1.Real-world Study of Icotinib in EGFR Mutant Non-small Cell Lung Cancer Based on the Therapeutic Drug Monitoring.
Sen HAN ; Lan MI ; Jian FANG ; Xu MA
Chinese Journal of Lung Cancer 2025;28(1):33-39
BACKGROUND:
In the real world, the plasma drug concentration range of Icotinib treated with epidermal growth factor receptor (EGFR) gene mutant non-small cell lung cancer (NSCLC) is not yet clear, and there may be a correlation between drug concentration and its efficacy, as well as adverse reactions. This study conducted therapeutic drug monitoring (TDM) of Icotinib. The aim of this study was to analyze the drug exposure of Icotinib in targeted therapy for NSCLC, and to investigate the relationship between Icotinib drug concentration and its efficacy and safety.
METHODS:
Prospective blood samples were collected from NSCLC patients with EGFR-sensitive mutations who received treatment with Icotinib in Peking University Cancer Hospital from April 2022 to July 2024. The drug trough concentration of Icotinib in plasma was detected, and the correlation between drug concentration and efficacy, as well as the toxic side effects, were further analyzed based on the patient's clinical medical records.
RESULTS:
22 patients who were treated with Icotinib underwent TDM, but one of them did not acquire the data due to prolonged discontinuation. The remaining 21 patients, each with 1-7 blood draws, obtained a total of 32 plasma drug concentration data. The drug concentration of icotinib is a range of 126.9-2317.1 ng/mL. Among the 21 patients, 18 cases were female (85.7%), and 3 cases were male (14.3%), with an age range of 44-85 years old. The pathological types are all lung adenocarcinoma. Except for 5 patients receiving postoperative adjuvant therapy, 16 patients had assessable tumors. The objective response rate was 43.8% (7/16), and the disease control rate reached 100.0% (16/16). The median value of drug concentration is 805.5 ng/mL among those 21 patients. Compared with the patients who achieved stable disease, the median value of drug concentrations of Icotinib in patients who achieved partial response were 497.2 and 1195.5 ng/mL, respectively (P=0.017). The median value of drug concentrations for patients who did not experience adverse reactions during treatment and those who experienced adverse reactions were 997.0 and 828.6 ng/mL, respectively (P=0.538).
CONCLUSIONS
Icotinib demonstrates good therapeutic effect and tolerable toxicity on the EGFR gene mutant NSCLC. There is a certain negative correlation between the plasma drug concentration of Icotinib and its efficacy, while there seems no significant correlation with safety.
Humans
;
Carcinoma, Non-Small-Cell Lung/genetics*
;
ErbB Receptors/metabolism*
;
Lung Neoplasms/genetics*
;
Male
;
Female
;
Crown Ethers/blood*
;
Middle Aged
;
Drug Monitoring
;
Aged
;
Quinazolines/blood*
;
Mutation
;
Adult
;
Aged, 80 and over
;
Antineoplastic Agents/blood*
;
Prospective Studies
2.Association of ethylene oxide exposure and obstructive sleep apnea.
Environmental Health and Preventive Medicine 2025;30():9-9
BACKGROUND:
Ethylene oxide (EO) is a widely utilized industrial compound known to pose health hazards. Although its carcinogenic characteristics have been thoroughly investigated, recent findings indicate possible links to respiratory disease. The correlation between EO exposure and the likelihood of developing obstructive sleep apnea (OSA) in individuals remains unclear. The study aimed to explore the association between EO exposure and OSA within the broader US population.
METHODS:
From 2015 to 2020, 4355 participants were analyzed cross-sectionally in the National Health and Nutrition Examination Survey (NHANES). As the primary indicator of EO exposure, hemoglobin adducts of EO (HbEO) were used in this study. The relationship between EO exposure and OSA prevalence was assessed using weighted multivariable regression analysis and smoothing curve fitting. Using subgroup analysis and interaction tests, we investigated whether this association remained consistent across populations.
RESULTS:
According to the study, higher HbEO level was positively correlated with a higher prevalence of OSA. Compared to the first HbEO quartile (Q1), participants within the highest quartile (Q4) presented a higher OSA prevalence in the fully model (OR = 1.32, 95% CI: 1.08-1.62, P = 0.01, P for trend = 0.001). This correlation was particularly evident among females and individuals who are insufficiently physically active.
CONCLUSIONS
This research found a positive relationship between the extent of exposure to EO and OSA prevalence among a representative sample of Americans.
