1.Artificial intelligence in endoscopic diagnosis of esophageal squamous cell carcinoma and precancerous lesions.
Nuoya ZHOU ; Xianglei YUAN ; Wei LIU ; Qi LUO ; Ruide LIU ; Bing HU
Chinese Medical Journal 2025;138(12):1387-1398
Esophageal squamous cell carcinoma (ESCC) poses a significant global health challenge, necessitating early detection, timely diagnosis, and prompt treatment to improve patient outcomes. Endoscopic examination plays a pivotal role in this regard. However, despite the availability of various endoscopic techniques, certain limitations can result in missed or misdiagnosed ESCCs. Currently, artificial intelligence (AI)-assisted endoscopic diagnosis has made significant strides in addressing these limitations and improving the diagnosis of ESCC and precancerous lesions. In this review, we provide an overview of the current state of AI applications for endoscopic diagnosis of ESCC and precancerous lesions in aspects including lesion characterization, margin delineation, invasion depth estimation, and microvascular subtype classification. Furthermore, we offer insights into the future direction of this field, highlighting potential advancements that can lead to more accurate diagnoses and ultimately better prognoses for patients.
Humans
;
Artificial Intelligence
;
Esophageal Squamous Cell Carcinoma/diagnosis*
;
Esophageal Neoplasms/diagnosis*
;
Precancerous Conditions/diagnosis*
2.Research progress on the regulation of ferroptosis by non-coding RNAs in esophageal squamous cell cancer.
Jia-Min WANG ; Pan LIU ; Rui ZHU ; Dan SU
Acta Physiologica Sinica 2025;77(3):563-572
Esophageal squamous cell carcinoma (ESCC) is a prevalent malignancy of the digestive tract that poses a significant threat to human health, with an incidence rate that continues to rise globally. Increasing research highlights the crucial role of non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), in regulating ferroptosis and contributing to the malignant progression of ESCC. These ncRNAs influence the proliferation, apoptosis, and invasion capabilities of ESCC cells by modulating iron metabolism and redox balance. miRNAs can regulate cellular iron accumulation and oxidative stress by targeting ferroptosis-related genes; lncRNAs may indirectly affect iron metabolic pathways by competitively binding to miRNAs; circRNAs, through a sponge effect, may regulate the activity of miRNAs. This review systematically summarizes the mechanisms of ncRNAs-mediated regulation of ferroptosis in ESCC, focusing on molecular mechanisms, regulatory networks, and their specific roles in the ferroptosis process. Additionally, the potential of ncRNAs in ESCC diagnosis, prognosis assessment, and therapeutic intervention is discussed, aiming to provide new insights and targets for ferroptosis-based tumor therapy.
Ferroptosis/genetics*
;
Humans
;
Esophageal Neoplasms/physiopathology*
;
Esophageal Squamous Cell Carcinoma
;
MicroRNAs/physiology*
;
RNA, Long Noncoding/physiology*
;
RNA, Circular
;
RNA, Untranslated/physiology*
3.Potential molecular mechanism of lncRNAs HOTAIR in malignant metastasis of esophageal cancer.
Kaijin LU ; Jiangfeng SHEN ; Guang HAN ; Quan CHEN
Chinese Journal of Cellular and Molecular Immunology 2025;41(3):236-244
Objective To elucidate the molecular mechanism by which exosomes (Exo) derived from cancer-associated fibroblasts (CAF) carrying HOX transcript antisense intergenic RNA (lncRNA HOTAIR) promote the metastasis of esophageal squamous cell carcinoma (ESCC). Methods CAFs were collected from tumor tissues, and non-cancer associated fibroblasts (NFs) were obtained from adjacent normal tissues at least 5 cm away from the tumor. Exosomes (CAFs-Exo and NFs-Exo) were isolated from conditioned media collected from CAFs or NFs. CAFs-Exo and NFs-Exo were incubated with human ESCC cell line TE-1 for 24 hours, and CCK-8 was used to determine the cell proliferation ability. Scratch test and Transwell test were performed to determine the cell migration and invasion ability. TE-1 cells were divided into the following two groups: NC group and KD group. The NC group and KD group were transfected with control siRNAs or siRNAs targeting HOTAIR respectively. The effects of HOTAIR knock-down on cell proliferation, migration, invasion and glycolysis were determined. Results CAFs-Exo promoted the proliferation of TE-1 cells more significantly than NFs-Exo. Compared with NFs-Exo group, the migration and invasion ability of TE-1 cells treated with CAFs-Exo were improved significantly. In addition, CAFs-Exo treatment inhibited the expression of E-cadherin and enhanced the expression of N-cadherin. The expression of HOTAIR in CAFs was significantly higher than that in NFs. Compared with NFs-Exo, the expression level of HOTAIR in CAFs-Exo increased significantly. Compared with NC group, the proliferation, migration and invasion of TE-1 cells in KD group decreased significantly. Compared with NC group, hexokinase 2 (HK2), extracellular acidification rate (ECAR) and ATP/ADP ratio of TE-1 cells in KD group decreased significantly. Conclusion HOTAIR, an exosome derived from CAFs, may be involved in metastasis and EMT by regulating glycolysis in ESCC cells.
