1.Effect of 17β-estradiol on the proliferation of condylar chondrocytes.
Shuai ZHANG ; Jiang Hong WANG ; Li Jie TIAN ; Bao Li WANG ; Juan ZHANG
West China Journal of Stomatology 2021;39(6):651-657
OBJECTIVES:
To study the effects of 17β-estradiol (E2) on the regulation of the proliferation of condylar chondrocytes and provide a preliminary discussion on the role of phosphorylate-mammalian target of rapamycin (p-mTOR) in this regulatory process.
METHODS:
Condylar chondrocytes were isolated from 6-week-old female rats for primary culture. Drug treatment with different concentrations of E2 and/or rapamycin (RAPA) was carried out on second-generation cells. Cell Counting Kit 8 was used to measure the cell viability of condylar chondrocytes after culture for 24, 48, or 72 h, and reverse transcription-polymerase chain reaction (RT-PCR) was applied to detect the relative gene expression of estrogen receptor alpha (ERα), estrogen receptor beta (ERβ), collagen type Ⅱ (COLⅡ), autophagy-related gene 6 (Beclin-1), and autophagy-related gene 5 (ATG-5). Western blot was employed to determine the relative protein expression of ERα, ERβ, Beclin-1, lipid-modified light chain 3B (LC3-Ⅱ), and p-mTOR.
RESULTS:
E2 could significantly promote the proliferation of chondrocytes cultured
CONCLUSIONS
At a concentration of 10
Animals
;
Autophagy
;
Cell Proliferation
;
Chondrocytes
;
Estradiol
;
Estrogen Receptor alpha/metabolism*
;
Estrogen Receptor beta
;
Female
;
Phosphorylation
;
Rats
2.Ovarian Clear Cell Carcinoma Sub-Typing by ARID1A Expression.
Jae Yoon CHOI ; Hyun Ho HAN ; Young Tae KIM ; Joo Hyun LEE ; Baek Gil KIM ; Suki KANG ; Nam Hoon CHO
Yonsei Medical Journal 2017;58(1):59-66
PURPOSE: Loss of AT-rich DNA-interacting domain 1A (ARID1A) has been identified as a driving mutation of ovarian clear cell carcinoma (O-CCC), a triple-negative ovarian cancer that is intermediary between serous and endometrioid subtypes, in regards to molecular and clinical behaviors. However, about half of O-CCCs still express BAF250a, the protein encoded by ARID1A. Herein, we aimed to identify signatures of ARID1A-positive O-CCC in comparison with its ARID1A-negative counterpart. MATERIALS AND METHODS: Seventy cases of O-CCC were included in this study. Histologic grades and patterns of primary tumor, molecular marker immunohistochemistry profiles, and clinical outcomes were analyzed. RESULTS: Forty-eight (69%) O-CCCs did not express BAF250a, which were designated as "ARID1A-negative." The other 22 (31%) O-CCCs were designated as "ARID1A-positive." ARID1A-positive tumors were more likely to be histologically of high grades (41% vs. 10%, p=0.003), ERβ-positive (45% vs. 17%, p=0.011), and less likely to be HNF1β-positive (77% vs. 96%, p=0.016) and E-cadherin-positive (59% vs. 83%, p=0.028) than ARID1A-negative tumors. Patient age, parity, tumor stage were not significantly different in between the two groups. Cancer-specific survival was not significantly different either. CONCLUSION: We classified O-CCCs according to ARID1A expression status. ARID1A-positive O-CCCs exhibited distinct immunohistochemical features from ARID1A-negative tumors, suggesting a different underlying molecular event during carcinogenesis.
