1.Analyze of HLA class-I antibody and epitopes in patients with ineffective platelet transfusion in Shandong region.
Chinese Journal of Cellular and Molecular Immunology 2025;41(11):1013-1019
Objective Analyze the human leukocyte antigen(HLA) class-I antibody specificity and antigenic determinants in patients with ineffective platelet transfusion, to provide theoretical basis for the establishment and application of platelet donor bank in Shandong Province. Methods 69 patients with ineffective platelet transfusion, the patients specimens were subjected to specific detection of HLA class-I antibody, and the possible antigenic determinants were analyzed using HLA Matchmaker software, and the relative immunogenicity of the antigen was calculated. Results A total of 113 specific antibodies were detected in 69 patient specimens. Among which 33 were antibodies to the HLA-A loci, with the highest frequency of HLA-A*69:01 (54%), 54 were antibodies to the HLA-B loci, and the highest frequency of HLA-B*15:12 (64%); 25 antibodies against Cw loci with low platelet expression were detected, with HLA-C*17:01 having the highest frequency (38%). Using HLA Matchmaker software, a total of 221 HLA class I epitopes were detected, among which 163LG and 163L had the highest probability, reaching 59.4%. Among the HLA-A loci, the allele HLA-A*02:03 has the highest relative immunogenicity at 137.157, while the allele HLA-A*02:05 has the lowest relative immunogenicity at 0.1450. In the HLA-B locus, the relative immunogenicity of HLA-B*73:01 allele is the highest, reaching 229.885, while the relative immunogenicity of HLA-B*13:02 allele is the lowest, reaching 0.121. Conclusion This study obtained the distribution characteristics of HLA class-I antibodies in PTR patients in Shandong population, providing theoretical basis for precise platelet transfusion, improving transfusion efficiency, and establishing and applying platelet supply banks.
Humans
;
Platelet Transfusion
;
Male
;
Female
;
Middle Aged
;
Epitopes/genetics*
;
China
;
Adult
;
Histocompatibility Antigens Class I/genetics*
;
Antibodies/blood*
;
Aged
;
Young Adult
;
HLA-A Antigens/genetics*
;
Adolescent
;
HLA-B Antigens/genetics*
2.MOR106 alleviates inflammation in mice with atopic dermatitis by blocking the JAK2/STAT3 signaling pathway and inhibiting IL-17C-mediated Tfh cell differentiation.
Limin TIAN ; Xiaohui HUYAN ; Sen YANG ; Mengjie WANG ; Yuenan YANG
Chinese Journal of Cellular and Molecular Immunology 2024;40(1):26-32
Objective To explore the significance of interleukin-17C(IL-17C)-mediated follicular helper T cell (Tfh) differentiation in atopic dermatitis (AD) model. Methods BALB/c mice were divided into control group, AD model group, low-dose MOR106 (anti-IL-17C huIgG1)(MDR106-L)treatment group and high-dose MOR106 (MOR106-H) treatment group, 8 mice in each group. Except for the control group, all the other groups were treated with 2, 4- dinitrochlorobenzene (DNCB) to establish AD models. The low-dose and high-dose MOR106 groups were treated with 5 mg/kg or 10 mg/kg MOR106 respectively. The differentiation of Tfh cell subsets in peripheral blood of mice was analyzed by flow cytometry, and the expression of Janus kinase 2/signal transducer and activator of transcription 3(JAK2/STAT3) signal pathway protein in skin tissue was detected by Western blot analysis. Results Compared with the control group, the dermatitis severity score, mass difference between two ears, spleen mass and spleen index of DNCB group increased significantly, while those of MOR106-L group and MOR106-H group decreased significantly. Compared with the control group, the Tfh subgroup of AD mice showed deregulated differentiation, resulting in a significant increase in the percentage of CD4+CXCR5+IFN-γ+Tfh1 cells, CD4+CXCR5+IL-17A+Tfh17 and CD4+CXCR5+IL-21+Tfh21 cells, and a significant decrease in the percentage of CD4+CXCR5+IL-10+Tfh10 cells and CD4+CXCR5+FOXP3+Tfr cells in peripheral blood. The protein levels of phosphorylated JAK2(p-JAK2) and p-STAT3 were significantly increased. MOR106 effectively reversed these changes of Tfh1, Tfh10, Tfh17, Tfh21 and Tfr cells in peripheral blood of AD mice. Compared with AD group, the levels of p-JAK2 and p-STAT3 protein in low-dose and high-dose MOR106 treatment groups decreased significantly. Conclusion MOR106 can reduce the inflammatory response of AD mice by blocking JAK2/STAT3 signaling pathway and inhibiting the differentiation of Tfh cells mediated by IL-17C.
