1.GDF15 negatively regulates chemosensitivity via TGFBR2-AKT pathway-dependent metabolism in esophageal squamous cell carcinoma.
Yingxi DU ; Yarui MA ; Qing ZHU ; Yong FU ; Yutong LI ; Ying ZHANG ; Mo LI ; Feiyue FENG ; Peng YUAN ; Xiaobing WANG
Frontiers of Medicine 2023;17(1):119-131
Treating patients with esophageal squamous cell carcinoma (ESCC) is challenging due to the high chemoresistance. Growth differentiation factor 15 (GDF15) is crucial in the development of various types of tumors and negatively related to the prognosis of ESCC patients according to our previous research. In this study, the link between GDF15 and chemotherapy resistance in ESCC was further explored. The relationship between GDF15 and the chemotherapy response was investigated through in vitro and in vivo studies. ESCC patients with high levels of GDF15 expression showed an inferior chemotherapeutic response. GDF15 improved the tolerance of ESCC cell lines to low-dose cisplatin by regulating AKT phosphorylation via TGFBR2. Through an in vivo study, we further validated that the anti-GDF15 antibody improved the tumor inhibition effect of cisplatin. Metabolomics showed that GDF15 could alter cellular metabolism and enhance the expression of UGT1A. AKT and TGFBR2 inhibition resulted in the reversal of the GDF15-induced expression of UGT1A, indicating that TGFBR2-AKT pathway-dependent metabolic pathways were involved in the resistance of ESCC cells to cisplatin. The present investigation suggests that a high level of GDF15 expression leads to ESCC chemoresistance and that GDF15 can be targeted during chemotherapy, resulting in beneficial therapeutic outcomes.
Humans
;
Esophageal Squamous Cell Carcinoma/drug therapy*
;
Cisplatin/metabolism*
;
Esophageal Neoplasms/metabolism*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Carcinoma, Squamous Cell/genetics*
;
Growth Differentiation Factor 15/therapeutic use*
;
Receptor, Transforming Growth Factor-beta Type II/therapeutic use*
;
Cell Line, Tumor
;
Cell Proliferation
;
Gene Expression Regulation, Neoplastic
2.Knockdown of ACC1 promotes migration of esophageal cancer cell.
He QIAN ; Cheng Wei GU ; Yu Zhen LIU ; Bao Sheng ZHAO
Chinese Journal of Oncology 2023;45(6):482-489
Objective: To investigate the effect of acetyl-CoA carboxylase 1 (ACC1) knockdown on the migration of esophageal squamous cell carcinoma (ESCC) KYSE-450 cell and underlying mechanism. Methods: Lentiviral transfection was conducted to establish sh-NC control cell and ACC1 knocking down cell (sh-ACC1). Human siRNA HSP27 and control were transfected by Lipo2000 to get si-HSP27 and si-NC. The selective acetyltransferase P300/CBP inhibitor C646 was used to inhibit histone acetylation and DMSO was used as vehicle control. Transwell assay was performed to detect cell migration. The expression of HSP27 mRNA was examined by reverse transcription-quantitative real-time polymerase chain reaction (RT-qPCR) and the expressions of ACC1, H3K9ac, HSP27 and epithelial-mesenchymal transition-related proteins E-cadherin and Vimentin were detected by western blot. Results: The expression level of ACC1 in sh-NC group was higher than that in sh-ACC1 group (P<0.01). The number of cell migration in sh-NC group was (159.00±24.38), lower than (361.80±26.81) in sh-ACC1 group (P<0.01). The protein expression levels of E-cadherin and Vimentin in sh-NC group were statistically significant compared with sh-AAC1 group (P<0.05). The migrated cell number in sh-NC+ si-NC group was (189.20±16.02), lower than (371.60±38.40) in sh-ACC1+ si-NC group (P<0.01). The migrated cell number in sh-NC+ si-NC group was higher than that in sh-NC+ si-HSP27 group (152.40±24.30, P<0.01), and the migrated cell number in sh-ACC1+ si-NC group was higher than that in sh-ACC1+ si-HSP27 group (P<0.01). The protein expression levels of E-cadherin and Vimentin in sh-NC+ si-NC group were significantly different from those in