Adenocarcinoma, Clear Cell/*metabolism/mortality/pathology
;
Adult
;
Aged
;
Biomarkers, Tumor/metabolism
;
Cadherins/metabolism
;
Estrogen Receptor beta/metabolism
;
Female
;
Humans
;
Immunohistochemistry
;
Middle Aged
;
Mutation
;
Neoplasm Proteins/*metabolism
;
Nuclear Proteins/*metabolism
;
Ovarian Neoplasms/*metabolism/mortality/pathology
;
Transcription Factors/*metabolism
3.Effects of compound malt pills on expressions of ERα and ERβ in ovaries of rats with letrozole-induced polycystic ovarian syndrome.
Shuang WANG ; Nan LAN ; Yangbojun YANG ; Rong CHEN
Journal of Central South University(Medical Sciences) 2016;41(2):134-142
OBJECTIVE:
To explore the effect of compound malt pills (CMP) on polycystic ovarian syndrome (PCOS) rat model induced by letrozole and the underlying mechanisms.
METHODS:
To establish a PCOS rat model, 48 female SD rats aged 6 weeks were randomly divided into 6 groups (n=8): A normal group, a model control group, a positive control group, a low-dose CMP group, a middle-dose CMP group, and a high-dose CMP group. Rats were treated for 21 days after the PCOS model was successfully established. Ovarian morphology changes were observed, and the expressions of ERα and ERβ was examined by immunohistochemistry, Western blot and RT-PCR, respectively.
RESULTS:
Compared with the normal group, the number of follicular cystic dilatation in the model control group was increased and the granulosa cells were decreased. After the treatment, the number of follicular cystic dilatation was reduced compared with the model control group, but the primordial follicles, corpus luteum and granulosa cells were increased. The expressions of ERα and ERβ in the model control group were significantly decreased (P<0.01), which were increased in the intervention groups (P<0.05 or P<0.01).
CONCLUSION
CMP may play a role in the treatment of PCOS by regulating the expressions of ERα and ERβ.
Animals
;
Corpus Luteum
;
drug effects
;
Disease Models, Animal
;
Drugs, Chinese Herbal
;
pharmacology
;
Estrogen Receptor alpha
;
metabolism
;
Estrogen Receptor beta
;
metabolism
;
Female
;
Granulosa Cells
;
drug effects
;
Letrozole
;
Nitriles
;
adverse effects
;
Ovarian Follicle
;
drug effects
;
Polycystic Ovary Syndrome
;
chemically induced
;
metabolism
;
Rats
;
Rats, Sprague-Dawley
;
Triazoles
;
adverse effects
4.Mitochondrial estrogen receptor β inhibits non-small cell lung cancer cell apoptosis via interaction with Bad.
Qiang XIE ; Zuoping HUANG ; Ying LIU ; Xiao LIU ; Lei HUANG
Journal of Southern Medical University 2015;35(1):98-102
OBJECTIVETo explore the molecular mechanisms by which mitochondrial estrogen receptor β (ERβ) suppresses non-small cell lung cancer cell apoptosis induced by apoptotic stimulations.
METHODSThe mitochondrial localization of ERβ in non-small cell lung cancer cell lines A549 and 201T was determined using immunofluorescence and Western blotting. The changes of apoptosis of the cells with mitochondrial ERβ overexpression or knockdown in response to cisplatin and STS treatments were assessed, and mitochondrial ERβ interaction with the pro-apoptotic protein Bad was detected using co-immunoprecipitation and Western blotting.
RESULTSERβ was localized in the mitochondria in A549 and 201T cells. ERβ overexpression significantly reduced while ERβ knockdown increased Bax activation and cell apoptosis induced by cisplatin and STS. Mitochondrial ERβ interaction with pro-apoptotic protein Bad may suppress Bax activation and its translocation to the mitochondria.
CONCLUSIONMitochondrial ERβ can suppress apoptosis of non-small cell lung cancer cells induced by cisplatin or STS through interaction with Bad, suggesting the value of mitochondrial ERβ as a new therapeutic target for treatment of non-small cell lung cancer.