Humans
;
Sleep Apnea, Obstructive/chemically induced*
;
Female
;
Male
;
Middle Aged
;
Adult
;
Cross-Sectional Studies
;
Prevalence
;
Ethylene Oxide/toxicity*
;
United States/epidemiology*
;
Nutrition Surveys
;
Aged
;
Environmental Exposure/adverse effects*
;
Young Adult
3.Triptolide Ameliorates Collagen-Induced Arthritis and Bleomycin-Induced Pulmonary Fibrosis in Rats by Suppressing IGF1-Mediated Epithelial Mesenchymal Transition.
Pei-Pei LU ; Lan YAN ; Qi GENG ; Lin LIN ; Lu-Lu ZHANG ; Chang-Qi SHI ; Peng-Cheng ZHAO ; Xiao-Meng ZHANG ; Jian-Yu SHI ; Cheng LYU
Chinese journal of integrative medicine 2025;31(12):1069-1077
OBJECTIVE:
To investigate the common mechanisms among collagen-induced arthritis (CIA), bleomycin (BLM)-induced pulmonary fibrosis, and CIA+BLM to evaluate the therapeutic effect of triptolide (TP) on CIA+BLM.
METHODS:
Thirty-six male Sprague-Dawley rats were randomly assigned to 6 groups according to a random number table (n=6 per group): normal control (NC), CIA, BLM, combined CIA+BLM model, TP low-dose (TP-L, 0.0931 mg/kg), and TP high-dose (TP-H, 0.1862 mg/kg) groups. The CIA model was induced by intradermal injection at the base of the tail with emulsion of bovine type II collagen and incomplete Freund's adjuvant (1:1), with 200 µL administered on day 0 and a booster of 100 µL on day 7. Pulmonary fibrosis was induced via a single intratracheal injection of BLM (5 mg/kg). The CIA+BLM model combined both protocols, and TP was administered orally from day 14 to 35. After successful modeling, arthritis scores were recorded every 3 days, and pulmonary function was assessed once at the end of the treatment period. Lung tissues were collected for histological analysis (hematoxylin eosin and Masson staining), immunohistochemistry, measurement of hydroxyproline (HYP) content, and calculation of lung coefficient. In addition, HE staining was performed on the ankle joint. Total RNA was extracted from lung tissues for transcriptomic analysis. Differentially expressed genes (DEGs) were compared with those from the RA-associated interstitial lung diseases patient dataset GSE199152 to identify overlapping genes, which were then used to construct a protein-protein interaction network. Hub genes were identified using multiple topological algorithms.
RESULTS:
The successfully established CIA+BLM rat model exhibited significantly increased arthritis scores and severe pulmonary fibrosis (P<0.01). By intersecting the DEGs obtained from transcriptomic analysis of lung tissues in CIA, BLM, and CIA+BLM rats with DEGs from rheumatoid arthritis-interstitial lung disease patients (GSE199152 dataset), 50 upregulated and 44 downregulated genes were identified. Through integrated PPI network analysis using multiple topological algorithms, IGF1 was identified as a central hub gene. TP intervention significantly improved pulmonary function by increasing peak inspiratory flow (P<0.01), and reduced lung index and HYP content (P<0.01). Histopathological analysis showed that TP alleviated alveolar collapse, interstitial thickening, and collagen deposition in the lung tissues (P<0.01). Moreover, TP treatment reduced the expression of collagen type I and α-SMA and increased E-cadherin levels (P<0.01). TP also significantly reduced arthritis scores and ameliorated synovial inflammation (P<0.05). Both transcriptomic and immunohistochemical analyses confirmed that IGF1 expression was elevated in the CIA+BLM group and downregulated following TP treatment (P<0.05).
CONCLUSION
TP exerts protective effects in the CIA+BLM model by alleviating arthritis and pulmonary fibrosis through the inhibition of IGF1-mediated EMT.
Animals
;
Pulmonary Fibrosis/complications*
;
Bleomycin/adverse effects*
;
Phenanthrenes/pharmacology*
;
Male
;
Rats, Sprague-Dawley
;
Diterpenes/pharmacology*
;
Epoxy Compounds/therapeutic use*
;
Arthritis, Experimental/complications*
;
Insulin-Like Growth Factor I/metabolism*
;
Rats
;
Lung/physiopathology*
4.Tripterygium wilfordii attenuates acute lung injury by regulating the differentiation and function of myeloid-derived suppressor cells.
Lingyu WEI ; Shu TONG ; Meng'er WANG ; Hongzheng REN ; Jinsheng WANG
Journal of Central South University(Medical Sciences) 2025;50(5):840-850
OBJECTIVES:
Acute lung injury (ALI) is an acute respiratory failure syndrome characterized by impaired gas exchange. Due to the lack of effective targeted drugs, it is associated with high mortality and poor prognosis. Tripterygium wilfordii (TW) has demonstrated anti-inflammatory activity in the treatment of various diseases. This study aims to investigate the effects and underlying mechanisms of TW on myeloid-derived suppressor cells (MDSCs) in ALI, providing experimental evidence for TW as a potential adjuvant therapy for ALI.
