1.Regulatory effects of moxibustion at "Guanyuan" (CV4) on extragonadal estrogen and estrogen receptors in ovariectomized rats.
Qingchen ZHOU ; Xinyan GAO ; Kun LIU ; Bing ZHU
Chinese Acupuncture & Moxibustion 2025;45(12):1770-1776
OBJECTIVE:
To observe the regulatory effects of moxibustion at "Guanyuan" (CV4) on the synthesis of extragonadal estradiol (E2) and the expression of estrogen receptor (ER) in ovariectomized rats, aiming to explore the mechanism of moxibustion treatment for perimenopausal syndrome.
METHODS:
Forty-eight SD female rats of SPF grade were randomly divided into a sham-operation group, a model group and a moxibustion group, with 16 rats in each group. The model group and the moxibustion group underwent bilateral ovariectomy by the back incision method. Ten days after surgery, moxibustion was applied at "Guanyuan" (CV4) in the moxibustion group, 30 min each time, once a day for 10 days. After intervention, in the 3 groups, the body mass and uterus weight were measured; the serum levels of follicle stimulating hormone (FSH), luteinizing hormone (LH) and E2, as well as the skin and hypothalamus levels of E2 were detected by ELISA; the mRNA expression of aromatase (P450arom) in the skin and hypothalamus was detected by real-time PCR; the expression of ERα and ERβ in the hypothalamus, skin, and uterus was observed by immunofluorescence staining, and the density of positive cells was calculated using the Aipathwell digital pathology image analysis software.
RESULTS:
Compared with the sham-operation group, the body mass was increased (P<0.01) and the uterus weight was decreased (P<0.001) in the model group. Compared with the model group, the body mass was decreased in the moxibustion group (P<0.01). Compared with the sham-operation group, in the model group, the serum, hypothalamus and skin levels of E2 were decreased (P<0.01, P<0.05), while the serum levels of FSH and LH were increased (P<0.01); the expression of ERα and ERβ in the skin, hypothalamus and uterus was decreased (P<0.05, P<0.001). Compared with the model group, in the moxibustion group, the serum levels of E2 and LH, as well as the hypothalamus and skin levels of E2 were increased (P<0.05, P<0.01); the mRNA expression of P450arom, as well as the expression of ERα and ERβ in the skin and hypothalamus were increased (P<0.05).
CONCLUSION
Moxibustion at "Guanyuan" (CV4) reduces the body mass of ovariectomized rats by enhancing the synthesis of extragonadal E2 and increasing the expression of ER in the skin and hypothalamus, yet it does not alleviate uterine atrophy.
Animals
;
Female
;
Moxibustion
;
Rats
;
Ovariectomy
;
Acupuncture Points
;
Rats, Sprague-Dawley
;
Humans
;
Receptors, Estrogen/genetics*
;
Estrogens/metabolism*
;
Estradiol/metabolism*
;
Hypothalamus/metabolism*
;
Follicle Stimulating Hormone/blood*
;
Aromatase/genetics*
;
Luteinizing Hormone/blood*
;
Skin/metabolism*
2.Analysis of Hormone Levels in Patients with Hematological Diseases Before and After Hematopoietic Stem Cell Tansplantation.
Fen LI ; Yu-Jin LI ; Jie ZHAO ; Zhi-Xiang LU ; Xiao-Li GAO ; Hai-Tao HE ; Xue-Zhong GU ; Feng-Yu CHEN ; Hui-Yuan LI ; Qi SA ; Lin ZHANG ; Peng HU
Journal of Experimental Hematology 2025;33(5):1443-1452
OBJECTIVE:
By analyzing the hormone secretion of the adenohypophysis, thyroid glands, gonads, and adrenal cortex in patients with hematological diseases before and after hematopoietic stem cell transplantation (HSCT), this study aims to preliminarily explore the effect of HSCT on patients' hormone secretion and glandular damage.
METHODS:
The baseline data of 209 hematological disease patients who underwent HSCT in our hospital from January 2019 to December 2023, as well as the data on the levels of hormones secreted by the adenohypophysis, thyroid glands, gonads and adrenal cortex before and after HSCT were collected, and the changes in hormone levels before and after transplantation were analyzed.