Apoptosis ; Carcinoma, Non-Small-Cell Lung ; pathology ; Cell Line, Tumor ; Cisplatin ; Estrogen Receptor beta ; metabolism ; Humans ; Mitochondrial Proteins ; metabolism ; bcl-Associated Death Protein ; metabolism
5.Expression of Ki-67 and estrogen receptor in the uterus of mice with autoimmune premature ovarian failure induced by peptide zona pellucida 3.
Huihua CAI ; Xiafei FU ; Xuwen REN ; Xiazhu CHEN ; Dongmei ZHANG ; Yuanli HE
Journal of Southern Medical University 2015;35(7):992-997
OBJECTIVETo investigate the histomorphology and the expressions of the proliferation marker Ki-67 and estrogen receptor in the uterus of mice with autoimmune premature ovarian failure (POF) induced by zona pellucida 3 peptide (pZP3).
METHODSAutoimmune POP models were established in 20 female BALB/c mice (7-8 weeks old) by immunization with pZP3 and another 20 mice served as the control group. The POP models were verified by vaginal cytology, serum sex hormones, ovary histomorphology and ZP3 antibody immunohistochemistry. The histomorphology and expressions of Ki-67, estrogen receptor α and estrogen receptor β in the uterus of the mice were detected.
RESULTSAutoimmune POP models were established successfully in 80% of the mice at 8 weeks after the immunization. Compared with those in the control group, the mice in the model group showed a smaller volume of the uterus, thinner endometrium and a reduced number of glands. The luminal epithelial cells, glandular epithelial cells and stromal cells in the uterus of the model mice all presented with a lower expression of Ki-67 than those in the control group, and Ki-67 translocation from the nuclei to the cytoplasm was found in the model group. The luminal epithelial cells, glandular epithelial cells and stromal cells showed positive ERα immunoreactivity in the model group but not in the control group. No obvious ERβ expression was found in the uterus in either of the groups.
CONCLUSIONpZP3 can induce autoimmune POP, cause suppressed proliferation of the endometrial epithelial cells and stromal cells, and reduce the cellular expression of ERα in the uterus of mice.
Animals ; Autoimmune Diseases ; metabolism ; Cell Nucleus ; Egg Proteins ; Endometrium ; Epithelial Cells ; Estrogen Receptor alpha ; metabolism ; Estrogen Receptor beta ; metabolism ; Female ; Immunohistochemistry ; Ki-67 Antigen ; metabolism ; Membrane Glycoproteins ; Mice ; Mice, Inbred BALB C ; Primary Ovarian Insufficiency ; metabolism ; Receptors, Cell Surface ; Stromal Cells ; Uterus ; metabolism ; Zona Pellucida Glycoproteins
6.Cancer therapy using natural ligands that target estrogen receptor beta.
Gangadhara R SAREDDY ; Ratna K VADLAMUDI
Chinese Journal of Natural Medicines (English Ed.) 2015;13(11):801-807
Estrogen receptor beta (ERβ) is one of the two key receptors (ERα, ERβ) that facilitate biological actions of 17β-estradiol (E2). ERβ is widely expressed in many tissues, and its expression is reduced or lost during progression of many tumors. ERβ facilitates estrogen signaling by both genomic (classical and non-classical) and extra-nuclear signaling. Emerging evidence suggests that ERβ functions as a tissue-specific tumor suppressor with anti-proliferative actions. Recent studies have identified a number of naturally available selective ERβ agonists. Targeting ERβ using its naturally available ligands is an attractive approach for treating and preventing cancers. This review presents the beneficial actions of ERβ signaling and clinical utility of several natural ERβ ligands as potential cancer therapy.
Antineoplastic Agents, Phytogenic
;
pharmacology
;
therapeutic use
;
Equol
;
pharmacology
;
therapeutic use
;
Estrogen Receptor beta
;
antagonists & inhibitors
;
metabolism
;
Flavanones
;
pharmacology
;
therapeutic use
;
Genistein
;
pharmacology
;
therapeutic use
;
Glycyrrhiza
;
chemistry
;
Humans
;
Ligands
;
Neoplasms
;
drug therapy
;
metabolism
;
Phytotherapy
;
Plant Extracts
;
pharmacology
;
therapeutic use
;
Soybeans
;
chemistry
7.Estrogen receptor-β expression in laryngeal carcinoma: correlation with the expression of epithelial-mesenchymal transition specific biomarkers.