sh-ACC1+ si-NC and sh-NC+ si-HSP27 groups (P<0.01). The protein expression levels of E-cadherin and Vimentin in sh-ACC1+ si-NC group were significantly different from those in sh-ACC1+ si-HSP27 group (P<0.01). After 24 h treatment with C646 at 20 μmmo/L, the migrated cell number in sh-NC+ DMSO group was (190.80±11.95), lower than (395.80±17.10) in sh-ACC1+ DMSO group (P<0.01). The migrated cell number in sh-NC+ DMSO group was lower than that in sh-NC+ C646 group (256.20±23.32, P<0.01). The migrated cell number in sh-ACC1+ DMSO group was higher than that in sh-ACC1+ C646 group (87.80±11.23, P<0.01). The protein expressions of H3K9ac, HSP27, E-cadherin and Vimentin in sh-NC+ DMSO group were significantly different from those in sh-ACC1+ DMSO group and sh-NC+ C646 group (P<0.01). The protein expression levels of H3K9ac, HSP27, E-cadherin and Vimentin in sh-ACC1+ DMSO group were significantly different from those in sh-ACC1+ C646 group (P<0.01). Conclusion: Knockdown of ACC1 promotes the migration of KYSE-450 cell by up-regulating HSP27 and increasing histone acetylation.
Humans
;
Esophageal Neoplasms/pathology*
;
Esophageal Squamous Cell Carcinoma/genetics*
;
Vimentin/metabolism*
;
Dimethyl Sulfoxide
;
HSP27 Heat-Shock Proteins/metabolism*
;
Histones/metabolism*
;
Cadherins/metabolism*
;
Cell Movement
;
Cell Line, Tumor
;
Cell Proliferation/genetics*
;
Epithelial-Mesenchymal Transition/genetics*
;
Gene Expression Regulation, Neoplastic
3.miR-30e-3p in natural killer cell-derived exosomes inhibits the proliferation and invasion of human esophageal squamous carcinoma cells.
Mingyue SUN ; Honglin LI ; Baorong FENG
Chinese Journal of Cellular and Molecular Immunology 2023;39(4):295-302
Objective To investigate the effects of natural killer (NK)-cell-derived miR-30e-3p-containing exosomes (Exo) on esophageal squamous cell carcinoma (ESCC) cell proliferation, apoptosis and invasion. Methods NK cells were isolated and amplified from the peripheral blood of healthy donors, and NK cell-derived Exo was isolated and identified, which were further co-cultured with NEC cells and were randomly grouped into Exo1 and Exo2 groups. Transmission electron microscopy (TEM) was used to observe the morphology and size of exosomes. Western blot analysis was used to detect the expression levels of exosome markers apoptosis related gene 2- interacting protein X(ALIX), tumor susceptibility gene 101(TSG101), CD81 and calnexin. The NC plasmids, mimics and inhibitors of miR030e-3p were respectively delivered into the NK cells, and the corresponding NK cells-derived Exo were co-cultured with NEC cells, which were divided into NC, Exo, mimic and inhibitor groups. CCK-8 assay was used to evaluate cell proliferation, flow cytometry was conducted to determine cell cycle, annexin V-FITC/PI double staining was employed to detect cell apoptosis, and TranswellTM assay was performed to detect cell invasion abilities. Real-time quantitative PCR was used to detect the expression of miR-23b, miR-422a, miR-133b, miR-124, miR-30e-3p and miR-99a in NCE cells and exosomes. Results The percentages of CD56+CD3+ cells and CD56+CD16+ cells in NK cells were (0.071±0.008)% and (90.6±10.6)%, respectively. Exosome isolated from NK cells ranged from 30 nm to 150 nm, and was positive for ALIX, TSG101 and CD81, while negative for calnexin. NK cell-derived Exos inhibited the proliferation, reduced the proportion of S-phase cells and the number of invaded cells of NEC cells, and promoted the apoptosis and the proportion of G1 phase cells. Overexpression of miR-30E-3p in NK cell-derived exosome inhibited the proliferation and invasion of NEC cells, and blocked cell cycle and promoted apoptosis, while knockdown miR-30e-3p in NK cell-derived exosomes did the opposite. Conclusion miR-30e-3p in NK cell-derived exosomes can inhibit the proliferation and invasion of ESCC cells, block their cell cycle and induce their apoptosis.