RESULTS:
After allogeneic HSCT, the levels of thyroid-stimulating hormone (TSH), triiodothyronine (T3), free triiodothyronine (FT3) and estradiol (E2) decreased, while the levels of luteinizing hormone (LH) and follicle- stimulating hormone (FSH) increased. The T3 level of patients with decreased TSH after transplantation was lower than that of those with increased TSH after transplantation. In female patients, the levels of prolactin (PRL), progesterone (Prog), and testosterone (Testo) decreased after HSCT. Testo and PRL decreased when there was a donor-recipient sex mismatch, and the levels of adrenocorticotropic hormone (ACTH) and cortisol (COR) decreased when the HLA matching was haploidentical. The levels of T3, FT3, and PRL decreased after autologous HSCT. In allogeneic HSCT patients, the levels of TSH, T4, T3, FT3, and ACTH in the group with graft-versus-host disease (GVHD) were significantly lower than those in the group without GVHD. Logistic regression analysis showed the changes in hormone levels after transplantation were not correlated with factors such as the patient's sex, age, or whether the blood types of the donor and the recipient are the same.
CONCLUSION
HSCT can affect the endocrine function of patients with hematological diseases, mainly affecting target glandular organs such as the thyroid, gonads, and adrenal glands, while the secretory function of the adenohypophysis is less affected.
Humans
;
Hematopoietic Stem Cell Transplantation
;
Female
;
Male
;
Hematologic Diseases/blood*
;
Follicle Stimulating Hormone/blood*
;
Triiodothyronine/blood*
;
Luteinizing Hormone/blood*
;
Thyroid Gland/metabolism*
;
Estradiol/blood*
;
Thyrotropin/blood*
;
Gonads/metabolism*
;
Adult
;
Middle Aged
;
Adrenocorticotropic Hormone/blood*
;
Hormones/metabolism*
;
Adrenal Cortex/metabolism*
;
Prolactin
3.Tianxiangdan (TXD) alleviates myocardial ischemia reperfusion-induced ferroptosis through the activation of estrogen receptor alpha (ERα).
Yuanjia YUE ; Yu LI ; Xing RONG ; Zhao JI ; Huimin WANG ; Liang CHEN ; Lin JIANG
Chinese Journal of Natural Medicines (English Ed.) 2025;23(1):102-110
Tianxiangdan (TXD), a traditional Chinese herbal remedy, demonstrates efficacy in mitigating myocardial ischemia-reperfusion (I/R)-induced damage. This study employed network pharmacology to evaluate the therapeutic targets and mechanisms of TXD in treating I/R. High-performance liquid chromatography-mass spectrometry (HPLC-MS) identified 86 compounds in TXD. Network pharmacological analysis predicted potential target genes and their modes of action. Cardiac function, ischaemic ST changes, lactate dehydrogenase (LDH), malondialdehyde (MDA), superoxide dismutase (SOD) activity, myocardial fiber, and infarct size were assessed using in vivo and in vitro I/R injury models. Estrogen receptor alpha (ERα) protein expression and estradiol (E2) levels were measured to confirm TXD's impact on estrogen levels and ERα expression. To examine if TXD reduces I/R injury through ERα, an AZD group (300 nmol·L-1 AZD9496 and 15% TXD serum) was compared to a TXD group (15% TXD serum). The study hypothesized that TXD upregulates the ERα-mediated iron metamorphosis pathway. I/R injury-induced ferroptosis was identified using a Fer-1 group (1.0 μmol·L-1 Fer-1 and 15% TXD serum) to elucidate the potential association between ferroptosis and ERα proteins. A DCFH-DA probe detected reactive oxygen species (ROS) and Fe2+, while Western blotting assessed target protein expression. Both in vitro and in vivo experiments demonstrated that TXD attenuated I/R injury by reducing elevated ST-segment levels, improving cardiac injury biomarkers (LDH, MDA, and SOD), alleviating pathological features, and preventing I/R-induced loss of cell viability in vitro. The effects and mechanisms of TXD on I/R injury-associated ferroptosis were investigated using I/R-induced H9c2 cells. The TXD group showed significantly decreased ROS and Fe2+ levels, while the AZ group (treated with AZD9496) exhibited increased levels. The TXD group demonstrated enhanced expression of ERα and glutathione peroxidase 4 (GPX4), with reduced levels of P53 protein and ferritin-heavy polypeptide 1 (FTH1). The AZ group exhibited contrasting effects on these expression levels. The literature indicated a novel connection between ERα and ferroptosis. TXD activates the ERα signaling pathway, promoting protection against I/R-induced myocardial cell ferroptosis. This study provides evidence supporting TXD use for myocardial ischemia treatment, particularly in older female patients who may benefit from its therapeutic outcomes.
