1.Icariin promotes alcohol-inhibited osteogenic differentiation of MC3T3-1-E1 cells by regulating LAP autophagy.
Qi ZENG ; Yue-Ping CHEN ; Shi-Lei SONG ; Yu LAI ; Hua-Hua WU
China Journal of Chinese Materia Medica 2025;50(3):590-599
This study investigated the mechanism of autophagy in the differentiation processes of MC3T3-E1 cells under osteogenic induction(physiological) and alcohol(AL) intervention(pathological), as well as the mechanism by which icariin(ICA) affected osteogenic differentiation of MC3T3-E1 cells under the pathological condition of AL intervention. Osteogenic mineralized nodule staining confirmed that the cells could differentiate into osteoblasts. After determining the appropriate concentrations of AL and ICA using the CCK-8 assay, seven groups were set up in this study: complete medium(CM) group, osteogenic induction medium(OIM) group, OIM+0.25 mol·L~(-1) AL group, OIM+0.25 mol·L~(-1) AL+1×10~(-8) mol·L~(-1) ICA group, OIM+0.25 mol·L~(-1) AL+1×10~(-7) mol·L~(-1) ICA group, OIM+0.25 mol·L~(-1) AL+1×10~(-6) mol·L~(-1) ICA group, and OIM+0.25 mol·L~(-1) AL+1×10~(-5) mol·L~(-1) ICA group, with a culture period of 7 days. Alkaline phosphatase(ALP) staining was used to detect the relative ALP area. Western blot and RT-qPCR were employed to analyze the expression of osteogenesis-and autophagy-related proteins and mRNAs. Reactive oxygen species(ROS) staining was used to detect ROS levels, and apoptosis was assessed through mitochondrial membrane potential assays. The results showed that ICA increased the relative ALP area that had been reduced by AL intervention. AL down-regulated the expression levels of Wnt family member 1(Wnt1), along with the osteogenesis-related mRNAs Wnt1, β-catenin, Runt-related transcription factor 2(Runx2), osteoprotegerin(OPG), and ALP, thereby inhibiting osteogenic differentiation. ICA up-regulated the expression levels of the osteogenesis-related proteins and mRNAs that had been inhibited by AL, promoting osteogenic differentiation. AL inhibited typical autophagy, while ICA regulated Rubicon to suppress LC3-associated phagocytosis(LAP) and promote typical autophagy. ICA also reduced the ROS levels that were elevated by AL and decreased the apoptosis of osteoblasts induced by AL intervention. In conclusion, ICA can regulate Rubicon to inhibit LAP, promote typical autophagy, eliminate ROS, reduce apoptosis, and ultimately enhance the osteogenic differentiation of MC3T3-E1 cells under the pathological condition of AL intervention by modulating the Wnt/β-catenin signaling pathway.
Autophagy/drug effects*
;
Animals
;
Osteogenesis/drug effects*
;
Mice
;
Cell Differentiation/drug effects*
;
Osteoblasts/metabolism*
;
Ethanol/pharmacology*
;
Flavonoids/pharmacology*
;
Cell Line
;
Reactive Oxygen Species/metabolism*
;
Drugs, Chinese Herbal/pharmacology*
2.Antipyretic effects of ethanol extracts of Arisaematis Rhizoma fermented with bile from different sources.
