1.Progress in research on defective protein trafficking and functional restoration in HERG-associated long QT syndrome.
Peiliang FANG ; Jiangfang LIAN
Chinese Journal of Medical Genetics 2016;33(1):101-104
The human ether-a-go-go related gene (HERG) encodes the α -subunit of the rapid component of the delayed rectifier K(+) channel, which is essential for the third repolarization of the action potential of human myocardial cells. Mutations of the HERG gene can cause type II hereditary long QT syndrome (LQT2), characterized by prolongation of the QT interval, abnormal T wave, torsade de pointes, syncope and sudden cardiac death. So far more than 300 HERG mutations have been identified, the majority of which can cause LQT2 due to HERG protein trafficking defect. It has been reported that certain drugs can induce acquired long QT syndrome through directly blocking the pore and/or affecting the HERG trafficking. The trafficking defects and K(+) currents can be restored with low temperature and certain drugs. However, the mechanisms underlying defective trafficking caused by HERG mutations and the inhibition/restoration of HERG trafficking by drugs are still unknown. This review summarizes the current understanding of the molecular mechanisms including HERG trafficking under physiological and pathological conditions, and the effects of drugs on the HERG trafficking, in order to provide theoretical evidence for the diagnosis and treatment of long QT syndrome.
Animals
;
ERG1 Potassium Channel
;
Ether-A-Go-Go Potassium Channels
;
genetics
;
metabolism
;
Humans
;
Long QT Syndrome
;
genetics
;
metabolism
;
physiopathology
;
Protein Transport
2.Effects of allitridum on rapidly delayed rectifier potassium current in HEK293 cell line.
Jiancheng ZHANG ; Kun LIN ; Zhixiong WEI ; Qian CHEN ; Li LIU ; Xiaojing ZHAO ; Ying ZHAO ; Bin XU ; Xi CHEN ; Yang LI
Journal of Southern Medical University 2015;35(8):1128-1142
OBJECTIVETo study the effect of allitridum on rapidly delayed rectifier potassium current (IKr) in HEK293 cell line.
METHODSHEK293 cells were transiently transfected with HERG channel cDNA plasmid pcDNA3.1 via Lipofectamine. Allitridum was added to the extracellular solution by partial perfusion after giga seal at the final concentration of 30 µmol/L. Whole-cell patch clamp technique was used to record the HERG currents and gating kinetics before and after allitridum exposure at room temperature.
RESULTSThe amplitude and density of IHERG were both suppressed by allitridum in a voltage-dependent manner. In the presence of allitridum, the peak current of IHERG was reduced from 73.5∓4.3 pA/pF to 42.1∓3.6 pA/pF at the test potential of +50 mV (P<0.01). Allitridum also concentration-dependently decreased the density of the IHERG. The IC50 of allitridum was 34.74 µmol/L with a Hill coefficient of 1.01. Allitridum at 30 µmol/L caused a significant positive shift of the steady-state activation curve of IHERG and a markedly negative shift of the steady-state inactivation of IHERG, and significantly shortened the slow time constants of IHERG deactivation.
CONCLUSIONAllitridum can potently block IHERG in HEK293 cells, which might be the electrophysiological basis for its anti-arrhythmic action.
Allyl Compounds ; pharmacology ; Anti-Arrhythmia Agents ; Delayed Rectifier Potassium Channels ; drug effects ; Ether-A-Go-Go Potassium Channels ; HEK293 Cells ; drug effects ; Humans ; Patch-Clamp Techniques ; Potassium Channel Blockers ; pharmacology ; Sulfides ; pharmacology ; Transfection
3.Effects of midazolam on hERG K+ channel.
Sheng-na HAN ; Pei WANG ; Wei ZHANG ; Li-rong ZHANG
Chinese Journal of Applied Physiology 2015;31(2):143-147
OBJECTIVETo investigate the effect of midazolam on human ether-a-go-go (hERG) K+ channels exogenously expressed in human embryonic kidney cells (HEK-293) and the underlying molecular mechanisms.