Animals
;
Mice
;
Dermatitis, Atopic/drug therapy*
;
Interleukin-17
;
T Follicular Helper Cells
;
Janus Kinase 2
;
Dinitrochlorobenzene
;
Inflammation
;
Cell Differentiation
;
Signal Transduction
3.Preparation and identification of monoclonal antibodies against human LAG3 by immunizing mice with recombinant eukaryotic cell antigens.
Chinese Journal of Cellular and Molecular Immunology 2024;40(12):1110-1114
Objective To prepare mouse anti-human lymphocyte activation gene 3 (LAG3) monoclonal antibody (mAb) and perform immunological identification of the antibody. Methods BALB/c mice were immunized with LAG3-mLumin-3T3 cells, which stably express the extracellular and transmembrane regions of human LAG3 in mouse 3T3 cells. The secretion of anti-human LAG3 antibodies in mouse serum was assessed using flow cytometry and immunofluorescence. SP2/0 cells were injected subcutaneously into the mice to elicit solid myelomas, and mouse myeloma cells were subsequently isolated. Spleen cells from the immunized mice were fused with the myeloma cells to establish hybridomas, which were then separated using the limiting dilution method. Flow cytometry was used to detect LAG3 mAbs in the hybridoma culture medium. To map the epitopes recognized by these mAbs, 3T3 cells expressing individual extracellular domains of LAG3(LAG3 domains 1/-2/-3/-4-3T3) were used. Flow cytometry was also applied to analyze LAG3 expression on activated human peripheral blood mononuclear cells (PBMC) before and after co-culture with the LAG3 mAbs. Results Mice immunized with the recombinant eukaryotic cell antigen produced anti-LAG3 antibodies. The generated hybridomas secreted mouse anti-human LAG3 mAbs, with each hybridoma line recognizing different LAG3 antigenic domains. Conclusion Mouse anti-human LAG3 mAbs were successfully generated, with different hybridoma clones secreting antibodies that recognize distinct LAG3 epitopes. These findings lay the groundwork for further studies into the biological properties of LAG3 and the development of diagnostic reagents and therapeutic blocking antibodies for cancer treatment.
Animals
;
Humans
;
Mice
;
Lymphocyte Activation Gene 3 Protein
;
Antibodies, Monoclonal/immunology*
;
Mice, Inbred BALB C
;
Hybridomas/immunology*
;
Antigens, CD/genetics*
;
Immunization
;
Recombinant Proteins/immunology*
;
Female
;
Eukaryotic Cells/immunology*
;
Flow Cytometry
;
Epitopes/immunology*
4.Diagnostic significance of serum chemokine CXCL-10 and Krebs von den lungen-6 level in patients with rheumatoid arthritis associated interstitial lung disease.
Rui YAN ; Dan KE ; Yan ZHANG ; Li LI ; Huanran SU ; Wei CHEN ; Mingxia SUN ; Xiaomin LIU ; Liang LUO
Journal of Peking University(Health Sciences) 2024;56(6):956-962
OBJECTIVE:
To detect the serum level of chemokine CXC motif chemokine 10 (CXCL-10) and Krebs von den lungen-6 (KL-6) in patients with rheumatoid arthritis associated interstitial lung disease (RA-ILD), and to analyze their correlation with RA-ILD, as well as the significance in RA-ILD.