Run ZOU ; Fa-Zhi SU ; En-Lin ZHU ; Chen-Xi BAI ; Yan-Ping SUN ; Hai-Xue KUANG ; Qiu-Hong WANG
China Journal of Chinese Materia Medica 2025;50(7):1781-1791
This study aims to investigate the antipyretic effects and mechanisms of ethanol extracts from Arisaematis Rhizoma fermented with bile from different sources on a rat model of fever induced by a dry-yeast suspension. The rat model of fever was established by subcutaneous injection of 20% dry-yeast suspension into the rat back. The levels of tumor necrosis factor-α(TNF-α), interleukin-1β(IL-1β), interleukin-6(IL-6) in the serum, as well as prostaglandin E_2(PGE_2) and cyclic adenosine monophosphate(cAMP) in the hypothalamus, were determined by ELISA. Metabolomics analysis was then performed on serum and hypothalamus samples based on UPLC-Q-TOF MS to explore the potential biomarkers and metabolic pathways. The results showed that the body temperatures of rats significantly rose 4 h after modeling. After oral administration of high-dose ethanol extracts of Arisaematis Rhizoma fermented with bovine bile(NCH) and porcine bile(ZCH), the body temperatures of rats declined(P<0.05), and the NCH group showed better antipyretic effect than the ZCH group. Additionally, compared with the model group, the NCH and ZCH groups showed lowered levels of IL-1β, IL-6, TNF-α, PGE_2, and cAMP(P<0.01). The results of serum and hypothalamus metabolomics analysis indicated that both NCH and ZCH exerted antipyretic effects by regulating phenylalanine metabolism, sphingolipid metabolism, arachidonic acid metabolism, and steroid hormone biosynthesis. Collectively, both NCH and ZCH can play an obvious antipyretic role in the rat model of dry yeast-induced fever, and the underlying mechanism might be closely associated with inhibiting inflammation and regulating metabolic disorders. Moreover, NCH demonstrates better antipyretic effect.
Animals
;
Rats
;
Male
;
Fermentation
;
Rats, Sprague-Dawley
;
Rhizome/metabolism*
;
Drugs, Chinese Herbal/chemistry*
;
Bile/chemistry*
;
Antipyretics/chemistry*
;
Fever/metabolism*
;
Cattle
;
Swine
;
Tumor Necrosis Factor-alpha/metabolism*
;
Ethanol/chemistry*
;
Interleukin-6/blood*
;
Interleukin-1beta/blood*
3.Research progress in the role of gut microbiota in ethanol metabolism.
Yuchun YANG ; Xiaojie ZHANG ; Ti CHEN
Journal of Central South University(Medical Sciences) 2025;50(3):501-510
In recent years, gut microbiota has been increasingly recognized as a key player in ethanol metabolism and the development of related diseases. On one hand, ethanol intake directly affects the gut, leading to significant alterations in microbial diversity and composition. On the other hand, gut microbiota influences ethanol-induced damage to various organs, especially the liver, through multiple metabolic byproducts (such as short-chain fatty acids like butyrate, propionate, and acetate), modulation of immune responses, alteration of intestinal barrier function, and regulation of ethanol-metabolizing enzymes. Given the close association between gut microbiota and ethanol metabolism, the gut microbiome presents a promising therapeutic target for alcohol-related liver diseases. This review summarizes recent advances in understanding how gut microbiota affects ethanol metabolism, aiming to elucidate its role in the onset and progression of ethanol-related diseases and to provide a theoretical basis and novel targets for microbiota-based interventions.
Gastrointestinal Microbiome/physiology*
;
Ethanol/metabolism*
;
Humans
;
Fatty Acids, Volatile/metabolism*
;
Liver Diseases, Alcoholic/metabolism*
;
Animals
;
Alcohol Drinking/metabolism*
4.Cytoprotective activity of Pogonatherum paniceum (Lam.) Hack. ethanolic extract evaluated by synchrotron radiation-based Fourier transform infrared microspectroscopy.
Benjawan DUNKHUNTHOD ; Kanjana THUMANU ; Yothin TEETHAISONG ; Priyada SITTISART ; Patcharawan SITTISART
Journal of Integrative Medicine 2025;23(2):182-194
OBJECTIVE:
The present study investigated the cytoprotective effects of a Pogonatherum paniceum extract prepared with 80% ethanol (PPE) using synchrotron radiation-based Fourier transform infrared (SR-FTIR) microspectroscopy and determined its phytochemical profile.
METHODS:
The volatile and polyphenolic compounds in PPE were characterized using gas chromatography-mass spectrometry and liquid chromatography-mass spectrometry, respectively. The antioxidant capacity of PPE was evaluated using chemical and cell-based assays. The SR-FTIR microspectroscopy was performed to evaluate the cytoprotective effect of PPE by identifying changes in macromolecule composition in tert-butyl hydroperoxide (tBuOOH)-induced oxidative damage in RAW264.7 cells.