METHODSWhole-cell patch clamp technique was used to record WT, Y652A and F656C hERG K+ current expressed in HEK-293 cells.
RESULTSMidazolam inhibited hERG K+ current in a concentration-dependent manner, the half-maximum block concentrations (IC50) values were (1.31 ± 0.32) µmol/L. The half-activation voltage (V1/2) were (2.32 ± 0.38) mV for the control and (-1.96 ± 0.83) mV for 1.0 µmol/L midazolam. The half-inactivation voltage (V1/2) was slightly shifted towards negative voltages from (-49.25 ± 0.69) mV in control to (-57.53 ± 0.53) mV after 1.0 µmol/L midazolam (P < 0.05). Mutations in drug-binding sites (Y652A or F656C) of the hERG channel significantly attenuated the hERG current blockade by midazolam.
CONCLUSIONMidazolam can block hERG K+ channel and cause the speed of inactivation faster. Mutations in the drug-binding sites (Y652 or F656) of the hERG channel were found to attenuate hERG current blockage by midazolam.
Dose-Response Relationship, Drug ; Ether-A-Go-Go Potassium Channels ; drug effects ; HEK293 Cells ; Humans ; Midazolam ; pharmacology ; Mutation ; Patch-Clamp Techniques ; Potassium Channel Blockers ; pharmacology
4.Expression of human ether-a-go-go-related gene in laryngeal carcinoma.
Dashuai LIANG ; Liping WANG ; Wenyue JI
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2015;29(24):2160-2163
OBJECTIVE:
To study the expression of human ether-α-go-go-related gene (herg) and hERG protein expressed by the gene in laryngeal carcinoma compared with the control group(mucosa adjacent to cancer of 2 cm).
METHOD:
Expression of herg and hERG protein was detected by immunohistochemistry (SP) and real-time PCR in resected tissue of laryngeal carcinoma and mucosa adjacent to cancer of 2 cm.
RESULT:
(1) By immunohistochemistry, the positive expression rate of hERG in laryngeal carcinoma was 76.7% (23/30), while it was 10.0% (2/20) in mucosa adjacent to cancer of 2 cm, the difference between which was statistically significant (P < 0.05). (2) By real-time PCR, the expression level of herg mRNA in laryngeal carcinoma is 2.25 times higher than that in mucosa adjacent to cancer of 2 cm.
CONCLUSION
Herg is highly expressed in tissue of laryngeal carcinoma, and it may be have some relevance to the happening and development of laryngeal carcinoma.
ERG1 Potassium Channel
;
Ether-A-Go-Go Potassium Channels
;
metabolism
;
Humans
;
Laryngeal Neoplasms
;
metabolism
;
RNA, Messenger
5.Clinical characteristics of patients with congenital long QT syndrome and bigenic mutations.
Juang Jyh-Ming JIMMY ; Ching-Yu CHEN ; Huei-Ming YEH ; Wei-Yih CHIU ; Chih-Chieh YU ; Yen-Bin LIU ; Chia-Ti TSAI ; Li-Wei LO ; Shih-Fan Sherri YEH ; Ling-Ping LAI
Chinese Medical Journal 2014;127(8):1482-1486
BACKGROUNDCongenital long QT syndrome (LQTS) is an ion channelopathy associated with genetic mutations. It is well known that most LQTS patients (91%) have a single mutation. The purpose of this study was to investigate the clinical characteristics of congenital LQTS patients with bigenic mutations in Taiwan, China.
METHODSCongenital LQTS patients were recruited consecutively at Taiwan University Hospital in Taiwan from 2003 to 2009. The diagnosis of LQTS was defined by an LQTS Schwartz score greater than 4. Mutation screening in KCNQ1, KCNH2, KCNE1, and SCN5A was performed using direct sequencing.
