1.Mechanism of Hedyotis diffusa-Scutellaria barbata D. Don for treatment of primary liver cancer: analysis with network pharmacology, molecular docking and in vitro validation.
Meng XU ; Lina CHEN ; Jinyu WU ; Lili LIU ; Mei SHI ; Hao ZHOU ; Guoliang ZHANG
Journal of Southern Medical University 2025;45(1):80-89
OBJECTIVES:
To investigate the active ingredients in Hedyotis diffusa-Scutellaria barbata D. Don and the main biological processes and signaling pathways mediating their inhibitory effect on primary hepatocellular carcinoma (HCC).
METHODS:
The core intersecting genes of HCC and the two drugs were screened from TCMSP, Uniport, Genecards, and String databases using Cytoscape software, and GO and KEGG enrichment analyses of the intersecting genes were conducted. Molecular docking between the active ingredients of the drugs and the core genes was carried out using Pubcham, RCSB and Autoduckto to identify the active ingredients with the highest binding energy, whose inhibitory effect on HepG2 cells was verifies using CCK-8 assay, flow cytometry and Western blotting.
RESULTS:
TP53 and ESR1 were identified as the core genes of HCC and the two drugs. GO and KEGG analyses showed that the two genes were mainly involved in regulation of apoptotic signaling pathway, cell population proliferation, methane raft, and protein kinase activity, and participated in the signaling pathways of apoptosis, proteoglycans in cancer, PI3K Akt signaling pathway, and hepatitis B. Molecular docking studies showed that the active ingredients of the drugs could be docked with TP53 and ESR1 genes under natural conditions, and ursolic acid had the highest binding energy to ESR1 (-4.98 kcal/mol). The results of CCK-8 assay, flow cytometry and Western blotting all demonstrated significant inhibitory effect of ursolic acid on HepG2 cells.
CONCLUSIONS
The inhibitory effect of Hedyotis diffusa-scutellariae barbatae on HCC is mediated by multiple active ingredients in the two drugs.
Humans
;
Molecular Docking Simulation
;
Liver Neoplasms/drug therapy*
;
Hep G2 Cells
;
Network Pharmacology
;
Carcinoma, Hepatocellular/drug therapy*
;
Hedyotis/chemistry*
;
Signal Transduction/drug effects*
;
Cell Proliferation/drug effects*
;
Tumor Suppressor Protein p53/metabolism*
;
Apoptosis/drug effects*
;
Estrogen Receptor alpha/metabolism*
;
Drugs, Chinese Herbal/pharmacology*
2.Tianxiangdan (TXD) alleviates myocardial ischemia reperfusion-induced ferroptosis through the activation of estrogen receptor alpha (ERα).
Yuanjia YUE ; Yu LI ; Xing RONG ; Zhao JI ; Huimin WANG ; Liang CHEN ; Lin JIANG
Chinese Journal of Natural Medicines (English Ed.) 2025;23(1):102-110
Tianxiangdan (TXD), a traditional Chinese herbal remedy, demonstrates efficacy in mitigating myocardial ischemia-reperfusion (I/R)-induced damage. This study employed network pharmacology to evaluate the therapeutic targets and mechanisms of TXD in treating I/R. High-performance liquid chromatography-mass spectrometry (HPLC-MS) identified 86 compounds in TXD. Network pharmacological analysis predicted potential target genes and their modes of action. Cardiac function, ischaemic ST changes, lactate dehydrogenase (LDH), malondialdehyde (MDA), superoxide dismutase (SOD) activity, myocardial fiber, and infarct size were assessed using in vivo and in vitro I/R injury models. Estrogen receptor alpha (ERα) protein expression and estradiol (E2) levels were measured to confirm TXD's impact on estrogen levels and ERα expression. To examine if TXD reduces I/R injury through ERα, an AZD group (300 nmol·L-1 AZD9496 and 15% TXD serum) was compared to a TXD group (15% TXD serum). The study hypothesized that TXD upregulates the ERα-mediated iron metamorphosis pathway. I/R injury-induced ferroptosis was identified using a Fer-1 group (1.0 μmol·L-1 Fer-1 and 15% TXD serum) to elucidate the potential association between ferroptosis and ERα proteins. A DCFH-DA probe detected reactive oxygen species (ROS) and Fe2+, while Western blotting assessed target protein expression. Both in vitro and in vivo experiments demonstrated that TXD attenuated I/R injury by reducing elevated ST-segment levels, improving cardiac injury biomarkers (LDH, MDA, and SOD), alleviating pathological features, and preventing I/R-induced loss of cell viability in vitro. The effects and mechanisms of TXD on I/R injury-associated ferroptosis were investigated using I/R-induced H9c2 cells. The TXD group showed significantly decreased ROS and Fe2+ levels, while the AZ group (treated with AZD9496) exhibited increased levels. The TXD group demonstrated enhanced expression of ERα and glutathione peroxidase 4 (GPX4), with reduced levels of P53 protein and ferritin-heavy polypeptide 1 (FTH1). The AZ group exhibited contrasting effects on these expression levels. The literature indicated a novel connection between ERα and ferroptosis. TXD activates the ERα signaling pathway, promoting protection against I/R-induced myocardial cell ferroptosis. This study provides evidence supporting TXD use for myocardial ischemia treatment, particularly in older female patients who may benefit from its therapeutic outcomes.