Lan MU ; Jingcheng GU ; Yongchao ZHANG ; Yan LIANG ; Chuan WANG ; Wang LI
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2015;29(10):921-924
OBJECTIVE:
To detect the expression of ERβ in laryngeal carcinoma and the its correlation with the expression of epithelial-mesenchymal transition(EMT) specific biomarkers.
METHOD:
Picture MT-Pv9000 was used to detect ERβ and EMT in 72 cases of human aqueous laryngeal carcinoma and 8 cases of adjacent non-neoplastic laryngeal mucosa by immunohistochemistry.
RESULT:
The positive rates of ERβ in tumors and adjacent non-neoplastic laryngeal mucosa were 27.78% and 25.00%, respectively. The differences were not significant (P > 0.05). The abnormal expression rates of E-cadherin and β-catenin were 61.11% and 76.39% respectively. The expression of ERβ correlated negatively with the loss of E-cadherin, nuclear translocation of β-catenin and increased TNM stage. The differences were significant (P < 0.05).
CONCLUSION
The positive expressions of ERβ suggest a good prognosis in the differentiation, clinical stages and lymphatic metastasis of the laryngeal carcinoma. The underlying mechanism may be related with the abnormal expressions of E-cadherin and β-catenin.
Antigens, CD
;
Biomarkers, Tumor
;
metabolism
;
Cadherins
;
metabolism
;
Epithelial-Mesenchymal Transition
;
Estrogen Receptor beta
;
metabolism
;
Humans
;
Immunohistochemistry
;
Laryngeal Neoplasms
;
metabolism
;
Lymphatic Metastasis
;
beta Catenin
;
metabolism
8.Low-dose nonylphenol promotes the proliferation of DU-145 cells and expression of membrane estrogen receptor GPR30 in DU-145 cells.
Wei-Dong GAN ; Ming ZHOU ; Yang HU ; Dong-Mei LI ; Rui-Peng JIA
National Journal of Andrology 2014;20(5):405-409
OBJECTIVETo observe the effects of low-dose exogenous estrogen nonylphenol (NP) on the proliferation of human prostate cancer cell lines DU-145 and the expression of the membrane estrogen receptor GPR30 in the DU-145 cells.
METHODSWe exposed DU-145 cells to different concentrations of NP for 24 hours, followed by measurement of the half maximal inhibitory concentration (IC50) of the cells by cell proliferation assay and determination of the concentration of exposure to low-dose NP. We also observed the expressions of 3 estrogen receptors (ER), including ER-alpha, ER-beta and membrane estrogen receptor GPR30, in the DU-145 cells exposed to low-dose NP by RT-PCR.
RESULTSCell proliferation assay showed that within a certain range of doses, NP inhibited the proliferation of the DU-145 cells with an IC50 of 46 micromol/L, a much lower dose of NP than IC50, 0.01, 0.1.1 micromol/l NP, that can promote the proliferation of DU-145 cells. The results of RT-PCR indicated that the expressions of the three ERs in the DU-145 cells were similar to those in prostate epithelial cells, and that low-dose NP promoted the expression of GPR30.
CONCLUSIONMembrane estrogen receptor GPR30 may play a role in low-dose NP promoting the proliferation of DU-145 cells.
Cell Line, Tumor ; Cell Proliferation ; drug effects ; physiology ; Estrogen Receptor alpha ; metabolism ; Estrogen Receptor beta ; metabolism ; Estrogens ; Humans ; Male ; Phenols ; administration & dosage ; pharmacology ; Prostatic Neoplasms ; metabolism ; pathology ; Receptors, Estrogen ; metabolism ; Receptors, G-Protein-Coupled ; metabolism ; Reverse Transcriptase Polymerase Chain Reaction
9.Gender-specific Colorectal Cancer: Epidemiologic Difference and Role of Estrogen.