Animals
;
Ferroptosis/drug effects*
;
Estrogen Receptor alpha/genetics*
;
Myocardial Reperfusion Injury/genetics*
;
Drugs, Chinese Herbal/pharmacology*
;
Male
;
Mice
;
Humans
;
Mice, Inbred C57BL
;
Estradiol/metabolism*
4.Protective Effect and Mechanism of Kuntai Capsule on Angiotensin II -Induced Hypertension in Ovariectomized Rats.
Xiao-Fen GE ; Sha-Sha LI ; Yan-Hua LIU ; Mei-Qiu LU ; Hui-Na SU ; Xin YANG ; Xiao-Wan SUN
Chinese journal of integrative medicine 2023;29(6):526-533
OBJECTIVE:
To explore the protective effect and mechanism of Kuntai (KT) Capsule on angiotensin II (Ang II)-induced hypertension in ovariectomized (OVX) rats.
METHODS:
Fifty-four rats were randomly divided into 6 groups according to a random number table, 9 in each group: control, OVX sham+Ang II, OVX, OVX+Ang II, OVX+Ang II +E2, and OVX+Ang II +KT. OVX rats model was constructed by retroperitoneal bilateral ovariectomy. After 4 weeks of pretreatment with KT Capsule [0.8 g/(kg·d) and 17- β -estradiol (E2, 1.2 mg/(kg·d)] respectively, Ang II was injected into a micro-osmotic pump with a syringe to establish a hypertensive rat model. Blood pressure of rat tail artery was measured in a wake state of rats using a non-invasive sphygmomanometer. Blood pressure changes were compared between the intervention groups (OVX+Ang II +KT, OVX+Ang II +E2) and the negative control group (OVX+Ang II). Serum malondialdehyde (MDA) level and superoxide dismutase (SOD) activity were detected respectively. The expressions of oxidative stress-related protein superoxide dismutase2 (SOD2) and anti-thioredoxin (TRX), autophagy marker protein [beclin1, light chain (LC) 3 II/I ratio and autophagy canonical pathway protein phosphatidylinositol 3-kinase (PI3K)/serine/threonine kinase (AKT)-mammalian target of rapamycin (mTOR)] were evaluated by Western blotting.
RESULTS:
Compared with the OVX+Ang II group, the systolic blood pressure of OVX+Ang II +KT group was significantly lowered (P<0.05) but not the diastolic blood pressure. Besides, SOD2 and TRX protein levels in mycardial tissues were significantly reduced in the OVX+Ang II +KT group compared with the OVX+Ang II group (P<0.05). Oxidative stress serum markers MDA and SOD were down- and up-regulated in the OVX+Ang II +KT group, respectively (P<0.05). Compared with OVX+Ang II group, the levels of cardiac proteins beclin-1 and LC3II/LC3 I in OVX+Ang II +KT group were also up-regulated (P<0.05), and the expression levels of p-PI3K, p-AKT and mTOR protein were down-regulated (P<0.05).
CONCLUSION
KT could protect blood pressure of Ang II-induced OVX rats by inhibiting oxidative stress and up-regulating protective autophagy.
Female
;
Rats
;
Animals
;
Humans
;
Angiotensin II
;
Phosphatidylinositol 3-Kinases
;
Proto-Oncogene Proteins c-akt
;
Hypertension/drug therapy*
;
Estradiol/pharmacology*
;
Superoxide Dismutase
;
Ovariectomy
;
Mammals/metabolism*
5.Estradiol inhibits differentiation of mouse macrophage into a pro-inflammatory phenotype by upregulating the IRE1α-XBP1 signaling axis.
Ling Jian ZHUO ; Shuo Chen WANG ; Xing LIU ; Bao An CHEN ; Xiang LI
Journal of Southern Medical University 2022;42(3):432-437
OBJECTIVE:
To explore the mechanism by which estradiol modulates the immunophenotype of macrophages through the endoplasmic reticulum stress pathway.