RESULTSThree of 16 LQTS patients (18.7%) were identified with bigenic mutations. One patient had missense mutations in KCNQ1 and KCNH2, the second in KCNQ1 and KCNE1, and the third in KCNH2 and SCN5A. The mean age at onset of LQTS for patients with bigenic mutations was (17 ± 3) years, and all of these patients were female. Two of them experienced seizure and one presented with syncope, although one of them had a family history of syncope. The mean QTc interval was (515 ± 17) ms, similar to those with single mutation or SNPs ((536 ± 74) ms, P = 0.63). Compared to those LQTS patients with single mutation or SNPs, a significantly higher percentage of LQTS patients with bigenic mutations presented with seizure and were younger at onset of the first index event (P = 0.03 and 0.001, respectively), but lower percentage of them presented with sudden cardiac death (P = 0.03).
CONCLUSIONSAlthough the percentage of bigenic mutations in LQTS is less than 10% in Caucasian populations, we identified 3 of 16 LQTS patients (18.7%, 95% confidence interval: 0.04-0.46) with bigenic mutations in Taiwan. However, the severity of their clinical presentations was not higher than those patients with single mutation or SNPs.
Adolescent ; Adult ; Aged ; ERG1 Potassium Channel ; Ether-A-Go-Go Potassium Channels ; genetics ; Female ; Genotype ; Humans ; KCNQ1 Potassium Channel ; genetics ; Long QT Syndrome ; genetics ; pathology ; Male ; Middle Aged ; Mutation ; NAV1.5 Voltage-Gated Sodium Channel ; genetics ; Polymorphism, Single Nucleotide ; genetics ; Potassium Channels, Voltage-Gated ; genetics ; Young Adult
6.Construction of pcDNA3-HERG-G572R expression vector and establishment of a cell line stably expressing HKE-HERG-G572R.
Yang YANG ; Na HUANG ; Ling GAO ; Su'e CHANG ; Bo GUO ; Lili HU ; Tusheng SONG ; Chen HUANG
Journal of Southern Medical University 2014;34(3):308-311
OBJECTIVETo construct the pcDNA3-HERG-G572R expression vector and establish a cell line stably expressing HKE-HERG-G572R.
METHODSHERG-G572R mutant fragment was constructed by over-lap extension PCR and validated by DNA sequencing. The HKE-HERG-G572R expression vector was constructed and transfected into HEK293 cells to obtain a cell line stably expressing HKE-HERG-G572R.
RESULTSThe pcDNA3-HERG-G572R expression vector was successfully constructed and the cell line stably expressing HKE-HERG-G572R was established. Real-time PCR and Western blotting revealed a 632-fold HKE-HERG-G572R overexpression in the transfected HEK293 cells as compared with that in control HEK293 cells transfected with pcDNA3 (P<0.01).
CONCLUSIONThe protocol can be used to construct the cell line stably expressing HKE-HERG-G572R to provide a cell model for studying individualized therapy.
Base Sequence ; Ether-A-Go-Go Potassium Channels ; genetics ; Gene Expression ; Genetic Vectors ; HEK293 Cells ; metabolism ; Humans ; Mutation ; Transfection
7.Effect of berberine, liensinine and neferine on HERG channel expression.
Ting WEI ; Zhe LIANG ; Yan JIN ; Li ZHANG
China Journal of Chinese Materia Medica 2013;38(2):239-244
OBJECTIVEImmunofluorescence and Western blot methods were adopted for qualitative and quantitative detections of the effect of different concentrations of berberine, liensinine and neferine on the expression of stable transfection in HERG potassium channel in HEK-293 cells, as well as the effect of different concentrations of berberine on protein expression of Ikr channel in cardiac muscular tissues, in order to investigate the anti-arrhythmic mechanism of berberine, liensinine and neferine.
METHODWestern blot method was used to detect protein expression of HERG channel in HERG-HEK cells. Immunofluorescence method as well as confocal laser microscope were used to detect the effect of different concentrations of berberine, liensinine and neferine on protein expression of HERG channel. Western blot method was used to detect the effect of different concentrations of berberine on protein expression of Ikr channel in cardiac muscular tissues as well as the effect of berberine, liensinine and neferine on protein expression of stable transfection in HERG potassium channel in HEK-293 cells.