RESULTS:
A total of 48 volatile compounds and 28 polyphenol components were found in PPE. PPE exhibited a high potential for antioxidant activity by scavenging the intracellular reactive oxygen species in tBuOOH-induced oxidative damage in RAW264.7 cells. PPE treatment also significantly protected RAW264.7 cells against tBuOOH-induced toxicity and restored cell viability. The SR-FTIR analysis revealed that tBuOOH increased the lipid and ester lipid content in RAW264.7 cells. The PPE exerted a cytoprotective effect by decreasing the levels of lipid and ester lipid compounds that had been elevated by tBuOOH in RAW264.7 cells. These findings indicate that PPE has cytoprotective potential due to its ability to inhibit endogenous reactive oxygen species.
CONCLUSION
This study extends the current knowledge on the phytochemistry of PPE and its antioxidant and cytoprotective effects. These findings support the use of SR-FTIR microspectroscopy to determine the cytoprotective effects of natural products. PPE extract may be a candidate compound for new therapeutics and nutraceuticals that target the prevention of oxidative stress-associated diseases. Please cite this article as: Dunkhunthod B, Thumanu K, Teethaisong Y, Sittisart P, Sittisart P. Cytoprotective activity of Pogonatherum paniceum (Lam.) Hack. ethanolic extract evaluated by synchrotron radiation-based Fourier transform infrared microspectroscopy. J Integr Med. 2025; 23(2): 182-194.
Animals
;
Mice
;
Spectroscopy, Fourier Transform Infrared/methods*
;
Plant Extracts/chemistry*
;
RAW 264.7 Cells
;
Synchrotrons
;
Oxidative Stress/drug effects*
;
Antioxidants/pharmacology*
;
Ethanol/chemistry*
;
Poaceae/chemistry*
;
Cell Survival/drug effects*
;
Cytoprotection/drug effects*
;
Reactive Oxygen Species/metabolism*
;
tert-Butylhydroperoxide
5.Capsaicin (CAP) exerts a protective effect against ethanol-induced oxidative gastric mucosal injury by modulating the chemokine receptor 4 (CCR4)/Src/p47phox signaling pathway both in vitro and in vivo.
Zhiru YANG ; Haolin GUO ; Pengfei ZHANG ; Kairui LIU ; Junli BA ; Xue BAI ; Shiti SHAMA ; Bo ZHANG ; Xiaoning GAO ; Jun KANG
Chinese Journal of Natural Medicines (English Ed.) 2025;23(2):191-202
Ethanol (EtOH) is a common trigger for gastric mucosal diseases, and mitigating oxidative stress is essential for attenuating gastric mucosal damage. Capsaicin (CAP) has been identified as a potential agent to counteract oxidative damage in the gastric mucosa; however, its precise mechanism remains unclear. This study demonstrates that CAP alleviates EtOH-induced gastric mucosal injuries through two primary pathways: by suppressing the chemokine receptor 4 (CCR4)/Src/p47phox axis, thereby reducing oxidative stress, and by inhibiting the phosphorylation and nuclear translocation of nuclear factor-κB p65 (NF-κB) p65, resulting in diminished inflammatory responses. These findings elucidate the mechanistic pathways of CAP and provide a theoretical foundation for its potential therapeutic application in the treatment of gastric mucosal injuries.
Ethanol/toxicity*
;
Animals
;
Gastric Mucosa/metabolism*
;
Signal Transduction/drug effects*
;
Oxidative Stress/drug effects*
;
Capsaicin/pharmacology*
;
Male
;
NADPH Oxidases/genetics*
;
Mice
;
Humans
;
src-Family Kinases/genetics*
6.Salidroside alleviates high glucose and ethanol-induced pyroptosis in insulinoma cells.