Humans
;
Esophageal Squamous Cell Carcinoma/genetics*
;
Esophageal Neoplasms/genetics*
;
Exosomes/metabolism*
;
Calnexin/metabolism*
;
Cell Movement/genetics*
;
MicroRNAs/metabolism*
;
Cell Proliferation/genetics*
;
Killer Cells, Natural
;
Cell Line, Tumor
;
Apoptosis/genetics*
5.Paired box 5 increases the chemosensitivity of esophageal squamous cell cancer cells by promoting p53 signaling activity.
Weiwei ZHANG ; Wenji YAN ; Niansong QIAN ; Quanli HAN ; Weitao ZHANG ; Guanghai DAI
Chinese Medical Journal 2022;135(5):606-618
BACKGROUND:
Gene promoter methylation is a major epigenetic change in cancers, which plays critical roles in carcinogenesis. As a crucial regulator in the early stages of B-cell differentiation and embryonic neurodevelopment, the paired box 5 (PAX5) gene is downregulated by methylation in several kinds of tumors and the role of this downregulation in esophageal squamous cell carcinoma (ESCC) pathogenesis remains unclear.
METHODS:
To elucidate the role of PAX5 in ESCC, eight ESCC cell lines, 51 primary ESCC tissue samples, and eight normal esophageal mucosa samples were studied and The Cancer Genome Atlas (TCGA) was queried. PAX5 expression was examined by reverse transcription-polymerase chain reaction and western blotting. Cell apoptosis, proliferation, and chemosensitivity were detected by flow cytometry, colony formation assays, and 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide assays in ESCC cell lines with PAX5 overexpression or silencing. Tumor xenograft models were established for in vivo verification.
RESULTS:
PAX5 methylation was found in 37.3% (19/51) of primary ESCC samples, which was significantly associated with age (P = 0.007) and tumor-node-metastasis stage (P = 0.014). TCGA data analysis indicated that PAX5 expression was inversely correlated with promoter region methylation (r = -0.189, P = 0.011 for cg00464519 and r = -0.228, P = 0.002 for cg02538199). Restoration of PAX5 expression suppressed cell proliferation, promoted apoptosis, and inhibited tumor growth of ESCC cell lines, which was verified in xenografted mice. Ectopic PAX5 expression significantly increased p53 reporter luciferase activity and increased p53 messenger RNA and protein levels. A direct interaction of PAX5 with the p53 promoter region was confirmed by chromatin immunoprecipitation assays. Re-expression of PAX5 sensitized ESCC cell lines KYSE150 and KYSE30 to fluorouracil and docetaxel. Silencing of PAX5 induced resistance of KYSE450 cells to these drugs.
CONCLUSIONS
As a tumor suppressor gene regulated by promoter region methylation in human ESCC, PAX5 inhibits proliferation, promotes apoptosis, and induces activation of p53 signaling. PAX5 may serve as a chemosensitive marker of ESCC.
Animals
;
Carcinoma, Squamous Cell/genetics*
;
Cell Line, Tumor
;
Cell Proliferation/genetics*
;
Epithelial Cells/metabolism*
;
Esophageal Neoplasms/genetics*
;
Esophageal Squamous Cell Carcinoma/genetics*
;
Gene Expression Regulation, Neoplastic
;
Humans
;
Mice
;
PAX5 Transcription Factor/genetics*
;
Tumor Suppressor Protein p53/genetics*
;
Xenograft Model Antitumor Assays
7.MIR503HG promotes esophageal squamous cell carcinoma cell proliferation, invasion and migration via hsa-miR-503 pathway.