Animals
;
Ferroptosis/drug effects*
;
Estrogen Receptor alpha/genetics*
;
Myocardial Reperfusion Injury/genetics*
;
Drugs, Chinese Herbal/pharmacology*
;
Male
;
Mice
;
Humans
;
Mice, Inbred C57BL
;
Estradiol/metabolism*
4.Therapeutic effect of Leonuri Herba aqueous decoction on primary dysmenorrhea in rats and its metabolomic analysis.
Liu-Jun WU ; Yan CHEN ; Zi-Wei LIN ; Chen SUN ; Liang XIONG ; Xiao-Fang XIE ; Cheng PENG
China Journal of Chinese Materia Medica 2023;48(22):6093-6106
This study aimed to investigate the therapeutic effect of Leonuri Herba aqueous decoction on primary dysmenorrhea(PD) and explore the underlying mechanism in conjunction with untargeted metabolomics. Forty adult female rats were randomly divi-ded into a normal group, a model control group, ibuprofen(0.12 g·kg~(-1)) group, and high-and low-dose Leonuri Herba aqueous decoction(5 and 2.5 g·kg~(-1)) groups, with eight rats in each group. The PD rat model was prepared using intramuscular injection of estradiol benzoate combined with intraperitoneal injection of pitocin. Drugs were administered by gavage from the 4th day of modeling for 7 d. After the last administration, pitocin was injected intraperitoneally, and the writhing latency and writhing times within 30 min were recorded. The uterine and ovarian coefficients were determined. Estradiol(E_2), progesterone(Prog), oxytocin(OT), cyclooxyge-nase 2(COX-2), prostaglandin E_2(PGE_2), prostaglandin F_(2α)(PGF_(2α)), and Ca~(2+) levels in uterine tissues were measured by ELISA and biochemical kits. Morphological changes in uterine and ovarian tissues were observed by hematoxylin-eosin(HE) staining. The protein expression of oxytocin receptor(OTR), prostaglandin E_2 receptor 3(EP3), and estrogen receptor alpha(ERα) in uterine tissues was detected by immunohistochemistry. The mRNA expression of OTR, PGE_2 receptors 1-4(EP1, EP2, EP3, and EP4), and PGF_(2α) receptor(FP) in uterine tissues was detected by quantitative real-time PCR. Untargeted metabolomics analysis was performed by ultra-high-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry(LC-QTOF-MS) technology to screen potential biomarkers and enrich metabolic pathways. The results showed that Leonuri Herba was able to significantly reduce the writhing times in PD rats(P<0.05 or P<0.01), significantly reduce the uterine and ovarian coefficients(P<0.01), and improve their histomorphology. After treatment with Leonuri Herba, PGE_2 content was significantly increased(P<0.05), COX-2, PGF_(2α) and Ca~(2+) content, and PGF_(2α)/PGE_2 was significantly decreased(P<0.05 or P<0.01), and OT content was decreased, while E_2 and Prog content tended to further increase in uterine tissues of PD rats. Correspondingly, OTR and EP3 protein expression was significantly downregulated(P<0.05 or P<0.01) and ERα protein expression was upregulated(P<0.05) in uterine tissues. The mRNA expression of FP and EP4 in uterine tissues was significantly downregulated(P<0.01), and the mRNA expression of EP1, EP3, and OTR showed a decreasing trend. The untargeted metabolomics results showed that 10 differential metabolites were restored in the plasma of PD rats after Leonuri Herba treatment. The results indicate that Leonuri Herba is effective in the prevention and treatment of PD, and the underlying mechanism may be attributed to the regulation of PGs synthesis and corresponding receptor binding.
Humans
;
Rats
;
Female
;
Animals
;
Estrogen Receptor alpha
;
Oxytocin
;
Dysmenorrhea/metabolism*
;
Cyclooxygenase 2
;
Dinoprostone
;
RNA, Messenger/metabolism*
;
Dinoprost
5.Preparation and characterization of Ad-ERα-36-Fc-GFP.