METHODS:
Eighteen specific pathogen-free (SPF) C57BL/6 mice were randomly divided into normal control (NC; intranasal saline), lipopolysaccharide (LPS; 5 mg/kg intranasally to induce ALI), and LPS+TW (50 mg/kg TW by gavage on the first day of modeling, followed by 5 mg/kg LPS intranasally to induce ALI) groups (n=6 each). Lung injury and edema were assessed by histopathological scoring and wet-to-dry weight ratio. Cytokine levels [interleukin (IL)-1β, IL-6, IL-18, tumor necrosis factor-α (TNF-α)] in lung tissue lavage fluid were measured by enzyme-linked immunosorbent assay (ELISA). Flow cytometry was used to assess the proportions of MDSCs, polymorphonuclear MDSCs (PMN-MDSCs), and monocytic MDSCs (M-MDSCs) in bone marrow, spleen, peripheral blood, and lung tissue, as well as reactive oxygen species (ROS) levels in lung tissues. Messenger RNA (mRNA) expression levels of inducible nitric oxide synthase (iNOS) and arginase-1 (ARG-1) in lung tissues were determined by real-time fluorescence quantitative polymerase chain reaction (RT-qPCR). PMN-MDSCs sorted from the lungs of LPS-treated mice were co-cultured with splenic CD3+ T cells and divided into NC, triptolide (TPL)-L, and TPL-H groups, with bovine serum albumin, 25 nmol/L TPL, and 50 nmol/L TPL, respectively. Flow cytometry was used to detect the effect of PMN-MDSCs on T-cell proliferation, and RT-qPCR was used to measure iNOS and ARG-1 mRNA expression.
RESULTS:
Compared with the NC group, the LPS group showed marked lung pathology with significantly increased histopathological scores and wet-to-dry ratios (both P<0.001). TW treatment significantly alleviated lung injury and reduced both indices compared with the LPS group (both P<0.05). Cytokine levels were significantly decreased in the LPS+TW group compared with the LPS group (all P<0.001). The proportions of MDSCs in CD45+ cells from spleen, bone marrow, peripheral blood, and lung, as well as PMN-MDSCs from spleen, peripheral blood, and lung, were significantly reduced in the LPS+TW group compared with the LPS group (all P<0.05), accompanied by reduced ROS levels in lung tissues (P<0.001). iNOS and ARG-1 mRNA expression in lung tissues was significantly lower in the LPS+TW group than in the LPS group (both P<0.001). In vitro, compared with the TPL-L group, the TPL-H group showed significantly increased CD3+ T-cell proliferation (P<0.001), and decreased iNOS and ARG-1 mRNA expression (all P<0.05).
CONCLUSIONS
TW alleviates the progression of LPS-induced ALI in mice, potentially by reducing the proportion of MDSCs in lung tissues and attenuating the immunosuppressive function of PMN-MDSCs.
Animals
;
Acute Lung Injury/chemically induced*
;
Myeloid-Derived Suppressor Cells/cytology*
;
Tripterygium/chemistry*
;
Mice, Inbred C57BL
;
Mice
;
Cell Differentiation/drug effects*
;
Male
;
Lipopolysaccharides
;
Nitric Oxide Synthase Type II/genetics*
;
Cytokines/metabolism*
;
Reactive Oxygen Species/metabolism*
;
Diterpenes/pharmacology*
;
Epoxy Compounds
;
Phenanthrenes
5.Catalpol reduces liver toxicity of triptolide in mice by inhibiting hepatocyte ferroptosis through the SLC7A11/GPX4 pathway: testing the Fuzheng Zhidu theory for detoxification.
Linluo ZHANG ; Changqing LI ; Lingling HUANG ; Xueping ZHOU ; Yuanyuan LOU
Journal of Southern Medical University 2025;45(4):810-818
OBJECTIVES:
To investigate the protective effect of catalpol against triptolide-induced liver injury and explore its mechanism to test the Fuzheng Zhidu theory for detoxification.
METHODS:
C57BL/6J mice were randomized into blank control group, catalpol group, triptolide group and triptolide+catalpol group. After 13 days of treatment with the agents by gavage, the mice were examined for liver tissue pathology, liver function, hepatocyte subcellular structure, lipid peroxidation, ferrous ion deposition and expressions of ferroptosis-related proteins in the liver. In a liver cell line HL7702, the effect of catalpol or the ferroptosis inhibitor Fer-1 on triptolide-induced cytotoxicity was tested by examining cell functions, Fe2+ concentration, lipid peroxidation, ROS level and the ferroptosis-related proteins.