Tong Yang GONG ; Hong Yan CHEN ; Zhi Hua LIU
Chinese Journal of Oncology 2022;44(11):1160-1167
Objective: To explore the function and mechanism of long non-coding RNA MIR503HG in esophageal squamous cell carcinoma (ESCC). Methods: The MIR503HG expression data in 60, 119 and 23 cases of ESCC and their paired adjacent tissues were chosen from three ESCC datasets GSE53622, GSE53624 and GSE130078, respectively. The expression data of MIR503HG in 81 ESCC tissues and 271 unpaired normal esophageal tissues were screened from the combined dataset of Cancer Genome Atlas and Genotype-Tissue Expression Database (TCGA+ GTEx). The MIR503HG knockdown plasmid was constructed, packaged into lentivirus. The lentivirus was used to infect with esophageal squamous cell carcinoma cell lines KYSE30 and KYSE510 to screen out the stable MIR503HG knockdown cell lines. ESCC cell line KYSE30 was transiently transfected with miRNA mimics to overexpress hsa-miR-503-3p and hsa-miR-503-5p.The expression levels of MIR503HG, hsa-miR-503-3p and hsa-miR-503-5p were detected by quantitative real-time polymerase chain reaction. The proliferation ability of the cells was detected by cell counting kit 8 and clone formation assay. The invasion and migration ability of the cells were detected by Transwell assay. Cell cycle was detected by flow cytometry. The effect of MIR503HG on the proliferation of ESCC was detected by xenograft experiment in BALB/c-nu/nu mice. Results: Both GEO and TCGA+ GTEx databases showed that the expression of MIR503HG in ESCC tissues was higher than that in adjacent tissues and normal esophageal tissues (P<0.01). Compared with shNC group, the proliferation rates of KYSE30 and KYSE510 cells after knockdown of MIR503HGwere significantly inhibited (P<0.001). The colony formation numbers of KYSE30 cells in shMIR503HG1 group and shMIR503HG2 group were (2.00±1.41) and (1.33±0.47), respectively, significantly lower than that of the shNC group (P=0.002). The clone formation numbers of KYSE510 cells in shMIR503HG1 group and shMIR503HG2 group were (174.67±15.97) and (80.33±6.34), respectively, significantly lower than that of the shNC group (P<0.001). The invasive numbers of KYSE30 cells in shMIR503HG1 group and shMIR503HG2 group were 75.33±6.02 and 45.67±7.59, significantly lower than that of the shNC group(P<0.001). The migrating number of KYSE30 cells in shMIR503HG1 group and shMIR503HG2 group were 244.00±10.23 and 210.67±13.52, significantly lower than that of the shNC group(P<0.001), and the cell cycle was arrested in G(0)/G(1) phase. The xenograft experiment showed that the subcutaneous tumor in shMIR503HG group was significantly smaller than that in shNC group, and the tumor weight in shMIR503HG group was (0.097±0.026) g, which was lower than (0.166±0.021) g in shNC group (P<0.001). After knockdown of MIR503HG, the relative expression levels of hsa-miR-503-3p in KYSE30 cells of shMIR503HG1 group and shMIR503HG2 group were 0.66±0.02 and 0.58±0.00, respectively, the relative expression levels of hsa-miR-503-5p were 0.64±0.00 and 0.68±0.03, respectively, which were all lower than those in shNC group (P<0.01). After knockdown of MIR503HG, overexpression of hsa-miR-503-3p and hsa-miR-503-5p attenuated the inhibitory effects of knockdown of MIR503HG on proliferation (P<0.001), invasion (P<0.01) and migration (P<0.001) of KYSE30 cells. Conclusions: MIR503HG promotes the proliferation, invasion and migration of ESCC cells by regulating hsa-miR-503 pathway and can be used as a new potential target for targeted therapy of ESCC.