RESULTWestern blot experiment manifested that stable transfection of HEK293 cells containing HERG genes could increase protein expression of HERG channel. Berberine (10, 30 micromol x L(-1)) remarkably inhibited protein expression of HERG channel in HERG-HEK cells (P < 0.01). Berberine (10, 20 mg x kg(-1)) also inhibited protein expression of Ikr channel in rat ventricular tissues (P < 0.05). Liensinine (3, 10, 30 micromol x L(-1)) increased protein expression of HERG channel in HERG-HEK cells (P < 0.05). Neferine showed no effect on protein expression of HERG channel in HERG-HEK cells.
CONCLUSIONThe stably transfection of HERG-HEK cells can increase protein expression of HERG channel. Berberine shows inhibitory effect on protein expressions of in vitro HERG-HEK cells and Ikr channel in rat ventricular tissues. Liensinine improves protein expression of HERG channe in HERG-HEK cells. Neferine shows no effect on protein expression of HERG channel.
Animals ; Anti-Arrhythmia Agents ; analysis ; pharmacology ; Arrhythmias, Cardiac ; drug therapy ; Benzylisoquinolines ; analysis ; pharmacology ; Berberine ; analysis ; pharmacology ; Blotting, Western ; Dose-Response Relationship, Drug ; ERG1 Potassium Channel ; Ether-A-Go-Go Potassium Channels ; drug effects ; metabolism ; Fluorescent Antibody Technique ; Gene Expression Regulation ; drug effects ; HEK293 Cells ; Humans ; Isoquinolines ; analysis ; pharmacology ; Male ; Phenols ; analysis ; pharmacology ; Rats
8.Genetic Mutation in Korean Patients of Sudden Cardiac Arrest as a Surrogating Marker of Idiopathic Ventricular Arrhythmia.
Myoung Kyun SON ; Chang Seok KI ; Seung Jung PARK ; June HUH ; June Soo KIM ; Young Keun ON
Journal of Korean Medical Science 2013;28(7):1021-1026
Mutation or common intronic variants in cardiac ion channel genes have been suggested to be associated with sudden cardiac death caused by idiopathic ventricular tachyarrhythmia. This study aimed to find mutations in cardiac ion channel genes of Korean sudden cardiac arrest patients with structurally normal heart and to verify association between common genetic variation in cardiac ion channel and sudden cardiac arrest by idiopathic ventricular tachyarrhythmia in Koreans. Study participants were Korean survivors of sudden cardiac arrest caused by idiopathic ventricular tachycardia or fibrillation. All coding exons of the SCN5A, KCNQ1, and KCNH2 genes were analyzed by Sanger sequencing. Fifteen survivors of sudden cardiac arrest were included. Three male patients had mutations in SCN5A gene and none in KCNQ1 and KCNH2 genes. Intronic variant (rs2283222) in KCNQ1 gene showed significant association with sudden cardiac arrest (OR 4.05). Four male sudden cardiac arrest survivors had intronic variant (rs11720524) in SCN5A gene. None of female survivors of sudden cardiac arrest had SCN5A gene mutations despite similar frequencies of intronic variants between males and females in 55 normal controls. Common intronic variant in KCNQ1 gene is associated with sudden cardiac arrest caused by idiopathic ventricular tachyarrhythmia in Koreans.
Adolescent
;
Adult
;
Aged
;
Arrhythmias, Cardiac/genetics
;
*Death, Sudden, Cardiac
;
Ether-A-Go-Go Potassium Channels/genetics
;
Female
;
Genetic Markers
;
Genetic Predisposition to Disease
;
Genetic Variation
;
Heart/physiology
;
Heart Conduction System/abnormalities
;
Humans
;
KCNQ1 Potassium Channel/*genetics
;
Male
;
Middle Aged
;
NAV1.5 Voltage-Gated Sodium Channel/*genetics
;
Republic of Korea
;
Tachycardia, Ventricular/*genetics
;
Ventricular Fibrillation/*genetics
;
Young Adult
9.Protein tyrosine phosphatase non-receptor type 12 negatively regulates cardiac HERG channel currents.