METHODS:
Peritoneal macrophages isolated from C57 mice were cultured in the presence of 60 ng/mL interferon-γ (IFN-γ) followed by treatment with estradiol (1.0 nmol/L) alone, estradiol with estrogen receptor antagonist (Acolbifene, 4 nmol/L), estradiol with IRE1α inhibitor (4 μ 8 C), or estradiol with IRE1α agonist. After the treatments, the expression levels of MHC-Ⅱ, iNOS and endoplasmic reticulum stress marker proteins IRE1α, eIF2α and ATF6 in the macrophages were detected with Western blotting, and the mRNA levels of TGF-β, IL-6, IL-10 and TNF-α were detected with RT-PCR.
RESULTS:
Estrogen treatment of the macrophages significantly decreased the expressions of M1-related proteins MHC-Ⅱ (P=0.021) and iNOS (P < 0.001) and the mRNA expressions of TNF-α (P=0.003) and IL-6 (P=0.004), increased the mRNA expression of TGF-β (P=0.002) and IL-10 (P=0.008), and up-regulated the protein expressions of IRE1α (P < 0.001) and its downstream transcription factor XBP-1 (P < 0.001). Addition of the estrogen inhibitor obviously blocked the effect of estrogen. Compared with estrogen treatment alone, combined treatment of the macrophages with estrogen and the IRE1α inhibitor 4 μ 8 C significantly up-regulated the protein expressions of MHC-Ⅱ (P=0.002) and iNOS (P=0.003) and the mRNA expressions of TNF-α (P=0.003) and IL-6 (P=0.024), and obviously down-regulated the mRNA expression of TGF-β (P < 0.001) and IL-10 (P < 0.001); these changes were not observed in cells treated with estrogen and the IRE1α agonist.
CONCLUSION
Estrogen can inhibit the differentiation of murine macrophages into a pro-inflammatory phenotype by up-regulating the IRE1α-XBP-1 signaling axis, thereby producing an inhibitory effect on inflammatory response.
Animals
;
Cell Differentiation/drug effects*
;
Endoribonucleases/metabolism*
;
Estradiol/pharmacology*
;
Estrogens/metabolism*
;
Interleukin-10
;
Interleukin-6/metabolism*
;
Macrophages, Peritoneal/metabolism*
;
Mice
;
Phenotype
;
Protein Serine-Threonine Kinases/metabolism*
;
RNA, Messenger/metabolism*
;
Signal Transduction/drug effects*
;
Transforming Growth Factor beta/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Up-Regulation/drug effects*
;
X-Box Binding Protein 1/metabolism*
6.17β-estradiol inhibits interleukin-1β-induced rat nucleus pulposus cell apoptosis through the PI3K/Akt/mTOR signal pathway.
Hong-Tao GUO ; Er-Fei GUO ; Jian-Jie XU ; Bin ZHANG ; Yan-Bing GAO ; Jian-Zhong WU
Acta Physiologica Sinica 2021;73(1):62-68
The apoptosis of nucleus pulposus cells (NPCs) is the main cellular process of intervertebral disc degeneration (IVDD). Our previous studies showed that 17β-estradiol (E
Animals
;
Apoptosis
;
Estradiol/pharmacology*
;
Glycogen Synthase Kinase 3 beta
;
Interleukin-1beta
;
Nucleus Pulposus/metabolism*
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Rats
;
Signal Transduction
;
TOR Serine-Threonine Kinases
7.Effect of 17β-estradiol on the proliferation of condylar chondrocytes.
Shuai ZHANG ; Jiang Hong WANG ; Li Jie TIAN ; Bao Li WANG ; Juan ZHANG
West China Journal of Stomatology 2021;39(6):651-657
OBJECTIVES:
To study the effects of 17β-estradiol (E2) on the regulation of the proliferation of condylar chondrocytes and provide a preliminary discussion on the role of phosphorylate-mammalian target of rapamycin (p-mTOR) in this regulatory process.