RESULTS:
In C57BL/6J mice, catalpol significantly alleviated triptolide-induced hepatic injury, lowered the levels of ALT, AST and LDH, and reversed the elevation of Fe2+ concentration and MDA level and the reduction of GPX level. In HL7702 cells, inhibition of ferroptosis by Fer-1 significantly reversed triptolide-induced elevation of ALT, AST and LDH levels. Western blotting and qRT-PCR demonstrated that catalpol reversed abnormalities in expressions of SLC7A11, FTH1 and GPX4 at both the mRNA and protein levels in triptolide-treated HL7702 cells.
CONCLUSIONS
The combined use of catalpol can reduce the hepatotoxicity of triptolide in mice by inhibiting excessive hepatocyte ferroptosis through the SLC7A11/GPX4 pathway.
Animals
;
Phenanthrenes/toxicity*
;
Ferroptosis/drug effects*
;
Diterpenes/toxicity*
;
Epoxy Compounds/toxicity*
;
Mice, Inbred C57BL
;
Hepatocytes/metabolism*
;
Mice
;
Phospholipid Hydroperoxide Glutathione Peroxidase
;
Iridoid Glucosides/pharmacology*
;
Liver/metabolism*
;
Chemical and Drug Induced Liver Injury/prevention & control*
;
Male
;
Amino Acid Transport System y+/metabolism*
6.Expert consensus on icotinib as adjuvant therapy for non-small cell lung cancer.
Chinese Journal of Oncology 2023;45(1):31-38
Clinical studies have established the clinical application of epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) adjuvant targeted therapy. Compared with chemotherapy, the high efficiency and low toxicity of targeted therapy increases the survival benefit of patients. Icotinib was the first EGFR-TKI with independent intellectual property rights in China and the third EGFR-TKI to be marketed in the world. In order to summarize the experience of icotinib and other EGFR-TKIs in the adjuvant treatment of non-small cell lung cancer and further standardize and guide the clinical application of icotinib, experts from the China International Exchange and Promotive Association for Medical and Health Care and the Guangdong Association of Thoracic Diseases have organized an expert consensus on the adjuvant treatment of non-small cell lung cancer with icotinib, which is expected to provide clinicians with evidence-based medical evidences for postoperative targeted drug using.
Humans
;
Carcinoma, Non-Small-Cell Lung
;
Lung Neoplasms/surgery*
;
Consensus
;
Mutation
;
ErbB Receptors/genetics*
;
Crown Ethers/therapeutic use*
;
Protein Kinase Inhibitors/therapeutic use*
8.Protective effect and mechanism of Astragalus membranaceus and Angelica sinensis compatibility against triptolide-induced hepatotoxicity by regulating Keap1/Nrf2/PGC-1α.
Wei-Zheng ZHANG ; Xiao-Ming QI ; Yu-Qin ZUO ; Qing-Shan LI
China Journal of Chinese Materia Medica 2023;48(23):6378-6386
This paper aims to investigate the protective effect and mechanism of Astragalus membranaceus and Angelica sinensis before and after compatibility against triptolide(TP)-induced hepatotoxicity. The experiment was divided into a blank group, model group, Astragalus membranaceus group, Angelica sinensis group, and compatibility groups with Astragalus membranaceus/Angelica sinensis ratio of 1∶1, 2∶1, and 5∶1. TP-induced hepatotoxicity model was established, and corresponding drug intervention was carried out. The levels of alanine transaminase(ALT), aspartate transaminase(AST), and alkaline phosphatase(ALP) in serum were detected. Pathological injuries of livers were detected by hematoxylin-eosin(HE) staining. The levels of malondialdehyde(MDA), superoxide dismutase(SOD), glutathione peroxidase(GSH-Px), and reduced glutathione(GSH) in the liver were measured. Wes-tern blot method was used to detect the expression of nuclear factor erythroid 2-related factor 2(Nrf2), Kelch-like ECH-associated protein 1(Keap1), peroxisome proliferator-activated receptor gamma, coactivator-1 alpha(PGC-1α), heme oxygenase-1(HO-1), and NAD(P)H quinone dehydrogenase 1(NQO1) in livers. Immunofluorescence was used to detect the expression of Nrf2 and PGC-1α in livers. The results indicated that Astragalus membranaceus/Angelica sinensis ratio of 2∶1 and 5∶1 could significantly reduce the levels of serum AST, ALT, and ALP, improve the pathological damage of liver tissue, increase the levels of GSH and GSH-Px, and reduce the content of MDA in liver tissue. Astragalus membranaceus/Angelica sinensis ratio of 1∶1 and 2∶1 could significantly improve the level of SOD. Astragalus membranaceus and Angelica sinensis before and after compatibility significantly increased the protein expression of HO-1 and NQO1, improved the protein expression of Nrf2 and PGC-1α, and decreased the protein expression of Keap1 in liver tissue. The above results confirmed that the compatibility of Astragalus membranaceus and Angelica sinensis had antioxidant effects by re-gulating Keap1/Nrf2/PGC-1α, and the Astragalus membranaceus/Angelica sinensis ratio of 2∶1 and 5∶1 had stronger antioxidant effect and significantly reduced TP-induced hepatoto-xicity.