Animals
;
Humans
;
Mice
;
Cell Line, Tumor
;
Cell Movement/genetics*
;
Cell Proliferation/genetics*
;
Esophageal Neoplasms/pathology*
;
Esophageal Squamous Cell Carcinoma/pathology*
;
Gene Expression Regulation, Neoplastic
;
Mice, Nude
;
MicroRNAs/metabolism*
8.Gene mutations of esophageal squamous cell carcinoma based on next-generation sequencing.
Long WANG ; Yi-Meng JIA ; Jing ZUO ; Yu-Dong WANG ; Zhi-Song FAN ; Li FENG ; Xue ZHANG ; Jing HAN ; Wen-Jing LYU ; Zhi-Yu NI
Chinese Medical Journal 2021;134(6):708-715
BACKGROUND:
Esophageal squamous cell carcinoma (ESCC) is one of the most aggressive cancers without effective therapy. To explore potential molecular targets in ESCC, we quantified the mutation spectrum and explored the relationship between gene mutation and clinicopathological characteristics and programmed death-ligand 1 (PD-L1) expression.
METHODS:
Between 2015 and 2019, 29 surgically resected ESCC tissues and adjacent normal tissues from the Fourth Hospital of Hebei Medical University were subjected to targeted next-generation sequencing. The expression levels of PD-L1 were detected by immunohistochemistry. Mutational signatures were extracted from the mutation count matrix by using non-negative matrix factorization. The relationship between detected genomic alterations and clinicopathological characteristics and PD-L1 expression was estimated by Spearman rank correlation analysis.
RESULTS:
The most frequently mutated gene was TP53 (96.6%, 28/29), followed by NOTCH1 (27.6%, 8/29), EP300 (17.2%, 5/29), and KMT2C (17.2%, 5/29). The most frequently copy number amplified and deleted genes were CCND1/FGF3/FGF4/FGF19 (41.4%, 12/29) and CDKN2A/2B (10.3%, 3/29). By quantifying the contribution of the mutational signatures to the mutation spectrum, we found that the contribution of signature 1, signature 2, signature 10, signature 12, signature 13, and signature 17 was relatively high. Further analysis revealed genetic variants associated with cell cycle, chromatin modification, Notch, and Janus kinase-signal transducer and activator of transcription signaling pathways, which may be key pathways in the development and progression of ESCC. Evaluation of PD-L1 expression in samples showed that 13.8% (4/29) of samples had tumor proportion score ≥1%. 17.2% (5/29) of patients had tumor mutation burden (TMB) above 10 mut/Mb. All samples exhibited microsatellite stability. TMB was significantly associated with lymph node metastasis (r = 0.468, P = 0.010), but not significantly associated with PD-L1 expression (r = 0.246, P = 0.198). There was no significant correlation between PD-L1 expression and detected gene mutations (all P > 0.05).
CONCLUSION
Our research initially constructed gene mutation profile related to surgically resected ESCC in high-incidence areas to explore the mechanism underlying ESCC development and potential therapeutic targets.
B7-H1 Antigen
;
Carcinoma, Squamous Cell/genetics*
;
Esophageal Neoplasms/genetics*
;
Esophageal Squamous Cell Carcinoma/genetics*
;
High-Throughput Nucleotide Sequencing
;
Humans
;
Mutation/genetics*
9.Serum level of lncRNA TUSC7 in patients with esophageal squamous cell carcinoma and its role in promoting tumor cell migration and invasion.
Ke ZHAO ; Yugang GUO ; Zheng HUO ; Guohui MA ; Gui ZHANG ; Yuxin XING ; Qian XU
Journal of Southern Medical University 2020;40(5):661-669
OBJECTIVE:
To investigate serum levels of long non-coding RNA (lncRNA) TUSC7 in patients with esophageal squamous cell carcinoma (ESCC), its association with clinicopathological parameters and its role in promoting tumor metastasis and invasion.