Humans
;
RNA, Long Noncoding/metabolism*
;
Esophageal Neoplasms/metabolism*
;
Cell Movement/genetics*
;
Cell Proliferation/genetics*
;
Cell Line, Tumor
;
Esophageal Squamous Cell Carcinoma
;
Exosomes/genetics*
;
Neoplasm Metastasis
;
Neoplasm Invasiveness
;
Gene Expression Regulation, Neoplastic
;
Glycolysis/genetics*
;
Cancer-Associated Fibroblasts/metabolism*
;
Carcinoma, Squamous Cell/metabolism*
;
Cadherins/genetics*
4.Progress in autoantibodies associated with esophageal squamous cell carcinoma.
Kaijuan JI ; Chao SUN ; Yan ZHAO
Chinese Journal of Cellular and Molecular Immunology 2025;41(4):363-371
The early diagnosis and precise treatment of esophageal squamous cell carcinoma (ESCC) hold significant clinical value in improving patient survival rate. Current diagnostic methods for early-stage ESCC primarily rely on invasive procedures and endoscopy, which can cause discomfort and financial burden for patients. Therefore, non-invasive biomarkers with high sensitivity and specificity present a more suitable alternative for early tumor diagnosis. Tumor associated autoantibodies (TAAb), identified as potential biomarkers, have considerable clinical implications for the early diagnosis, treatment monitoring, and prognosis assessment of ESCC. Here in we aim to summarize recent research on ESCC-related autoantibodies, including their background, types and development, analyze the potential of those autoantibodies in clinical diagnosis, treatment monitoring, and prognosis assessment, and also discuss the limitations of existing research and future directions. The goal is to provide a theoretical foundation for the early diagnosis and personalized treatment of ESCC.
Humans
;
Autoantibodies/immunology*
;
Esophageal Neoplasms/therapy*
;
Esophageal Squamous Cell Carcinoma/immunology*
;
Biomarkers, Tumor/immunology*
;
Prognosis
;
Carcinoma, Squamous Cell/diagnosis*
;
Animals
5.Research progress on radiotherapy and chemotherapy combined with immunotherapy for locally advanced esophageal squamous cell carcinoma.
Chinese Journal of Cellular and Molecular Immunology 2025;41(11):1047-1054
The standard treatment for locally advanced esophageal squamous cell carcinoma (ESCC) is neoadjuvant chemoradiotherapy, followed by surgery or definitive radiotherapy, but clinical results are unsatisfactory. In recent years, relevant studies have shown that immunotherapy combined with chemoradiotherapy has become a new treatment option for locally advanced ESCC. This article summarizes the current progress of chemoradiotherapy combined with immunotherapy in the treatment of locally advanced ESCC, and provides necessary theoretical basis for the comprehensive understanding and optimization of chemoradiotherapy combined with immunotherapy regimens for ESCC.
Humans
;
Esophageal Squamous Cell Carcinoma/therapy*
;
Esophageal Neoplasms/radiotherapy*
;
Immunotherapy/methods*
;
Chemoradiotherapy/methods*
;
Combined Modality Therapy
6.EZH2 promotes malignant biological behavior in esophageal squamous cell carcinoma via EMT.
Yuying JING ; Kaige YANG ; Yiting CHENG ; Tianping HUANG ; Sufang CHEN ; Kai CHEN ; Jianming HU
Journal of Central South University(Medical Sciences) 2025;50(2):155-166
OBJECTIVES:
Esophageal squamous cell carcinoma (ESCC) is characterized by complex pathogenesis and poor prognosis. In recent years, epithelial-mesenchymal transition (EMT) in tumor initiation and progression has attracted increasing attention. Enhancer of zeste homolog 2 (EZH2), which is aberrantly expressed in various tumors, may be closely related to the EMT process. This study aims to examine the expression and correlation of EZH2 and EMT markers in ESCC cells and tissues, evaluate the effects of EZH2 knockdown on ESCC cell proliferation, invasion, and migration, and explore how EZH2 contributes to the malignant biological behavior of ESCC.