METHODS:
A total of 169 RA patients were enrolled in the study. According to imaging findings of with and without ILD in high-resolution computed tomography scans of chest, the subjects were divided into RA-ILD group and RA-non-ILD group. According to the inclusion and exclusion criteria, 80 patients in each of the two groups were finally selected. Two groups were matched according to the 1 ∶ 1 ratio using propensity score matching (PSM). The serum CXCL-10 and KL-6 levels were detected by enzyme-linked immunosorbent assay. The clinical features, laboratory data and medications between the two groups were compared after PSM and the correlation between serum levels and clinical parameters were analyzed. Binary Logistic regression was used to analyze the risk factors of ILD in the RA patients, and the predictive value of CXCL-10 and KL-6 in RA-ILD was evaluated.
RESULTS:
In this study, 49 patients with RA-ILD and 49 patients with RA-non-ILD were selected by PSM. The levels of CXCL-10 and KL-6 in the RA-ILD group [64.36 (34.01, 110.18) ng/L, 360.70 (236.35, 715.05) U/mL] were significantly higher than those in the RA-non-ILD group [29.80 (16.89, 40.55) ng/L, 210.69 (159.98, 255.50) U/mL] (all P < 0.001). The results of correlation analysis showed that the level of serum CXCL-10 was positively correlated with the Warrick score on chest CT (r=0.378, P=0.007) and negatively correlated with the percentage of forced vital capacity to the predicted value (FVC%, r=-0.338, P=0.018). And the level of KL-6 was positively correlated with rheumatoid factor (RF, r=0.296, P=0.039) and negatively correlated with FVC% (r=-0.436, P=0.002) and the percentage of diffusion capacity for carbon monoxide to the predicted value (DLCO%, r=-0.426, P=0.002). Both univariate and multivariate Logistic regression analysis showed that CXCL-10 and KL-6 were positively correlated with ILD, the values of OR were 1.035 and 1.023 in CXCL-10 and those were 1.004 and 1.005 in KL-6 respectively (P < 0.05). The ROC curves were plotted with CXCL-10 and KL-6. The area under the curve (AUC) was 0.770 and 0.752 respectively. The AUC of combined detection increased to 0.800.
CONCLUSION
Serum levels of CXCL-10 and KL-6 are significantly elevated in patients with RA-ILD and correlated with the severity of ILD. The combined estimate of them helps to improve the effectiveness of diagnosis.
Humans
;
Lung Diseases, Interstitial/etiology*
;
Arthritis, Rheumatoid/complications*
;
Chemokine CXCL10/blood*
;
Mucin-1/blood*
;
Female
;
Male
;
Tomography, X-Ray Computed
;
Risk Factors
;
Middle Aged
5.Targets and mechanisms of neutralizing monoclonal antibodies against Dengue virus.
Zheng CHENG ; Jinghua YAN ; Xiaonan HAN
Chinese Journal of Biotechnology 2024;40(12):4311-4323
Dengue fever is a mosquito-borne disease prevalent in tropical and subtropical regions, with its prevalence expanding due to increased global travel. The dengue virus, the causative agent of dengue fever, often co-circulates in the form of four distinct serotypes. Cross-reactive antibodies generated during a primary infection pose a significant risk during secondary infections with different serotypes, and fully protective vaccines and antiviral drugs are yet to be developed. Over the past decade, advances in antibody technology have led to the isolation of numerous monoclonal antibodies against dengue virus, with their neutralizing epitopes elucidated through structure-based analyses. This review highlights the key epitopes associated with neutralizing antibodies against dengue virus and discusses their potential applications in vaccine design and therapeutic antibody development. This review helps systematically summarize the progress in dengue virus neutralizing antibody research, providing a theoretical foundation and technical guidance for the development of novel vaccines and antibody therapeutics.