METHODS:
Serum samples were collected from 60 patients with ESCC admitted between January, 2017 and May, 2019, with 60 age- and gender-matched healthy subjects as the control group. Serum level of TUSC7 in ESCC patients and its expression in 4 ESCC cell lines was detected with RT-qPCR. The association of serum TUSC7 level with the clinicopathological features of the patients was analyzed. KYSE-30 cell models with TUSC7 overexpression or knockdown were established, and the proliferation of the cells was examined with MTT assay and their migration and invasion were assessed using wound healing and Transwell assays. Western blotting was used to detect the cellular expressions of the proteins associated with epithelial-mesenchymal transition (EMT).
RESULTS:
The patients with ESCC had significantly lower serum TUSC7 level than the healthy control subjects ( < 0.05). The ESCC cell lines also expressed lower levels of TUSC7 than normal cells ( < 0.05). Serum TUSC7 level was negatively correlated with tumor staging, lymph node metastasis and infiltration ( < 0.05) but was not significantly correlated with other clinicopathological parameters in ESCC patients. In the cell experiment, overexpression of TUSC7 in KYSE-30 cells significantly inhibited cell migration and invasion ( < 0.05), enhanced the expression of the EMT marker protein E-cadherin and lowered the expressions of N-cadherin, Vimentin and MMP9 ( < 0.05); knocking down TUSC7 in the cells produced the opposite effects.
CONCLUSIONS
The down-regulation of TUSC7 expression in the serum of ESCC patients and in ESCC cell lines is associated with the metastasis of ESCC and promotes tumor cell migration and invasion by promoting EMT, indicating the potential of serum TUSC7 level as a molecular marker for diagnosis, treatment and metastasis monitoring of ESCC.
Cell Line, Tumor
;
Cell Movement
;
Cell Proliferation
;
Epithelial-Mesenchymal Transition
;
Esophageal Neoplasms
;
genetics
;
Esophageal Squamous Cell Carcinoma
;
genetics
;
Gene Expression Regulation, Neoplastic
;
Humans
;
Neoplasm Invasiveness
;
RNA, Long Noncoding
;
genetics
10.Gut Microbiome Differences between Gastrointestinal Cancer Patients and Healthy People.
Ning Ning LI ; Chun Mei BAI ; Lin ZHAO ; Yu Ping GE
Acta Academiae Medicinae Sinicae 2019;41(5):636-645
Objective To compare the differences in fecal flora among patients with esophageal cancer,gastric cancer,or colorectal cancer and between patients with gastrointestinal tumors and healthy people.Methods The 16S rRNA method was used to analyze the differences in fecal flora among 13 patients with esophageal squamous cell carcinoma,23 patients with gastric cancer,6 patients with colorectal cancer,and 49 healthy persons.Results Bifidobacterium,,and were less abundant in the fecal flora of cancer patients than in those of healthy controls(all <0.05).Some species of and were significantly reduced in the feces of patients with esophageal cancer or gastric cancer than in healthy people(<0.05),whereas others showed consistency with the intestinal cancer group.Anti-tumor treatment,antibiotics,and lactic acid could affect the fecal flora of cancer patients.Conclusion The gut microbiota compositions(mainly and )and some specific bacteria species in the feces of patients with esophageal cancer and gastric cancer are similar to those in the feces of patients with intestinal cancer,suggesting these bacteria may be involved in the development of upper gastrointestinal tumors.
Bacteria
;
classification
;
Case-Control Studies
;
Esophageal Neoplasms
;
microbiology
;
Esophageal Squamous Cell Carcinoma
;
microbiology
;
Feces
;
microbiology
;
Gastrointestinal Microbiome
;
Humans
;
RNA, Ribosomal, 16S
;
genetics

Result Analysis
Print
Save
E-mail