METHODS:
Bioinformatics analyses were used to assess EZH2 expression levels in ESCC. Small interfering RNA was used to knock down EZH2 in ESCC cell lines EC109 and EC9706. Cell proliferation, invasion, and migration were evaluated using cell counting kit-8 (CCK-8), wound healing, and Transwell assays. Protein and mRNA expression levels of EZH2, E-cadherin (E-cad), and vimentin (Vim) were detected by Western blotting and real time fluorogenic quantitative PCR (RT-qPCR), respectively. Immunohistochemical (IHC) staining was performed on 70 ESCC tissue samples and 40 paired adjacent normal tissues collected from the First Affiliated Hospital of Shihezi University between 2010 and 2016 to assess the expression of EZH2, E-cad, and Vim, and to analyze their associations with clinicopathological feature and patient prognosis.
RESULTS:
Bioinformatics analysis showed that EZH2 was highly expressed in ESCC (P<0.001), and high EZH2 expression was associated with worse prognosis (P<0.001). CCK-8, wound healing, and Transwell assays demonstrated that EZH2 knockdown significantly suppressed the proliferation, invasion, and migration of ESCC cells (P<0.001). In addition, Vim expression was significantly reduced, while E-cad expression was significantly increased at both protein and mRNA levels in EZH2-silenced cells (all P<0.05). IHC staining analysis revealed higher expression of EZH2 and Vim and lower expression of E-cad in ESCC tissues compared to adjacent normal tissues. Kaplan-Meier survival analysis showed that low expression of EZH2 and Vim and high expression of E-cad were associated with longer survival (all P<0.05).
CONCLUSIONS
EZH2 promotes malignant biological behavior in ESCC by mediating EMT. Elevated EZH2 expression is associated with poor prognosis in ESCC patients.
Humans
;
Enhancer of Zeste Homolog 2 Protein/physiology*
;
Esophageal Squamous Cell Carcinoma/pathology*
;
Epithelial-Mesenchymal Transition/genetics*
;
Esophageal Neoplasms/metabolism*
;
Cell Proliferation
;
Cell Line, Tumor
;
Cell Movement
;
Cadherins/genetics*
;
Vimentin/genetics*
;
Male
;
Female
;
Middle Aged
;
Neoplasm Invasiveness
;
Prognosis
;
RNA, Small Interfering/genetics*
;
Gene Expression Regulation, Neoplastic
7.LINC00261 suppresses esophageal squamous cell carcinoma proliferation, invasion, and metastasis by targeting the miR-23a-3p/ZNF292 axis.
Yuan MI ; Xuzhe LI ; Zhanpeng WANG ; Yanjie LIU ; Chuntao SONG ; Lantao WANG ; Lei WANG
Journal of Southern Medical University 2025;45(10):2118-2125
OBJECTIVES:
To evaluate the regulatory effects of lncRNA LINC00261 on proliferation, invasion, and metastasis of esophageal squamous cell carcinoma (ESCC) cells.
METHODS:
The differentially expressed RNAs in ESCC were identified using the GSE149612 dataset from the GEO database. PCR was used to detect LINC00261 expression levels in clinical ESCC and normal esophageal tissue samples and in multiple ESCC cell lines and normal esophageal epithelial cells (HEEC). In ESCC cells, the effects of overexpression of LINC00261 on cell proliferation, invasion, metastasis and apoptosis were analyzed using CCK-8 assay, clone formation assay, Transwell assay and flow cytometry. The potential targets of LINC00261 were predicted using bioinformatics tools including ENCORI and verified using dual-luciferase reporter assay and Western blotting. The effects of LINC00261 overexpression on ESCC were confirmed in a nude mouse model bearing ESCC xenograft.
RESULTS:
Analysis of the GSE149612 dataset revealed significantly lower LINC00261 expression in ESCC tissues and cell lines. In cultured ESCC cells, LINC00261 overexpression markedly suppressed cell proliferation, invasion, and metastasis and promoted cell apoptosis. Dual-luciferase reporter assays confirmed that LINC00261 targets the miR-23a-3p/ZNF292 axis. In the tumor-bearing mouse model, LINC00261 overexpression significantly inhibited ESCC xenograft proliferation and metastasis.