The Korean Journal of Gastroenterology 2014;63(4):201-208
Gender difference in the incidence of colorectal cancer is well known and has been supported by various epidemiologic studies. In Korea, women have lower incidence of colorectal cancer and adenoma, and the incidence in men has recently increased. Hormone replacement therapy in menopausal women is preventive of colorectal cancer but can cause cardiovascular diseases and breast cancer. Estrogen exerts diverse effects through estrogen receptors, ERalpha and ERbeta. ERbeta is associated with anti-proliferation and apoptosis. The ratio of ERalpha/ERbeta is important in the protection and tumorigenesis of colorectal cancer. Therefore ERbeta modulation has been investigated for preventing or treating colorectal cancer and avoiding adverse effects of estrogen at the same time. In addition, the gender-difference in the incidence of colorectal cancer should be taken into account when making guidelines on colorectal surveillance for Korean population.
Adenoma/diagnosis/epidemiology/mortality
;
Colorectal Neoplasms/*diagnosis/epidemiology/mortality
;
Estradiol Dehydrogenases/metabolism
;
Estrogen Receptor alpha/metabolism
;
Estrogen Receptor beta/metabolism
;
Estrogens/*metabolism
;
Humans
;
Sex Factors
10.Effect of carnosol against proliferative activity of breast cancer cells and its estrogen receptor subtype's mediation and regulation mechanisms.
Pi-Wen ZHAO ; David Yue-Wei LEE ; Zhong-Ze MA ; Yan-Ling SUN ; Shi-Ying TAO ; Jin-Feng ZANG ; Jian-Zhao NIU
China Journal of Chinese Materia Medica 2014;39(17):3344-3348
Carnosol has been proved to have anti-breast cancer effect in previous research. But its ER subtype's specific regulation and mediation mechanisms remain unclear. The aim of this study is to observe the effect of carnosol on cell proliferation and its estrogen receptor α and β's specific regulation and mediation mechanisms with ER positive breast cancer T47D cell. With estrogen receptor α and β antagonists MPP and PHTPP as tools, the MTT cell proliferation assay was performed to observe the effect of carnosol on T47D cell proliferation. The changes in the T47D cell proliferation cycle were detected by flow cytometry. The effect of carnosol on ERα and ERβ expressions of T47D cells was measured by Western blot. The findings showed that 1 x 10(-5)-1 x 10(-7) mol x L(-1) carnosol could significantly inhibit the T47D cell proliferation, which could be enhanced by MPP or weakened by PHTPP. Meanwhile, 1 x 10(-5) mol x L(-1) or 1 x 10(-6) mol x L(-1) carnosol could significantly increase ERα and ERβ expressions of T47D cells, and remarkably increase ERα/ERβ ratio. The results showed that carnosol showed the inhibitory effect on the proliferation of ER positive breast cancer cells through target cell ER, especially ERβ pathway. In the meantime, carnosol could regulate expressions and proportions of target cell ER subtype ERα and ERβ.
Blotting, Western
;
Breast Neoplasms
;
metabolism
;
pathology
;
Cell Cycle
;
drug effects
;
Cell Line, Tumor
;
Cell Proliferation
;
drug effects
;
Diterpenes, Abietane
;
chemistry
;
pharmacology
;
Dose-Response Relationship, Drug
;
Estrogen Receptor Modulators
;
pharmacology
;
Estrogen Receptor alpha
;
antagonists & inhibitors
;
metabolism
;
Estrogen Receptor beta
;
antagonists & inhibitors
;
metabolism
;
Female
;
Flow Cytometry
;
Humans
;
Molecular Structure
;
Pyrazoles
;
pharmacology
;
Pyrimidines
;
pharmacology

Result Analysis
Print
Save
E-mail