Xiao-Han LI ; Xu GUO ; Shi-Qi CHEN ; Yan-Guo GAO ; Jun ZHOU ; Yong-Hong ZHANG ; Qi-Bin WANG ; Li CHEN ; Tao ZHENG
China Journal of Chinese Materia Medica 2024;49(22):6181-6189
This study established a pyroptosis injury model by stimulating insulinoma cells(INS-1) of rats with high glucose(HG) and observed the impact of additional ethanol(ET) exposure on cell pyroptosis, as well as the intervention effect of salidroside(SAL). INS-1 cells were cultured and divided into a normal control group(NG), an HG group, an HG + ET(100 mmol·L~(-1)) group, and an HG + ET + SAL(1-100 μmol·L~(-1)) group. After 72 hours of treatment, cell viability was assessed using the cell counting kit-8(CCK-8) assay. The number of pyroptotic bodies was observed under a microscope. Western blot was used to detect changes in the intracellular Nod-like receptor protein 3(NLRP3)/gasdermin D(GSDMD) signaling pathway and adenosine monophosphate-activated protein kinase(AMPK) activity. A fluorescence probe was used to detect changes in intracellular reactive oxygen species(ROS) levels. Time-resolved fluorescence resonance energy transfer(TR-FRET) technology was employed to observe the effect of SAL on recombinant AMPK protein kinase activity in vitro. The results showed that compared to the NG group, HG exposure induced an increase in the number of pyroptotic bodies, elevated ROS levels, and activation of the NLRP3/GSDMD signaling pathway in INS-1 cells. Compared to the HG group, HG + ET exposure further exacerbated these changes. Compared to the HG + ET group, SAL dose-dependently increased cell viability, reduced the formation of pyroptotic bodies in INS-1 cells, and inhibited excessive ROS production, overactivation of the NLRP3/GSDMD signaling pathway, and the decrease in AMPK activity. TR-FRET experiments indicated that SAL could directly activate AMPK. When INS-1 cells were pretreated with an AMPK inhibitor, the effects of SAL on increasing cell viability, alleviating the formation of pyroptotic bodies, and inhibiting excessive ROS production were abolished. These results suggest that SAL can alleviate HG combined with ET-induced exacerbation of INS-1 pyroptosis by activating AMPK.
Pyroptosis/drug effects*
;
Animals
;
Rats
;
Glucose/metabolism*
;
Insulinoma/metabolism*
;
Ethanol/pharmacology*
;
Reactive Oxygen Species/metabolism*
;
Glucosides/pharmacology*
;
Phenols/pharmacology*
;
Cell Line, Tumor
;
Signal Transduction/drug effects*
;
NLR Family, Pyrin Domain-Containing 3 Protein/genetics*
;
Cell Survival/drug effects*
;
AMP-Activated Protein Kinases/metabolism*
;
Phosphate-Binding Proteins/genetics*
7.Methyl ferulic acid ameliorates ethanol-induced L02 cell steatosis through microRNA-378b-mediated CaMKK2-AMPK pathway.