Humans
;
Astragalus propinquus
;
Angelica sinensis
;
NF-E2-Related Factor 2/metabolism*
;
Kelch-Like ECH-Associated Protein 1/metabolism*
;
Antioxidants/pharmacology*
;
Chemical and Drug Induced Liver Injury/prevention & control*
;
Superoxide Dismutase/metabolism*
;
Oxidative Stress
;
Diterpenes
;
Epoxy Compounds
;
Phenanthrenes
9.Determination of concentrations and toxicokinetics of triptolide in plasma and liver of mice by UHPLC-MS/MS.
Guo-Qing LI ; Ting SHU ; Yuan-Yuan CHAI ; Xin HUANG ; Zhen-Zhou JIANG ; Lu-Yong ZHANG
China Journal of Chinese Materia Medica 2022;47(15):4183-4189
This study aims to establish an ultra-high performance liquid chromatography-tandem mass spectrometry(UHPLC-MS/MS) method for determining the concentrations of triptolide(TP) in plasma and liver, and to explore the toxicokinetics of TP and the relationship between TP exposure and liver injury in C57 BL/6 mice, so as to provide reference for dissecting the toxicity mechanism of TP. The liquid chromatography was conducted with ZORBAX SB-C_(18) column(3.0 mm×100 mm, 3.5 μm) and the mobile phase of methanol-0.05 mmol·L~(-1) ammonium acetate. Electrospray ionization(ESI) and multiple reaction monitoring(MRM) mode were employed for mass spectrometry. After oral administration of TP(toxic dose 600 μg·kg~(-1)), the blood and liver tissues of the C57 BL/6 mice were collected at different time points to measure the TP concentrations in plasma and liver tissues. Furthermore, the blood biochemical indexes, including alkaline phosphatase(ALP), alanine aminotransferase(ALT), aspartate aminotransferase(AST), and total bile acid(TBA), were determined. After being processed by DAS 2.0, the experiment data showed that the TP in mice had the toxicokinetic parameters of T_(max)=5 min, C_(max)=14.38 ng·mL~(-1), t_(1/2)=0.76 h, AUC_(0-t)=5.63 h·ng·mL~(-1), MRT_(0-t)=0.56 h, and CL_(Z/F)=103.19 L·h~(-1)·kg~(-1). The trend of TP concentration in mouse liver tissue was consistent with that in plasma. The concentration of TP peaked at the time point of 5 min and then decreased until TP was completely metabolized. The plasma biochemical indexes(ALT, AST, ALP, and TBA) showed no significant changes within 3 h after TP administration. TP had high clearance rate and short residence time and did not significantly increase the blood biochemical indexes in mice. The results suggested that the exposure amount of free TP in vivo cannot directly cause liver injury, which might be caused by the binding of TP to some substances or the stimulation of inflammation and immune response.
Animals
;
Chromatography, High Pressure Liquid/methods*
;
Diterpenes
;
Epoxy Compounds
;
Liver
;
Mice
;
Phenanthrenes
;
Tandem Mass Spectrometry/methods*
;
Toxicokinetics
10.Study on Parametric Release of Ethylene Oxide Sterilization of Medical Devices.
Hongxin HUANG ; Changming HU ; Wenyi LIU ; Wenbo CUI ; Haiying XU ; Peiping ZHU
Chinese Journal of Medical Instrumentation 2022;46(5):574-577
This study briefly introduces the basic theory of sterilization, the characteristics of ethylene oxide sterilization for medical devices and the key factors about sterilization effectiveness, analyzes and compares three methods used in the product release of medical devices sterilized by ethylene oxide: test for sterility, traditional release and parametric release, and focuses on the theoretical basis, feasibility, validation requirements, advantages and disadvantages of parametric release.
Ethylene Oxide
;
Sterilization/methods*

Result Analysis
Print
Save
E-mail