1.Research progress on the regulation of ferroptosis by non-coding RNAs in esophageal squamous cell cancer.
Jia-Min WANG ; Pan LIU ; Rui ZHU ; Dan SU
Acta Physiologica Sinica 2025;77(3):563-572
Esophageal squamous cell carcinoma (ESCC) is a prevalent malignancy of the digestive tract that poses a significant threat to human health, with an incidence rate that continues to rise globally. Increasing research highlights the crucial role of non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), in regulating ferroptosis and contributing to the malignant progression of ESCC. These ncRNAs influence the proliferation, apoptosis, and invasion capabilities of ESCC cells by modulating iron metabolism and redox balance. miRNAs can regulate cellular iron accumulation and oxidative stress by targeting ferroptosis-related genes; lncRNAs may indirectly affect iron metabolic pathways by competitively binding to miRNAs; circRNAs, through a sponge effect, may regulate the activity of miRNAs. This review systematically summarizes the mechanisms of ncRNAs-mediated regulation of ferroptosis in ESCC, focusing on molecular mechanisms, regulatory networks, and their specific roles in the ferroptosis process. Additionally, the potential of ncRNAs in ESCC diagnosis, prognosis assessment, and therapeutic intervention is discussed, aiming to provide new insights and targets for ferroptosis-based tumor therapy.
Ferroptosis/genetics*
;
Humans
;
Esophageal Neoplasms/physiopathology*
;
Esophageal Squamous Cell Carcinoma
;
MicroRNAs/physiology*
;
RNA, Long Noncoding/physiology*
;
RNA, Circular
;
RNA, Untranslated/physiology*
2.Pristimerin induces Noxa-dependent apoptosis by activating the FoxO3a pathway in esophageal squamous cell carcinoma.
Mengyuan FENG ; Anjie ZHANG ; Jingyi WU ; Xinran CHENG ; Qingyu YANG ; Yunlai GONG ; Xiaohui HU ; Wentao JI ; Xianjun YU ; Qun ZHAO
Chinese Journal of Natural Medicines (English Ed.) 2025;23(5):585-592
Pristimerin, which is one of the compounds present in Celastraceae and Hippocrateaceae, has antitumor effects. However, its mechanism of action in esophageal squamous cell carcinoma (ESCC) remains unclear. This study aims to investigate the efficacy and mechanism of pristimerin on ESCC in vitro and in vivo. The inhibitory effect of pristimerin on cell growth was assessed using trypan blue exclusion and colony formation assays. Cell apoptosis was evaluated by flow cytometry. Gene and protein expressions were analyzed through quantitative reverse transcription-polymerase chain reaction (qRT-PCR), Western blotting, and immunohistochemistry. RNA sequencing (RNA-Seq) was employed to identify significantly differentially expressed genes (DEGs). Cell transfection and RNA interference assays were utilized to examine the role of key proteins in pristimerin?s effect. Xenograft models were established to evaluate the antitumor efficiency of pristimerin in vivo. Pristimerin inhibited cell growth and induced apoptosis in ESCC cells. Upregulation of Noxa was crucial for pristimerin-induced apoptosis. Pristimerin activated the Forkhead box O3a (FoxO3a) signaling pathway and triggered FoxO3a recruitment to the Noxa promoter, leading to Noxa transcription. Blocking FoxO3a reversed pristimerin-induced Noxa upregulation and cell apoptosis. Pristimerin treatment suppressed xenograft tumors in nude mice, but these effects were largely negated in Noxa-KO tumors. Furthermore, the chemosensitization effects of pristimerin in vitro and in vivo were mediated by Noxa. This study demonstrates that pristimerin exerts an antitumor effect on ESCC by inducing AKT/FoxO3a-mediated Noxa upregulation. These findings suggest that pristimerin may serve as a potent anticancer agent for ESCC treatment.
Forkhead Box Protein O3/genetics*
;
Humans
;
Apoptosis/drug effects*
;
Esophageal Squamous Cell Carcinoma/physiopathology*
;
Esophageal Neoplasms/physiopathology*
;
Pentacyclic Triterpenes
;
Animals
;
Cell Line, Tumor
;
Proto-Oncogene Proteins c-bcl-2/genetics*
;
Mice
;
Signal Transduction/drug effects*
;
Mice, Nude
;
Cell Proliferation/drug effects*
;
Triterpenes/pharmacology*
;
Xenograft Model Antitumor Assays
;
Mice, Inbred BALB C
;
Male
;
Gene Expression Regulation, Neoplastic/drug effects*
3.Effect of RAD18-siRNA on proliferation and chemotherapy sensitivity of human esophageal squamous cell carcinoma ECA-109 cells.
Pengrong LOU ; Xiaonan SUN ; Jundong ZHOU ; Shitao ZOU
Journal of Zhejiang University. Medical sciences 2016;45(4):364-370
To investigate the effect of RAD18-siRNA on cell proliferation and chemotherapy sensitivity of esophageal squamous cell carcinoma (ESCC) ECA-109 cells.RAD18-siRNA was transfected into human ECA-109 cells by Lipofectamine 3000. Quantitative PCR and Western blot were performed to detect RAD18 and CyclinD1 expression; CCK-8 assay was used to determine cell proliferation and chemotherapy drug sensitivity; flow cytometry was used to determine cell cycle. Correlation between RAD18 and CyclinD1 mRNA expression was analyzed by Pearson's correlation.Compared with non-transfected cells, the expression of RAD18 in RAD18-siRNA group was significantly decreased (<0.05). The cell proliferation was inhibited (<0.05) and the cell number of G1 phase was increased, G2/M phase cells decreased (<0.05) in RAD18-siRNA group. After treatment with different concentrations of cisplatin or 5-FU, the survival rate of the two cell groups was reduced (all<0.05), and the IC50 of RAD18-siRNA group was significantly lower than that of non-transfected group (<0.05). The mRNA expression of RAD18 was positively correlated with CyclinD1 expression in ESCC tissues(=0.478,<0.01).Down-regulated expression of RAD18 can decrease the cell proliferation and increase chemo-sensitivity of ESCC cells, and CyclinD1 may participate in the process.