Yuqiong XIE ; Chunchun LI ; Xiaoye LI ; Lihong CHEN ; Maoxiao YAN ; Jiang CAO
Chinese Journal of Biotechnology 2022;38(3):1086-1095
ERα-36 is a novel subtype of estrogen receptor α which promotes tumor cell proliferation, invasion and drug resistance, and it serves as a therapeutic target. However, only small-molecule compounds targeting ERα-36 are under development as anticancer drugs at present. Gene therapy approach targeting ERα-36 can be explored using recombinant adenovirus armed with decoy receptor. The recombinant shuttle plasmid pDC316-Ig κ-ERα-36-Fc-GFP was constructed via genetic engineering to express an Ig κ-signaling peptide-leading secretory recombinant fusion protein ERα-36-Fc. The recombinant adenovirus Ad-ERα-36-Fc-GFP was subsequently packaged, characterized and amplified using AdMaxTM adenovirus packaging system. The expression of fusion protein and functional outcome of Ad-ERα-36-Fc-GFP transduction were further analyzed with triple-negative breast cancer MDA-MB-231 cells. Results showed that the recombinant adenovirus Ad-ERα-36-Fc-GFP was successfully generated. The virus effectively infected MDA-MB-231 cells which resulted in expression and secretion of the recombinant fusion protein ERα-36-Fc, leading to significant inhibition of EGFR/ERK signaling pathway. Preparation of the recombinant adenovirus Ad-ERα-36-Fc-GFP provides a basis for further investigation on cancer gene therapy targeting ERα-36.
Adenoviridae/genetics*
;
Cell Proliferation
;
Estrogen Receptor alpha/metabolism*
;
Recombinant Proteins
;
Transfection
6.Estrogen Receptor-A in Medial Preoptic Area Contributes to Sex Difference of Mice in Response to Sevoflurane Anesthesia.
Yunyun ZHANG ; Huiming LI ; Xinxin ZHANG ; Sa WANG ; Dan WANG ; Jiajia WANG ; Tingting TONG ; Zhen ZHANG ; Qianzi YANG ; Hailong DONG
Neuroscience Bulletin 2022;38(7):703-719
A growing number of studies have identified sex differences in response to general anesthesia; however, the underlying neural mechanisms are unclear. The medial preoptic area (MPA), an important sexually dimorphic structure and a critical hub for regulating consciousness transition, is enriched with estrogen receptor alpha (ERα), particularly in neuronal clusters that participate in regulating sleep. We found that male mice were more sensitive to sevoflurane. Pharmacological inhibition of ERα in the MPA abolished the sex differences in sevoflurane anesthesia, in particular by extending the induction time and facilitating emergence in males but not in females. Suppression of ERα in vitro inhibited GABAergic and glutamatergic neurons of the MPA in males but not in females. Furthermore, ERα knockdown in GABAergic neurons of the male MPA was sufficient to eliminate sex differences during sevoflurane anesthesia. Collectively, MPA ERα positively regulates the activity of MPA GABAergic neurons in males but not in females, which contributes to the sex difference of mice in sevoflurane anesthesia.
Anesthesia
;
Animals
;
Estrogen Receptor alpha/metabolism*
;
Female
;
Male
;
Mice
;
Preoptic Area
;
Sevoflurane/pharmacology*
;
Sex Characteristics
7.Effect of 17β-estradiol on the proliferation of condylar chondrocytes.
Shuai ZHANG ; Jiang Hong WANG ; Li Jie TIAN ; Bao Li WANG ; Juan ZHANG
West China Journal of Stomatology 2021;39(6):651-657
OBJECTIVES:
To study the effects of 17β-estradiol (E2) on the regulation of the proliferation of condylar chondrocytes and provide a preliminary discussion on the role of phosphorylate-mammalian target of rapamycin (p-mTOR) in this regulatory process.
METHODS:
Condylar chondrocytes were isolated from 6-week-old female rats for primary culture. Drug treatment with different concentrations of E2 and/or rapamycin (RAPA) was carried out on second-generation cells. Cell Counting Kit 8 was used to measure the cell viability of condylar chondrocytes after culture for 24, 48, or 72 h, and reverse transcription-polymerase chain reaction (RT-PCR) was applied to detect the relative gene expression of estrogen receptor alpha (ERα), estrogen receptor beta (ERβ), collagen type Ⅱ (COLⅡ), autophagy-related gene 6 (Beclin-1), and autophagy-related gene 5 (ATG-5). Western blot was employed to determine the relative protein expression of ERα, ERβ, Beclin-1, lipid-modified light chain 3B (LC3-Ⅱ), and p-mTOR.
RESULTS:
E2 could significantly promote the proliferation of chondrocytes cultured
CONCLUSIONS
At a concentration of 10
Animals
;
Autophagy
;
Cell Proliferation
;
Chondrocytes
;
Estradiol
;
Estrogen Receptor alpha/metabolism*
;
Estrogen Receptor beta
;
Female
;
Phosphorylation
;
Rats
8.Inokosterone Is A Potential Drug Target of Estrogen Receptor 1 in Rheumatoid Arthritis Patients: Analysis from Active Ingredient of Cyathula Officinalis.