Ping HUANG ; Xing CHEN ; Rong-Hua MENG ; Jun LU ; Yan ZHANG ; Li LI ; Yong-Wen LI
China Journal of Chinese Materia Medica 2023;48(1):193-201
Alcoholic liver disease(ALD), with its increasing morbidity and mortality, has seriously and extensively affected the health of people worldwide. Methyl ferulic acid(MFA) has been proven to significantly inhibit alcohol-induced lipid production in L02 cells through the AMP-activated protein kinase(AMPK) pathway, but its in-depth mechanism remains unclear. This study aimed to further clarify the mechanism of MFA in improving lipid accumulation in L02 cells through the microRNA-378b(miR-378b)-mediated calcium/calmodulin-dependent protein kinase kinase 2(CaMKK2)-AMPK signaling pathway based on existing researches. L02 cells were induced by 100 mmol·L~(-1) ethanol for 48 h to establish the model of ALD in vitro, and 100, 50, and 25 μmol·L~(-1) concentration of MFA was treated. MiR-378b plasmids(containing the overexpression plasmid-miR-378b mimics, silence plasmid-miR-378b inhibitor, and their respective negative control-miR-378b NCs) were transfected into L02 cells by electroporation to up-regulate or down-regulate the levels of miR-378b in L02 cells. The levels of total cholesterol(TC) and triglyceride(TG) in cells were detected by commercial diagnostic kits and automatic biochemical analyzers. The expression levels of miR-378b in L02 cells were detected by real-time quantitative polymerase chain reaction(qRT-PCR). CaMKK2 mRNA levels were detected by PCR, and protein expressions of related factors involved in lipid synthesis, decomposition, and transport in lipid metabolism were detected by Western blot. The results displayed that ethanol significantly increased TG and TC levels in L02 cells, while MFA decreased TG and TC levels. Ethanol up-regulated the miR-378b level, while MFA effectively inhibited the miR-378b level. The overexpression of miR-378b led to lipid accumulation in ethanol-induced L02 cells, while the silence of miR-378b improved the lipid deposition induced by ethanol. MFA activated the CaMKK2-AMPK signaling pathway by lowering miR-378b, thus improving lipid synthesis, decomposition, and transport, which improved lipid deposition in L02 cells. This study shows that MFA improves lipid deposition in L02 cells by regulating the CaMKK2-AMPK pathway through miR-378b.
Humans
;
Ethanol/toxicity*
;
AMP-Activated Protein Kinases/metabolism*
;
Fatty Liver
;
Triglycerides
;
MicroRNAs/genetics*
;
Calcium-Calmodulin-Dependent Protein Kinase Kinase/genetics*
8.Anti-oxidant and Anti-inflammatory Effects of Ethanol Extract from Polygala sibirica L. var megalopha Fr. on Lipopolysaccharide-Stimulated RAW264.7 Cells.
Cheng-Liu YANG ; Shi-Bo WANG ; Wen-Ping HE ; Jin-Juan LIU
Chinese journal of integrative medicine 2023;29(10):905-913
OBJECTIVE:
To investigate the anti-oxidant and anti-inflammatory effects of ethanol extract of Polygala sibirica L. var megalopha Fr. (EEP) on RAW264.7 mouse macrophages.
METHODS:
RAW264.7 cells were pretreated with 0-200 µg/mL EEP or vehicle for 2 h prior to exposure to 1 µg/mL lipopolysaccharide (LPS) for 24 h. Nitric oxide (NO) and prostaglandin (PGE2) production were determined by Griess reagent and enzyme-linked immunosorbent assay (ELISA), respectively. The mRNA levels of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), tumor necrosis factor α (TNF-α), interleukin-1beta (IL-1β), and IL-6 were determined using reverse transcription polymerase chain reaction (RT-PCR). Western blot assay was used to determine the protein expressions of iNOS, COX-2, phosphorylation of extracellular regulated protein kinases (ERK1/2), c-Jun N-terminal kinase (JNK), inhibitory subunit of nuclear factor Kappa B alpha (Iκ B-α) and p38. Immunofluorescence was used to observe the nuclear expression of nuclear factor-κ B p65 (NF-κ B p65). Additionally, the anti-oxidant potential of EEP was evaluated by reactive oxygen species (ROS) production and the activities of catalase (CAT) and superoxide dismutase (SOD). The 2,2-diphenyl-1-picrylhydrazyl (DPPH), hydroxyl (OH), superoxide anion (O2-) radical and nitrite scavenging activity were also measured.
RESULTS:
The total polyphenol and flavonoid contents of EEP were 23.50±2.16 mg gallic acid equivalent/100 g and 43.78±3.81 mg rutin equivalent/100 g. With EEP treatment (100 and 150 µg/mL), there was a notable decrease in NO and PGE2 production induced by LPS in RAW264.7 cells by downregulation of iNOS and COX-2 mRNA and protein expressions (P<0.01 or P<0.05). Furthermore, with EEP treatment (150 µg/mL), there was a decrease in the mRNA expression levels of TNF-α, IL-1β and IL-6, as well as in the phosphorylation of ERK, JNK and p38 mitogen-activated protein kinase (MAPK, P<0.01 or P<0.05), by blocking the nuclear translocation of NF-κ B p65 in LPS-stimulated cells. In addition, EEP (100 and 150 µg/mL) led to an increase in the anti-oxidant enzymes activity of SOD and CAT, with a concomitant decrease in ROS production (P<0.01 or P<0.05). EEP also indicated the DPPH, OH, O2- radical and nitrite scavenging activity.