Jijin LIN ; Shukai LIU ; Fangfang ZHENG ; Qingyan MA ; Hong YU ; Li REN ; Xinyuan SHEN
Journal of Southern Medical University 2013;33(12):1718-1722
OBJECTIVETo study the effect of protein tyrosine phosphatase non-receptor type 12 (PTPN12) in regulating cardiac HERG channel currents.
METHODSThe plasmids pcDNA3.1-PTPN12-RFP and herg mutant constructed by PCR technique were transfected into HEK293 cells via Lipofectamine 2000, and the cells stably expressing PTPN12 selected with G418 were identified by Western blotting with anti-PTPN12 antibody. HERG channel current in cells expressing HERG alone (HEK293/HERG cells), cells overexpressing PTPN12 (HEK293/HERG cells transfected with pCDNA3.1-PTPN12-RFP), PAO-treated cells (PTPN12/HERG cells treated with PAO), and herg mutant cells (HEK293/HERGY327A-Y700A-Y845A cells transfected with pcDNA3.1-PTPN12-RFP) were recorded by patch-clamp technique.
RESULTSThe plasmids pcDNA3.1-PTPN12-RFP and herg mutant were successfully constructed, and the stable expressing cell lines were established. Red fluorescence was obversed in HEK293/HERG cells transfected with pcDNA3.1-PTPN12-RFP, and the protein expression of PTPN12 was detected. Overexpression of PTPN12 significantly decreased HERG current density in HEK293/HERG cells, and this change was significantly weakened in the inhibitor group and herg mutant group.
CONCLUSIONPTPN12 negatively regulates cardiac HERG channel cerrent possibly by decreasing the phosphorylation level of HERG tyrosine residues. This finding provides further insight into the regulatory mechanism of HERG channel and the pathogenesis of long QT syndrome.
Ether-A-Go-Go Potassium Channels ; physiology ; HEK293 Cells ; Heart ; Humans ; Long QT Syndrome ; Patch-Clamp Techniques ; Protein Tyrosine Phosphatase, Non-Receptor Type 12 ; physiology ; Transfection
10.Expression of Eag1 K(+) channel in prostate cancer and its significance.
Yi-Qun ZHENG ; Zhi-Jian LI ; Xin GAO ; Xiao-Bin ZHANG ; Fa-Jiang LI ; Ying-Jiang SHI ; Gang LUO ; Wei LI
National Journal of Andrology 2013;19(3):205-209
OBJECTIVETo investigate the expression of the Eag1 K( +) channel in the prostate cancer (PCa) tissue, its correlation with the development and progression of PCa, and whether it could be a target for the diagnosis and treatment of PCa.
METHODSWe used RT-PCR and immunohistochemistry to determine the mRNA and protein expressions of the Eag1 K(+) channel in the normal peritumoral tissue of androgen-dependent PCa (ADPCa) (group A) and androgen-independent PCa (AIPCa) (group B) as well as in the tumorous tissue of ADPCa (group C) and AIPCa (group D).
RESULTSThe relative coefficients of the mRNA expression of the Eag1 K(+) channel were 0.265 +/- 0.413, 0.167 +/- 0.511, 2.673 +/- 2.988 and 2.815 +/- 2.901 in groups A, B, C and D, respectively, increased significantly in the latter two groups (P < 0.05). The positive rates of the protein expression of the Eag1 K (+) channel were significantly higher in groups C (88.9%) and D (86.7%) than in A (7.4%) and B (6.7%) (P < 0.05).
CONCLUSIONThe Eag1 K(+) channel might be involved in the pathophysiological processes of PCa, and is expected to be a valuable target for the diagnosis and treatment of PCa.
Ether-A-Go-Go Potassium Channels ; metabolism ; Humans ; Immunohistochemistry ; Male ; Prostate ; metabolism ; pathology ; Prostatic Neoplasms ; metabolism ; pathology ; RNA, Messenger ; genetics ; Reverse Transcriptase Polymerase Chain Reaction

Result Analysis
Print
Save
E-mail