Adjuvants, Pharmaceutic
;
pharmacology
;
Carcinoma, Squamous Cell
;
drug therapy
;
physiopathology
;
Cell Cycle
;
Cell Line, Tumor
;
Cell Proliferation
;
drug effects
;
Cisplatin
;
pharmacology
;
Cyclin D1
;
drug effects
;
genetics
;
DNA-Binding Proteins
;
administration & dosage
;
pharmacology
;
Down-Regulation
;
drug effects
;
genetics
;
Drug Resistance, Neoplasm
;
drug effects
;
Drug Screening Assays, Antitumor
;
methods
;
Drug Synergism
;
Esophageal Neoplasms
;
drug therapy
;
physiopathology
;
Fluorouracil
;
pharmacology
;
G1 Phase
;
drug effects
;
G2 Phase
;
drug effects
;
Humans
;
Metaphase
;
drug effects
;
RNA, Small Interfering
;
administration & dosage
;
pharmacology
;
Transfection
;
Ubiquitin-Protein Ligases
;
administration & dosage
;
pharmacology
4.Role of S100A4 in the epithelial-mesenchymal transition of esophageal squamous cell carcinoma and its molecular mechanism.
Liu JIAN ; Wang ZHIHONG ; Wang LIUXING ; Fan QINGXIA
Chinese Journal of Oncology 2015;37(4):258-265
OBJECTIVETo explore the role of S100A4 in the epithelial-mesenchymal transition (EMT) in esophageal squamous cell carcinoma and its possible molecular mechanism.
METHODSThree chemically synthesized S100A4 siRNA sequences were transiently transfected into esophageal carcinoma EC9706 cells. EC9706 cells transfected with negative siRNA, lipofectamine 2000, and vacant EC9706 cells were used as control. Fluorescence quantitative RT-PCR and Western blot were used to detect the inhibition rate of S100A4 siRNA. S100A4 siRNA2 with the best inhibition rate was chosen to transiently transfect into EC9706 cells under the same conditions. The EC9706 cells transfected with negative siRNA, lipofectamine 2000 and vacant EC9706 cells were also used as control. Fluorescence quantitative RT-PCR and Western blot were used to detect the mRNA and protein expressions of E-cadherin, vimentin and snail. The morphology of EC9706 cells was observed under an inverted microscope. Boyden chamber and scratch test were used to detect the invasion and migration ability of EC9706 cells, and CCK8 assay was used to detect the proliferation ability of EC9706 cells. EC9706 cells transfected with S100A4 siRNA2 were further transfected with snail eukaryotic expression vector. The EC9706 cells transfected with S100A4 siRNA, EC9706 cells transfected with snail eukaryotic expression vector and vacant EC9706 cells were used as control. The above indexes of all the groups were observed, too.
RESULTSThe S100A4 mRNA and protein expression levels of the S100A4 siRNA2 group were 0.417 ± 0.041 and 0.337 ± 0.039, the transmembrane cell number was 61.608 ± 8.937, the scratch healing distance was (0.216 ± 0.064) mm, the A value was 0.623 ± 0.084, the E-cadherin mRNA and protein levels were 0.619 ± 0.032 and 0.495 ± 0.034, the vimentin mRNA and protein levels were 0.514 ± 0.032 and 0.427 ± 0.028, the snail mRNA and protein levels were 0.573 ± 0.029 and 0.429 ± 0.041. These data were significantly different with the liposome group, the negative control group and the blank group (P < 0.05 for all). After the S100A4 siRNA2 treatment for 24 h, the appearance of EC9706 cells changed to epithelial cell morphology. The transmembrane cell number and the scratch healing distance of the S100A4 siRNA2+snail eukaryotic expression vector group were (69.382 ± 9.666) cells and (0.274 ± 0.029) mm, the A value was 0.823 ± 0.101, the snail mRNA and protein levels were 0.704 ± 0.037 and 0.625 ± 0.031, the vimentin mRNA and protein levels were 0.712 ± 0.046 and 0.609 ± 0.038, and these data were significantly higher than those of the Sl00A4 siRNA2 group (P < 0.05 for all). The E-cadherin mRNA and protein levels of the S100A4 siRNA2+eukaryotic expression vector group were 0.437 ± 0.038 and 0.381 ± 0.031, significantly lower than those of the S100A4 siRNA2 group (P < 0.05 for all). However, snail had no effect on the morphology of EC9706 cells.
CONCLUSIONSS100A4 may be involved in the EMT process of esophageal squamous-cell carcinoma by regulating the expression of snail and then plays a role in the invasion and metastasis of esophageal carcinoma.
Cadherins ; analysis ; Carcinoma, Squamous Cell ; metabolism ; pathology ; physiopathology ; Cell Line, Tumor ; Epithelial Cells ; Epithelial-Mesenchymal Transition ; Esophageal Neoplasms ; metabolism ; pathology ; physiopathology ; Humans ; Indicators and Reagents ; Lipids ; RNA, Messenger ; analysis ; RNA, Small Interfering ; analysis ; physiology ; S100 Calcium-Binding Protein A4 ; S100 Proteins ; antagonists & inhibitors ; genetics ; physiology ; Snail Family Transcription Factors ; Transcription Factors ; analysis ; genetics ; Transfection ; Vimentin ; analysis ; genetics

Result Analysis
Print
Save
E-mail