METHODS:
Condylar chondrocytes were isolated from 6-week-old female rats for primary culture. Drug treatment with different concentrations of E2 and/or rapamycin (RAPA) was carried out on second-generation cells. Cell Counting Kit 8 was used to measure the cell viability of condylar chondrocytes after culture for 24, 48, or 72 h, and reverse transcription-polymerase chain reaction (RT-PCR) was applied to detect the relative gene expression of estrogen receptor alpha (ERα), estrogen receptor beta (ERβ), collagen type Ⅱ (COLⅡ), autophagy-related gene 6 (Beclin-1), and autophagy-related gene 5 (ATG-5). Western blot was employed to determine the relative protein expression of ERα, ERβ, Beclin-1, lipid-modified light chain 3B (LC3-Ⅱ), and p-mTOR.
RESULTS:
E2 could significantly promote the proliferation of chondrocytes cultured
CONCLUSIONS
At a concentration of 10
Animals
;
Autophagy
;
Cell Proliferation
;
Chondrocytes
;
Estradiol
;
Estrogen Receptor alpha/metabolism*
;
Estrogen Receptor beta
;
Female
;
Phosphorylation
;
Rats
8.Targeted binding of estradiol with ESR1 promotes proliferation of human chondrocytes by inhibiting activation of ERK signaling pathway.
Min LIU ; Weiwei XIE ; Wei ZHENG ; Danyang YIN ; Rui LUO ; Fengjin GUO
Journal of Southern Medical University 2019;39(2):134-143
OBJECTIVE:
To investigate the effect of estradiol (E2)/estrogen receptor 1 (ESR1) on the proliferation of human chondrocytes and explore the molecular mechanism.
METHODS:
The Ad-Easy adenovirus packaging system was used to construct and package the ESR1-overexpressing adenovirus Ad-ESR1. Western blotting and qPCR were used to detect the expression of ESR1 protein and mRNA in human chondrocyte C28I2 cells. In the cells treated with different adenoviruses, the effects of E2 were tested on the expressions of proteins related with cell autophagy and apoptosis and the phosphorylation of ERK signaling pathway using Western blotting. Immunofluorescence assay was used to observe the intracellular autophagic flow, flow cytometry was performed to analyze the cell apoptosis rate and the cell cycle changes, and qPCR was used to detect the expressions of PCNA, cyclin B1 and cyclin D1 mRNAs. The inhibitory effect of the specific inhibitor of ERK on the expressions of autophagy- and apoptosis-related genes at both the protein and mRNA levels were detected using Western blotting and qPCR.
RESULTS:
Transfection with the recombinant adenovirus overexpressing ESR1 and E2 treatment of C28I2 cells significantly enhanced the expressions of autophagy-related proteins LC3, ATG7, promoted the colocalization of LC3 and LAMP1 in the cytoplasm, increased the expressions of the proliferation-related marker genes PCNA, cyclin B1 and cyclin D1, and supressed the expressions of cleaved caspase-3, caspase-12 and pERK. RNA interference of ESR1 obviously lowered the expression levels of autophagy-related proteins in C28I2 cells, causing also suppression of the autophagic flow, increments of the expressions of apoptosis-related proteins and pERK, and down-regulated the expressions of the proliferation marker genes. Blocking ERK activation with the ERK inhibitor obviously inhibited the effects of E2/ESR1 on autophagy, proliferationrelated gene expressions and cell apoptosis.
CONCLUSIONS
The targeted binding of E2 with ESR1 promotes the proliferation of human chondrocytes possibly by inhibiting the activation of ERK signaling pathway to promote cell autophagy and induce cell apoptosis.
Adenoviridae
;
metabolism
;
Apoptosis
;
Autophagy
;
Autophagy-Related Protein 7
;
metabolism
;
Cell Line
;
Cell Proliferation
;
Chondrocytes
;
cytology
;
metabolism
;
Estradiol
;
metabolism
;
Estrogen Receptor alpha
;
metabolism
;
Humans
;
Lysosome-Associated Membrane Glycoproteins
;
metabolism
;
MAP Kinase Signaling System
;
Microtubule-Associated Proteins
;
metabolism
;
Transfection
9.Functioning gonadotroph adenoma.
Yi ZHAO ; Wei LIAN ; Bing XING ; Ming FENG ; Wen-Bin MA
Chinese Medical Journal 2019;132(8):1003-1004
Adult
;
Estradiol
;
blood
;
Female
;
Gonadotrophs
;
metabolism
;
pathology
;
Humans
;
Pituitary Neoplasms
;
blood
;
diagnosis
;
surgery
10.Correlation of reproductive hormone levels and seminal plasma oxidative stress with semen quality in obese males.