Ji-Hao MO ; Han-Kun XIE ; Ye-Mian ZHOU ; Sihan-Benjamin NG ; Shao-Xia LI ; Lei WANG
Chinese journal of integrative medicine 2021;27(10):767-773
OBJECTIVE:
To elucidate the active compounds and the molecular mechanism of Cyathula Officinalis as a drug treatment for rheumatoid arthritis (RA).
METHODS:
The target genes of active ingredients from Cyathula Officinalis were obtained from bioinformatics analysis tool for the molecular mechanism of traditional Chinese medicine. The protein-protein interaction between the target genes were analyzed using STRING and Genemania. The transcriptome of RA patients compared to healthy people (GSE121894) were analyzed using R program package Limma. The relative expression of the target genes was obtained from the RNA-seq datasets. The molecular docking analyses were processed based on the molecular model of estrogen receptor 1 (ESR1) binding with estradiol (PDB ID:1A52). The binding details were analyzed by SYBYL.
RESULTS:
Inokosterone, ecdysterone, and cyaterone were the 3 active ingredients from Cyathula Officinalis that bind to target genes. Of all the significantly changed genes from RA patients, ESR1, ADORA1, and ANXA1 were significantly increased in mRNA samples of RA patients.
CONCLUSION
ESR1, the transcription factor that binds inokosterone in the molecular binding analysis, is the target protein of Cyathula Officinalis.
Arthritis, Rheumatoid/genetics*
;
Cholestenes
;
Estrogen Receptor alpha
;
Humans
;
Molecular Docking Simulation
;
Pharmaceutical Preparations
9.Mechanism of traditional Chinese medicine balancing Yin-Yang by targeting ERα/ERβ and its application in treatment of menopausal syndrome.
Pi-Wen ZHAO ; Yan-Xia WANG ; Jian-Zhao NIU
China Journal of Chinese Materia Medica 2020;45(16):3770-3775
The coordination and unification of Yin and Yang are the basis of normal human life activities. Along with the age growth and aging of the body, women will suffer from menopausal syndrome during menopause. In addition to the significant changes in the genital system, there are also pathological manifestations in estrogen target points including bone, nerve and cardiovascular systems, due to the imbalance of Yin and Yang. Besides the insufficiency of estrogen, the main cause of menopausal syndrome is the changes in the response of target organs to estrogen. In other words, the biological effects mediated by estrogen receptor(ER) alpha and beta subtypes in target cells are often different or even opposite; the changes of expression level and ratio of ERα and ERβ are also important causes for the abnormal estrogenic effects in target organs and the imbalance of Yin and Yang of the body. Therefore, on one hand, the therapeutic mechanism of drugs is ER-mediated estrogenic effect. On the other hand, the drugs have a regulatory effect on ER subtype expression in target cells and Yin-Yang state in target organs and even organisms, so as to cause further changes in the response of target cells to estrogen or estrogenic components, and exert its therapeutic effects. This paper reviews the pharmacological mechanism of gynecological traditional Chinese medicine in harmonizing Yin and Yang in estrogen-positive target cells and the clinical efficacy in the following aspects, including estrogen and its mechanism, the estrogenic effect of ER in traditional Chinese medicine and the mechanism of ER subtype in balancing Yin and Yang and mediating and regulating the main target tissues in menopausal syndrome treatment.
Estrogen Receptor alpha
;
Estrogen Receptor beta
;
Estrogens
;
Female
;
Humans
;
Medicine, Chinese Traditional
;
Yin-Yang
10.Low-magnitude vibration promotes osteogenesis of osteoblasts in ovariectomized osteoporotic rats via the estrogen receptor
Guangguang ZHU ; Xiaoqin YU ; Jirui WEN ; Mingyue BAO ; Min TANG ; Jingge WANG ; Xueling HE ; Liang LI
Journal of Biomedical Engineering 2020;37(5):825-833
The purpose of this study was to investigate the effect of low-magnitude vibration on osteogenesis of osteoblasts in ovariectomized rats with osteoporosis via estrogen receptor α(ERα). The mRNA expression of osteogenic markers were examined with qRT-PCR, based on which the optimal vibration parameter for promoting osteogenesis was determined (45 Hz × 0.9 g, g = 9.8 m/s
Animals
;
Cell Differentiation
;
Estrogen Receptor alpha/genetics*
;
Female
;
Osteoblasts
;
Osteogenesis
;
Osteoporosis
;
Ovariectomy
;
Rats
;
Vibration

Result Analysis
Print
Save
E-mail