CONCLUSIONS
LINC00261 suppresses ESCC progression by targeting the miR-23a-3p/ZNF292 axis, suggesting a potential therapeutic strategy for ESCC treatment.
Humans
;
MicroRNAs/genetics*
;
Cell Proliferation
;
Esophageal Neoplasms/genetics*
;
Animals
;
Esophageal Squamous Cell Carcinoma
;
Mice, Nude
;
RNA, Long Noncoding/genetics*
;
Cell Line, Tumor
;
Neoplasm Invasiveness
;
Mice
;
Carcinoma, Squamous Cell/genetics*
;
Apoptosis
;
Gene Expression Regulation, Neoplastic
;
Neoplasm Metastasis
8.Inhibition of BRD4 promotes migration of esophageal squamous cell carcinoma cells with low ACC1 expression.
Wenxin JIA ; Shuhua HUO ; Jiaping TANG ; Yuzhen LIU ; Baosheng ZHAO
Journal of Southern Medical University 2025;45(10):2258-2269
OBJECTIVES:
To investigate the effect of BRD4 inhibition on migration of esophageal squamous cell carcinoma (ESCC) cells with low acetyl-CoA carboxylase 1 (ACC1) expression.
METHODS:
ESCC cell lines with lentivirus-mediated ACC1 knockdown or transfected with a negative control sequence (shNC) were treated with DMSO, JQ1 (a BRD4 inhibitor), co-transfection with shNC-siBRD4 or siNC with additional DMSO or C646 (an ahistone acetyltransferase inhibitor) treatment, or JQ1combined with 3-MA (an autophagy inhibitor). BRD4 mRNA expression in the cells was detected using RT-qPCR. The changes in cell proliferation, migration, autophagy, and epithelial-mesenchymal transition (EMT) were examined with CCK8 assay, Transwell migration assay, and Western blotting.
RESULTS:
ACC1 knockdown did not significantly affect BRD4 expression in the cells but obviously increased their sensitivity to JQ1. JQ1 treatment at 1 and 2 μmol/L significantly inhibited ESCC cell proliferation, while JQ1 at 0.2 and 2 μmol/L promoted cell migration. The cells with ACC1 knockdown and JQ1 treatment showed increased expresisons of vimentin and Slug and decreased expression of E-cadherin. BRD4 knockdown promoted migration of ESCC cells, and co-transfection with shACC1 and siBRD4 resulted in increased vimentin and Slug expressions and decreased E-cadherin expression in the cells. C646 treatment of the co-transfected cells reduced acetylation levels, decreased vimentin and Slug expressions, and increased E-cadherin expression. Treatment with JQ1 alone obviously increased LC3A/B-II levels in the cells either with or without ACC1 knockdown. In the cells with ACC1 knockdown and JQ1 treatment, additional 3-MA treatment significantly decreased the expressions of vimentin, Slug and LC3A/B-II and increased the expression of E-cadherin.
CONCLUSIONS
BRD4 inhibition promotes autophagy of ESCC cells via a histone acetylation-dependent mechanism, thereby enhancing EMT and ultimately increasing cell migration driven by ACC1 deficiency.
Humans
;
Cell Movement
;
Transcription Factors/metabolism*
;
Esophageal Neoplasms/metabolism*
;
Cell Line, Tumor
;
Cell Cycle Proteins
;
Azepines/pharmacology*
;
Epithelial-Mesenchymal Transition
;
Carcinoma, Squamous Cell/metabolism*
;
Esophageal Squamous Cell Carcinoma
;
Triazoles/pharmacology*
;
Nuclear Proteins/genetics*
;
Cell Proliferation
;
Acetyl-CoA Carboxylase/genetics*
;
Transfection
;
Autophagy
;
Bromodomain Containing Proteins
9.Pristimerin induces Noxa-dependent apoptosis by activating the FoxO3a pathway in esophageal squamous cell carcinoma.