Rui-Yu HAN ; Jing MA ; Jing MA ; Wen-Jiao LIU ; Xin-Tao AN ; Zi-Dong ZHANG ; Shu-Song WANG
National Journal of Andrology 2018;24(5):419-424
ObjectiveTo investigate the correlation of the levels of reproductive hormones and oxidative stress in the seminal plasma with semen parameters in obese males.
METHODSBased on the body mass index (BMI), we divided 138 infertile men into three groups: normal (BMI <24 kg/m2, n = 48), overweight (24 kg/m2≤BMI<28 kg/m2, n = 47), and obesity (BMI ≥28 kg/m2, n = 43). We determined the concentrations of follicle-stimulating hormone (FSH), luteotropic hormone (LH), prolactin (PRL), testosterone (T) and estradiol (E2) in the serum by electrochemiluminescence and measured the levels of superoxide dismutase (SOD), glutathione-S-transferases (GSTs), reactive oxygen species (ROS) and malondialdehyde (MDA) in the seminal plasma by ELISA, compared the above indexes among the three groups, and analyzed their correlation with the semen volume, sperm concentration, total sperm count, and percentage of progressively motile sperm (PMS).
RESULTSThe semen volume was significantly lower in the obesity than in the normal group ([2.63 ± 0.74] vs [3.37 ± 1.00] ml, P < 0.05), and so was the percentage of PMS in the overweight and even lower in the obesity than in the normal group ([47.91 ± 12.89] and [41.27 ± 15.77] vs [54.04 ± 13.29]%, P < 0.05). Compared with the normal group, both the overweight and obesity groups showed markedly decreased levels of serum T ([4.83 ± 1.42] vs [3.71 ± 1.22] and [3.49 ± 1.12] ng/ml, P<0.05), T/LH ratio (1.53 ± 0.57 vs 1.19 ± 0.54 and 0.97 ± 0.51, P<0.05), SOD ([112.05 ± 10.54] vs [105.85 ± 6.93] and [99.33 ± 8.39] U/ml, P<0.05), and GSTs ([31.75±6.03] vs [29.54±5.78] and [29.02±4.52] U/L, P<0.05), but remarkably increased seminal plasma ROS ([549.93±82.41] vs [620.61±96.13] and [701.47±110.60] IU/ml, P<0.05) and MDA ([7.46 ± 2.13] vs [8.72 ± 1.89] and [10.47 ± 2.10] nmol/L, P<0.05). BMI was correlated positively with ROS and MDA, but negatively with the semen volume, PMS, T, T/LH, SOD and GSTs (P<0.05); LH negatively with sperm concentration, total sperm count and GSTs (P<0.05); PRL negatively GSTs (P<0.05); E2 positively with SOD (P<0.05); T positively with SOD (P<0.05) but negatively with MDA (P<0.05); T/LH positively with PMS and SOD (P<0.05) but negatively with ROS and MDA (P<0.05); SOD positively with semen volume, PMS and GSTs (P<0.05) but negatively with ROS and MDA (P<0.05); GSTs negatively with sperm concentration; total sperm count and MDA (P<0.05); ROS positively with MDA (P<0.01) but negatively with PMS (P<0.05); and MDA negatively with semen volume (P<0.05). Multivariate logistic regression analysis showed that the independent factors influencing the semen volume were BMI and GSTs, those influencing the total sperm count were BMI and T, and those influencing PMS were BMI and MDA.
CONCLUSIONSIncreased BMI induces changes in the levels of male reproductive hormones and seminal plasma oxidative stress and affects semen quality, which may be associated with male infertility.
Body Mass Index ; Estradiol ; blood ; Follicle Stimulating Hormone ; blood ; Humans ; Infertility, Male ; blood ; classification ; metabolism ; Luteinizing Hormone ; blood ; Male ; Malondialdehyde ; analysis ; Obesity ; blood ; metabolism ; Oxidative Stress ; Prolactin ; blood ; Reactive Oxygen Species ; analysis ; Reproduction ; Semen ; metabolism ; Semen Analysis ; Sperm Count ; Testosterone ; blood

Result Analysis
Print
Save
E-mail