Dengue Virus/immunology*
;
Antibodies, Neutralizing/immunology*
;
Antibodies, Monoclonal/therapeutic use*
;
Dengue/prevention & control*
;
Humans
;
Antibodies, Viral/immunology*
;
Epitopes/immunology*
;
Animals
;
Dengue Vaccines/immunology*
6.Ozonated oil alleviates dinitrochlorobenzene-induced allergic contact dermatitis via inhibiting the FcεRI/Syk signaling pathway.
Zhibing FU ; Yajie XIE ; Liyue ZENG ; Lihua GAO ; Xiaochun YU ; Lina TAN ; Lu ZHOU ; Jinrong ZENG ; Jianyun LU
Journal of Central South University(Medical Sciences) 2023;48(1):1-14
OBJECTIVES:
Ozone is widely applied to treat allergic skin diseases such as eczema, atopic dermatitis, and contact dermatitis. However, the specific mechanism remains unclear. This study aims to investigate the effects of ozonated oil on treating 2,4-dinitrochlorobenzene (DNCB)-induced allergic contact dermatitis (ACD) and the underling mechanisms.
METHODS:
Besides the blank control (Ctrl) group, all other mice were treated with DNCB to establish an ACD-like mouse model and were randomized into following groups: a model group, a basal oil group, an ozonated oil group, a FcεRI-overexpressed plasmid (FcεRI-OE) group, and a FcεRI empty plasmid (FcεRI-NC) group. The basal oil group and the ozonated oil group were treated with basal oil and ozonated oil, respectively. The FcεRI-OE group and the FcεRI-NC group were intradermally injected 25 µg FcεRI overexpression plasmid and 25 µg FcεRI empty plasmid when treating with ozonated oil, respectively. We recorded skin lesions daily and used reflectance confocal microscope (RCM) to evaluate thickness and inflammatory changes of skin lesions. Hematoxylin-eosin (HE) staining, real-time PCR, RNA-sequencing (RNA-seq), and immunohistochemistry were performed to detct and analyze the skin lesions.
RESULTS:
Ozonated oil significantly alleviated DNCB-induced ACD-like dermatitis and reduced the expressions of IFN-γ, IL-17A, IL-1β, TNF-α, and other related inflammatory factors (all P<0.05). RNA-seq analysis revealed that ozonated oil significantly inhibited the activation of the DNCB-induced FcεRI/Syk signaling pathway, confirmed by real-time PCR and immunohistochemistry (all P<0.05). Compared with the ozonated oil group and the FcεRI-NC group, the mRNA expression levels of IFN-γ, IL-17A, IL-1β, IL-6, TNF-α, and other inflammatory genes in the FcεRI-OE group were significantly increased (all P<0.05), and the mRNA and protein expression levels of FcεRI and Syk were significantly elevated in the FcεRI-OE group as well (all P<0.05).
CONCLUSIONS
Ozonated oil significantly improves ACD-like dermatitis and alleviated DNCB-induced ACD-like dermatitis via inhibiting the FcεRI/Syk signaling pathway.
Animals
;
Mice
;
Dinitrochlorobenzene/metabolism*
;
Skin/metabolism*
;
Cytokines/metabolism*
;
Interleukin-17/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Dermatitis, Allergic Contact/pathology*
;
Dermatitis, Atopic/chemically induced*
;
Signal Transduction
;
RNA, Messenger/metabolism*
;
Mice, Inbred BALB C
7.Prediction of epitope region and preparation of mouse polyclonal antibody of human Shisa-like protein 1(SHISAL1).
