/kg). The tumor volume and mass of each group of nude mice were measured and the anti-tumor rates of TSRP were calculated subsequently. The apoptosis status of tumor cells was detected by hematoxylin-eosin (HE) and terminal dexynucleotidyl transferase (TdT)-mediated dUTP nick end labeling (TUNEL) staining analysis. Finally, the activities of apoptosis related signaling of signal transducer and activator of transcription 3 (STAT3), eukaryotic initiation factor 4E (eIF4E) and B-cell lymphoma-2 (bcl-2) were determined with immunohistochemistry tests.
RESULTS:
Subcutaneous injection of K562 cells induced tumor formation in nude mice, and the TSRP treated group showed a signifificant inhibitory effect on tumor formation. The nude mice treated with TSRP showed a signifificant decrease in tumor growth rate and tumor weight in comparison to the control group (all P<0.05). The HE staining and TUNEL assay showed that TSRP induced cell death by apoptosis. The immunohistochemical assay showed down-regulation of the bcl-2 gene in the TSRP treated cells. The phosphorylation levels of eIF4E and STAT3 were decreased obviously after the treatment of TSRP.
CONCLUSION
TSRP had an excellent tumor-suppressing effect on K562 cells in the nude mice xenograft model, suggesting that TSPR can be developed as a promising anti-chronic myeloide leukemia drug.
Animals
;
Apoptosis
;
drug effects
;
Eukaryotic Initiation Factor-4E
;
physiology
;
Humans
;
K562 Cells
;
Leukemia
;
drug therapy
;
pathology
;
Male
;
Mice
;
Rubus
;
chemistry
;
STAT3 Transcription Factor
;
physiology
;
Saponins
;
pharmacology
;
Signal Transduction
;
drug effects
;
Xenograft Model Antitumor Assays
10.Inhibition of endoplasmic reticulum stress in high-fat-diet-induced obese C57BL/6 mice: Efficacy of a novel extract from mulberry (Morus alba) leaves fermented with Cordyceps militaris.
Mi Rim LEE ; Su Ji BAE ; Ji Eun KIM ; Bo Ram SONG ; Jun Young CHOI ; Jin Ju PARK ; Ji Won PARK ; Mi Ju KANG ; Hyeon Jun CHOI ; Young Whan CHOI ; Kyung Mi KIM ; Dae Youn HWANG
Laboratory Animal Research 2018;34(4):288-294
A few clues about correlation between endoplasmic reticulum (ER) stress and mulberry (Morus alba) leaves were investigated in only the experimental autoimmune myocarditis and streptozotocin-induced diabetes. To investigate whether a novel extract of mulberry leaves fermented with Cordyceps militaris (EMfC) could suppress ER in fatty liver, alterations in the key parameters for ER stress response were measured in high fat diet (HFD)-induced obese C57L/6 mice treated with EMfC for 12 weeks. The area of adipocytes in the liver section were significantly decreased in the HFD+EMfC treated group as compared to the HFD+Vehicle treated group, while their level was higher in HFD+Vehicle treated group than No treated group. The level of the eukaryotic initiation factor 2 alpha (eIF2α) and inositol-requiring enzyme 1 beta (IRE1α) phosphorylation and CCAAT-enhancer-binding protein homologous protein (CHOP) expression were remarkably enhanced in the HFD+Vehicle treated group. However, their levels were restored in the HFD+EMfC treated group, although some differences were detected in the decrease rate. Similar recovery was observed on the ER stress-induced apoptosis. The level of Caspase-3, Bcl-2 and Bax were decreased in the HFD+EMfC and HFD+orlistat (OT) treated group compared to the HFD+Vehicle treated group. The results of the present study therefore provide first evidence that EMfC with the anti-obesity effects can be suppressed ER stress and ER stress-induced apoptosis in the hepatic steatosis of HFD-induced obesity model.
Adipocytes
;
Animals
;
Apoptosis
;
Caspase 3
;
CCAAT-Enhancer-Binding Proteins
;
Cordyceps*
;
Diet, High-Fat
;
Endoplasmic Reticulum Stress*
;
Endoplasmic Reticulum*
;
Eukaryotic Initiation Factor-2
;
Fatty Liver
;
Liver
;
Mice*
;
Morus*
;
Myocarditis
;
Obesity
;
Phosphorylation

Result Analysis
Print
Save
E-mail