Mengyuan FENG ; Anjie ZHANG ; Jingyi WU ; Xinran CHENG ; Qingyu YANG ; Yunlai GONG ; Xiaohui HU ; Wentao JI ; Xianjun YU ; Qun ZHAO
Chinese Journal of Natural Medicines (English Ed.) 2025;23(5):585-592
Pristimerin, which is one of the compounds present in Celastraceae and Hippocrateaceae, has antitumor effects. However, its mechanism of action in esophageal squamous cell carcinoma (ESCC) remains unclear. This study aims to investigate the efficacy and mechanism of pristimerin on ESCC in vitro and in vivo. The inhibitory effect of pristimerin on cell growth was assessed using trypan blue exclusion and colony formation assays. Cell apoptosis was evaluated by flow cytometry. Gene and protein expressions were analyzed through quantitative reverse transcription-polymerase chain reaction (qRT-PCR), Western blotting, and immunohistochemistry. RNA sequencing (RNA-Seq) was employed to identify significantly differentially expressed genes (DEGs). Cell transfection and RNA interference assays were utilized to examine the role of key proteins in pristimerin?s effect. Xenograft models were established to evaluate the antitumor efficiency of pristimerin in vivo. Pristimerin inhibited cell growth and induced apoptosis in ESCC cells. Upregulation of Noxa was crucial for pristimerin-induced apoptosis. Pristimerin activated the Forkhead box O3a (FoxO3a) signaling pathway and triggered FoxO3a recruitment to the Noxa promoter, leading to Noxa transcription. Blocking FoxO3a reversed pristimerin-induced Noxa upregulation and cell apoptosis. Pristimerin treatment suppressed xenograft tumors in nude mice, but these effects were largely negated in Noxa-KO tumors. Furthermore, the chemosensitization effects of pristimerin in vitro and in vivo were mediated by Noxa. This study demonstrates that pristimerin exerts an antitumor effect on ESCC by inducing AKT/FoxO3a-mediated Noxa upregulation. These findings suggest that pristimerin may serve as a potent anticancer agent for ESCC treatment.
Forkhead Box Protein O3/genetics*
;
Humans
;
Apoptosis/drug effects*
;
Esophageal Squamous Cell Carcinoma/physiopathology*
;
Esophageal Neoplasms/physiopathology*
;
Pentacyclic Triterpenes
;
Animals
;
Cell Line, Tumor
;
Proto-Oncogene Proteins c-bcl-2/genetics*
;
Mice
;
Signal Transduction/drug effects*
;
Mice, Nude
;
Cell Proliferation/drug effects*
;
Triterpenes/pharmacology*
;
Xenograft Model Antitumor Assays
;
Mice, Inbred BALB C
;
Male
;
Gene Expression Regulation, Neoplastic/drug effects*
10.Dysregulated inclusion of BOLA3 exon 3 promoted by HNRNPC accelerates the progression of esophageal squamous cell carcinoma.
Bo TIAN ; Yan BIAN ; Yanan PANG ; Ye GAO ; Chuting YU ; Xun ZHANG ; Siwei ZHOU ; Zhaoshen LI ; Lei XIN ; Han LIN ; Luowei WANG
Frontiers of Medicine 2024;18(6):1035-1053
Dysregulated RNA splicing events produce transcripts that facilitate esophageal squamous cell carcinoma (ESCC) progression, but how this splicing process is abnormally regulated remains elusive. Here, we unveiled a novel alternative splicing axis of BOLA3 transcripts and its regulator HNRNPC in ESCC. The long-form BOLA3 (BOLA3-L) containing exon 3 exhibited high expression levels in ESCC and was associated with poor prognosis. Functional assays demonstrated the protumorigenic function of BOLA3-L in ESCC cells. Additionally, HNRNPC bound to BOLA3 mRNA and promoted BOLA3 exon 3 inclusion forming BOLA3-L. High HNRNPC expression was positively correlated with the presence of BOLA3-L and associated with an unfavorable prognosis. HNRNPC knockdown effectively suppressed the malignant biological behavior of ESCC cells, which were significantly rescued by BOLA3-L overexpression. Moreover, BOLA3-L played a significant role in mitochondrial structural and functional stability. E2F7 acted as a key transcription factor that promoted the upregulation of HNRNPC and inclusion of BOLA3 exon 3. Our findings provided novel insights into how alternative splicing contributes to ESCC progression.
Female
;
Humans
;
Male
;
Mice
;
Alternative Splicing
;
Cell Line, Tumor
;
Disease Progression
;
Esophageal Neoplasms/pathology*
;
Esophageal Squamous Cell Carcinoma/pathology*
;
Exons/genetics*
;
Gene Expression Regulation, Neoplastic
;
Heterogeneous-Nuclear Ribonucleoprotein Group C/metabolism*
;
Prognosis
;
RNA, Long Noncoding/metabolism*
;
Animals

Result Analysis
Print
Save
E-mail