Jinli WANG ; Xinzhan ZHANG ; Yisha GAO ; Lili ZHOU ; Daquan SUN
Chinese Journal of Cellular and Molecular Immunology 2023;39(4):363-370
Objective To investigate antigen optimization of Shisa like protein 1 (SHISAL1) for preparing mouse anti-human SHISAL1 polyclonal antibody and to identify the specificity of the prepared antibody. Methods Bioinformatics was employed to predict the antigenic epitope region of SHISAL1 protein, and then a polypeptide composed of amino acid residues from the site of 28 to 97 of SHISAL1, termed SHISAL1-N, was selected as the antigen. The coding region of SHISAL1-N was cloned by molecular cloning technique, and then it was inserted into pET-28a to generate pET28a-SHISAL1-N recombinant plasmid. The two recombinant plasmids pET28a-SHISAL1-N and pET28a-SHISAL1 were transformed into BL21 (DE3) bacteria and induced to express by IPTG. The two proteins were purified and immunized to female Kunming mice, respectively. The specificities and sensitivities of the acquired antibodies were detected by Western blot analysis, immunoprecipitation and immunofluorescent cytochemical staining. Results pET28a-SHISAL1-N recombinant plasmid was successfully constructed, and the two fused proteins, SHISAL1 and SHISAL1-N, were induced to express. Moreover, two types of SHISAL1 mouse polyclonal antibodies, derived from SHISAL1-N and SHISAL1 antigens, were obtained. Western blot results showed that the antibody prepared from SHISAL1 antigen was less specific and sensitive compared with the antibody prepared from SHISAL1-N antigen which could specifically identify different endogenous SHISAL1 protein. Immunoprecipitation results showed that SHISAL1-N antibody could specifically pull down SHIISAL1 protein in hepatocellular carcinoma cells and immunofluorescence results demonstrated that SHISAL1-N antibody could specifically bind to SHISAL1 protein in the cytoplasm. Conclusion We have optimized the SHISAL1 antigen and prepared the mouse anti-human SHISAL1 polyclonal antibodies successfully, which can be used for Western blot analysis, immunoprecipitation and immunofluorescence cytochemical staining.
Animals
;
Female
;
Humans
;
Mice
;
Antibodies
;
Antibody Specificity
;
Blotting, Western
;
Cloning, Molecular
;
Epitopes/genetics*
8.Administration of a single chain variable fragments chimeric protein (SD) of ovalbumin epitopes internalizing receptor DEC-205 antibody inhibits food allergy in mice.
Chong WAN ; Meiying WU ; Yuqing ZHANG ; Junwei SHAO ; Qingqing LUO ; Jiyu JU ; Lingzhi XU
Chinese Journal of Cellular and Molecular Immunology 2023;39(5):391-396
Objective To investigate the preventive therapeutic effect and possible mechanism of single chain variable fragments chimeric protein (SD) of ovalbumin epitopes internalizing receptor DEC-205 antibody on food allergy in mice. Methods Mice were randomly divided to five groups (control, PBS, scFv DEC 100 μg, SD 50 μg, SD 100 μg) and treated for 24 hours before OVA administration. After challenge, the serum level of OVA-specific IgE, IgG1, IgG2a and IL-4 were detected by ELISA. Infiltration of eosinophils and mast cells in the jejunum was observed by HE staining and toluidine blue staining respectively. The bone marrow of tibia and femur was isolated and cultured to obtain immature dendritic cells(BMDCs), which were further treated with LPS (10 ng/mL), TSLP (50 ng/mL), scFv DEC protein (1000 ng/mL) and SD protein (10,100,1000)ng/mL for 24 hours, and the IL-10 level of supernatant was assayed by ELISA. Results Compared with PBS group, the number of SD-treated mice with diarrhea was markedly reduced. The difference in rectal temperature and the levels of serum OVA-specific IgE, IgG1, IgG2a and IL-4 decreased significantly after prophylactic administration of SD; The number of eosinophils and mast cells in jejunum also decreased significantly while the IL-10 level in the supernatant of BMDCs increased significantly after SD intervention. Conclusion SD mitigates experimental FA response by fosters the immune tolerance property of dendritic cells.
Mice
;
Animals
;
Ovalbumin
;
Interleukin-10
;
Single-Chain Antibodies/genetics*
;
Immunoglobulin E
;
Epitopes/therapeutic use*
;
Interleukin-4
;
Food Hypersensitivity/prevention & control*
;
Immunoglobulin G
;
Recombinant Fusion Proteins/genetics*
;
Mice, Inbred BALB C
;
Disease Models, Animal
9.A multi-stage and multi-epitope vaccine against Mycobacterium tuberculosis based on an immunoinformatics approach.