CONCLUSION
EEP inhibited inflammatory responses in activated macrophages through blocking MAPK/NF-κ B pathway and protected against oxidative stress.
Animals
;
Mice
;
Antioxidants/pharmacology*
;
Lipopolysaccharides/pharmacology*
;
Polygala
;
Transcription Factor RelA/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Ethanol/chemistry*
;
Interleukin-6/metabolism*
;
Anti-Inflammatory Agents/chemistry*
;
Reactive Oxygen Species/metabolism*
;
Cyclooxygenase 2/metabolism*
;
Nitrites/metabolism*
;
NF-kappa B/metabolism*
;
Nitric Oxide/metabolism*
;
Superoxide Dismutase/metabolism*
;
RNA, Messenger
;
Nitric Oxide Synthase Type II/metabolism*
9.Lipid nanoparticle delivery of siRNA targeting Cyp2e1 gene attenuates subacute alcoholic liver injury in mice.
Shuang WU ; Qiubing CHEN ; Yalan WANG ; Hao YIN ; Yuan WEI
Journal of Zhejiang University. Medical sciences 2023;52(3):306-317
OBJECTIVES:
To investigate the effect and mechanism of lipid nanoparticle (LNP) delivery of small interfering RNA (siRNA) targeting Cyp2e1 gene on subacute alcoholic liver injury in mice.
METHODS:
siRNA targeting Cyp2e1 gene was encapsulated in LNP (si-Cyp2e1 LNP) by microfluidic technique and the resulting LNPs were characterized. The optimal dose of si-Cyp2e1 LNP administration was screened. Forty female C57BL/6N mice were randomly divided into blank control group, model control group, si-Cyp2e1 LNP group, LNP control group and metadoxine group. The subacute alcoholic liver injury mouse model was induced by ethanol feeding for 10 d plus ethanol gavage for the last 3 d. Serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities, and the superoxide dismutase (SOD) activity as well as malondialdehyde, reactive oxygen species, glutathione, triacylglycerol, total cholesterol contents in liver tissue were measured in each group, and liver index was calculated. The expression of genes related to oxidative stress, lipid synthesis and inflammation in each group of mice were measured by realtime RT-PCR.
RESULTS:
Compared with the model control group, the levels of liver index, serum ALT, AST activities, malondialdehyde, reactive oxygen species, triacylglycerol, total cholesterol contents in liver tissue decreased, but the SOD activity as well as glutathione increased in the si-Cyp2e1 LNP group (all P<0.01). Hematoxylin-eosin staining result showed disorganized hepatocytes with sparse cytoplasm and a large number of fat vacuoles and necrosis in the model control group, while the si-Cyp2e1 LNP group had uniformly sized and arranged hepatocytes with normal liver tissue morphology and structure. Oil red O staining result showed si-Cyp2e1 LNP group had lower fat content of the liver compared to the model control group (P<0.01), and no fat droplets accumulated. Anti-F4/80 monoclonal antibody fluorescence immunohistochemistry showed that the si-Cyp2e1 LNP group had lower cumulative optical density values compared to the model control group (P<0.01) and no significant inflammatory reaction. Compared with the model control group, the expression of catalytic genes P47phox, P67phox and Gp91phox were reduced (all P<0.01), while the expression of the antioxidant enzyme genes Sod1, Gsh-rd and Gsh-px were increased (all P<0.01). The mRNA expression of the lipid metabolism genes Pgc-1α and Cpt1 were increased (all P<0.01) and the lipid synthesis-related genes Srebp1c, Acc and Fasn were decreased (all P<0.01); the expression of liver inflammation-related genes Tgf-β, Tnf-α and Il-6 were decreased (all P<0.01).