Yu NING ; Yihan CAI ; Xiaoling LIU ; Chenchen GU ; Xiangying MENG ; Jinjuan QIAO
Chinese Journal of Cellular and Molecular Immunology 2023;39(6):494-500
Objectives To develop a multi-stage and multi-epitope vaccine, which consists of epitopes from the early secretory and latency-associated antigens of Mycobacterium tuberculosis (MTB). Methods The B-cell, cytotoxic T-lymphocyte (CTL) and helper T-lymphocyte (HTL) epitopes of 12 proteins were predicted using an immunoinformatics. The epitopes with antigenicity, without cytotoxicity and sensitization, were further screened to construct the multi-epitope vaccine. Furthermore, the proposed vaccine underwent physicochemical properties analysis and secondary structure prediction as well as 3D structure modeling, refinement and validation. Then the refined model was docked with TLR4. Finally, an immune simulation of the vaccine was carried out. Results The proposed vaccine, which consists of 12 B-cell, 11 CTL and 12 HTL epitopes, had a flexible and stable globular conformation as well as a thermostable and hydrophilic structure. A stable interaction of the vaccine with TLR4 was confirmed by molecular docking. The efficiency of the candidate vaccine to trigger effective cellular and humoral immune responses was assessed by immune simulation. Conclusion A multi-stage multi-epitope MTB vaccine construction strategy based on immunoinformatics is proposed, which is expected to prevent both active and latent MTB infection.
Mycobacterium tuberculosis/metabolism*
;
Molecular Docking Simulation
;
Toll-Like Receptor 4
;
Epitopes, T-Lymphocyte/chemistry*
;
Epitopes, B-Lymphocyte/chemistry*
;
Vaccines, Subunit/chemistry*
;
Computational Biology/methods*
10.Bioinformatics analysis of the RNA binding protein DDX39 of Toxoplasma gondii.
Z YANG ; J WANG ; Y QI ; X TIAN ; X MEI ; Z ZHANG ; S WANG
Chinese Journal of Schistosomiasis Control 2023;35(4):358-365
OBJECTIVE:
To analyze the RNA binding protein of Toxoplasma gondii (TgDDX39) using bioinformatics technology, and to evaluate the immunogenicity of TgDDX39, so as to provide insights into development of toxoplasmosis vaccines.
METHODS:
The amino acid sequences of TgDDX39 were retrieved from the ToxoDB database, and the physicochemical properties, transmembrane structure domain, signal peptide sites, post-translational modification sites, coils, secondary and tertiary structures, hydrophobicity, and antigenic epitopes of the TgDDX39 protein were predicted using online bioinformatics tools, incluiding ProtParam, TMHMM 2.0, SignalP 5.0, NetPhos 3.1, COILS, SOPMA, Phyre2, ProtScale, ABCpred, SYFPEITHI and DNA-STAR.
RESULTS:
TgDDX39 protein was predicted to be an unstable hydrophilic protein with the molecular formula of C2173H3458N598O661S18, which contained 434 amino acids and had an estimated molecular weight of 49.1 kDa and a theoretical isoelectric point of 5.55. The protein was predicted to have an extremely low possibility of signal peptides, without transmembrane regions, and contain 27 phosphorylation sites. The β turn and random coils accounted for 39.63% of the secondary structure of the TgDDX39 protein, and a coiled helix tended to produce in one site. In addition, the TgDDX39 protein contained multiple B and T cell antigenic epitopes.
CONCLUSIONS
Bioinformatics analyses predict that TgDDX39 protein has high immunogenicity and contains multiple antigenic epitopes. TgDDX39 protein is a potential candidate antigen for vaccine development.
Humans
;
Toxoplasma/metabolism*
;
Toxoplasmosis/prevention & control*
;
Vaccines
;
Epitopes, T-Lymphocyte
;
Computational Biology
;
Protozoan Proteins/chemistry*

Result Analysis
Print
Save
E-mail