CONCLUSIONS
The si-Cyp2e1 LNP may attenuate subacute alcoholic liver injury in mice mainly by reducing reactive oxygen levels, increasing antioxidant activity, blocking oxidative stress pathways and reducing ethanol-induced steatosis and inflammation.
Animals
;
Female
;
Mice
;
Antioxidants/metabolism*
;
Cholesterol/metabolism*
;
Ethanol/pharmacology*
;
Glutathione/pharmacology*
;
Inflammation
;
Lipids/pharmacology*
;
Liver
;
Malondialdehyde/pharmacology*
;
Mice, Inbred C57BL
;
Oxidative Stress
;
Reactive Oxygen Species/metabolism*
;
RNA, Small Interfering/pharmacology*
;
Superoxide Dismutase
;
Triglycerides/metabolism*
;
Cytochrome P-450 CYP2E1/metabolism*
10.The effects of different herbal compound and extracts from different extraction methods on hypoxia tolerance in mice.
Wan-Yu LI ; Hui-Ping MA ; Qu-Huan MA ; Xiao-Feng SHI ; Yan-Mei LU ; Peng-Peng ZHANG ; Jia-Xu ZHANG ; Xue-Feng DONG ; Qian-Nju YE
Chinese Journal of Applied Physiology 2022;38(3):199-204
Objective: To investigate the effects of different prescription compositions of traditional Chinese medicine and its different extraction methods of compound formula extracts on hypoxia tolerance in mice, in order to preferably select their prescription compositions and preparation extraction methods. Methods: Male BALB/c mice were randomly divided into 6 groups: blank control group, compound danshen group, compound Rhodiola Rosea alcohol-water extract group (Rhodiola rosea, Astragali Radix, Polygonati Rhizoma, Lycii Fructus), compound Rhodiola Rosea water extract group, compound Astragalus alcohol-water extract group (Astragali Radix, Polygonati Rhizoma, Lycii Fructus) and compound Astragalus water extract group, 30 mice in each group. Each group was administered continuously by gavage for 10 d. The blank group was gavaged with sterilized injection water. The mice in the other groups were treated with 0.15 g/kg of compound danshen, 3 g/kg of compound Rhodiola Rosea alcohol-water extract or water extract, and 1.7 g/kg of compound Astragalus alcohol-water extract or water extract, respectively. Each group was subjected to normobaric hypoxia tolerance test, sodium nitrite toxicity survival test and acute cerebral ischemia-hypoxia test 1 h after the last gavage, and the mice brain tissues were used to determine the activity of antioxidant enzymes and metabolites related to oxidative stress. Results: Compared with the blank control group, in normobaric hypoxia tolerance test, the survival time of mice in the compound danshen group and the compound Astragalus alcohol-water extract group and water extraction group was prolonged significantly (P<0.01), and the number of open-mouth gasping after cerebral ischemia and hypoxia was increased significantly (P<0.05). There was no statistical difference in survival time after sodium nitrite injection in each group. Compared with the blank control group, the activities of T-AOC, SOD, GSH and CAT were increased significantly (P<0.05, P<0.01) and the content of MDA was decreased significantly (P<0.01) in the compound Astragalus water extract group. Compared with the compound danshen group, the activities of SOD, CAT and GSH were increased significantly (P<0.01, P<0.05) and the content of MDA was decreased significantly (P<0.05). Conclusion: Compound Astragalus water extraction has the best effect of hypoxia tolerance, compound Rhodiola Rosea can eliminate Rhodiola rosea and consists of Astragali Radix, Polygonati Rhizoma, Lycii Fructus and its extraction method is water extraction.
Animals
;
Astragalus Plant
;
Ethanol
;
Hypoxia
;
Male
;
Mice
;
Plant Extracts/pharmacology*
;
Rhodiola
;
Sodium Nitrite
;
Superoxide Dismutase/metabolism*
;
Water

Result Analysis
Print
Save
E-mail