1.Preparation and identification of monoclonal antibodies against human LAG3 by immunizing mice with recombinant eukaryotic cell antigens.
Chinese Journal of Cellular and Molecular Immunology 2024;40(12):1110-1114
Objective To prepare mouse anti-human lymphocyte activation gene 3 (LAG3) monoclonal antibody (mAb) and perform immunological identification of the antibody. Methods BALB/c mice were immunized with LAG3-mLumin-3T3 cells, which stably express the extracellular and transmembrane regions of human LAG3 in mouse 3T3 cells. The secretion of anti-human LAG3 antibodies in mouse serum was assessed using flow cytometry and immunofluorescence. SP2/0 cells were injected subcutaneously into the mice to elicit solid myelomas, and mouse myeloma cells were subsequently isolated. Spleen cells from the immunized mice were fused with the myeloma cells to establish hybridomas, which were then separated using the limiting dilution method. Flow cytometry was used to detect LAG3 mAbs in the hybridoma culture medium. To map the epitopes recognized by these mAbs, 3T3 cells expressing individual extracellular domains of LAG3(LAG3 domains 1/-2/-3/-4-3T3) were used. Flow cytometry was also applied to analyze LAG3 expression on activated human peripheral blood mononuclear cells (PBMC) before and after co-culture with the LAG3 mAbs. Results Mice immunized with the recombinant eukaryotic cell antigen produced anti-LAG3 antibodies. The generated hybridomas secreted mouse anti-human LAG3 mAbs, with each hybridoma line recognizing different LAG3 antigenic domains. Conclusion Mouse anti-human LAG3 mAbs were successfully generated, with different hybridoma clones secreting antibodies that recognize distinct LAG3 epitopes. These findings lay the groundwork for further studies into the biological properties of LAG3 and the development of diagnostic reagents and therapeutic blocking antibodies for cancer treatment.
Animals
;
Humans
;
Mice
;
Lymphocyte Activation Gene 3 Protein
;
Antibodies, Monoclonal/immunology*
;
Mice, Inbred BALB C
;
Hybridomas/immunology*
;
Antigens, CD/genetics*
;
Immunization
;
Recombinant Proteins/immunology*
;
Female
;
Eukaryotic Cells/immunology*
;
Flow Cytometry
;
Epitopes/immunology*
2.Targets and mechanisms of neutralizing monoclonal antibodies against Dengue virus.
Zheng CHENG ; Jinghua YAN ; Xiaonan HAN
Chinese Journal of Biotechnology 2024;40(12):4311-4323
Dengue fever is a mosquito-borne disease prevalent in tropical and subtropical regions, with its prevalence expanding due to increased global travel. The dengue virus, the causative agent of dengue fever, often co-circulates in the form of four distinct serotypes. Cross-reactive antibodies generated during a primary infection pose a significant risk during secondary infections with different serotypes, and fully protective vaccines and antiviral drugs are yet to be developed. Over the past decade, advances in antibody technology have led to the isolation of numerous monoclonal antibodies against dengue virus, with their neutralizing epitopes elucidated through structure-based analyses. This review highlights the key epitopes associated with neutralizing antibodies against dengue virus and discusses their potential applications in vaccine design and therapeutic antibody development. This review helps systematically summarize the progress in dengue virus neutralizing antibody research, providing a theoretical foundation and technical guidance for the development of novel vaccines and antibody therapeutics.
Dengue Virus/immunology*
;
Antibodies, Neutralizing/immunology*
;
Antibodies, Monoclonal/therapeutic use*
;
Dengue/prevention & control*
;
Humans
;
Antibodies, Viral/immunology*
;
Epitopes/immunology*
;
Animals
;
Dengue Vaccines/immunology*
3.Progress in shark single-domain antibody.
Chinese Journal of Biotechnology 2020;36(6):1069-1082
Monoclonal antibody (mAb) is an important biological macromolecule and widely used in immune detection, in vitro diagnostics, and drug discovery. However, the inherent properties of mAb restrict its further development, such as high molecular weight and complex structure. Therefore, there is an urgent need to develop alternatives for mAb. Various types of miniaturized antibodies have been developed, among which the variable domain of immunoglobulin new antigen receptor (VNAR) is very attractive. The shark single-domain antibody, also known as shark VNAR, is an antigen-binding domain obtained by genetic engineering technology based on the immunoglobulin new antigen receptor (IgNAR) that naturally exists in selachimorpha. It has a molecular weight of 12 kDa, which is the smallest antigen-binding domain found in the known vertebrates at present. Compared with mAb, the shark VNAR exhibits various superiorities, such as low molecular weight, high affinity, tolerance to the harsh environment, good water solubility, strong tissue penetration, and recognition of the hidden epitopes. It has attracted wide attention in the fields of immunochemical reagents and drug discovery. In this review, various aspects of shark VNAR are elaborated, including the structural and functional characteristics, generating and humanization techniques, affinity maturation strategies, application fields, advantages and disadvantages, and prospects.
Animals
;
Antibodies, Monoclonal
;
immunology
;
Antibodies, Monoclonal, Humanized
;
immunology
;
Antigens
;
Epitopes
;
metabolism
;
Protein Domains
;
immunology
;
Receptors, Antigen
;
chemistry
;
immunology
;
Sharks
4.Efficient Humoral and Cellular Immune Responses Induced by a Chimeric Virus-like Particle Displaying the Epitope of EV71 without Adjuvant.
Pu LIANG ; Yao YI ; Qiu Dong SU ; Feng QIU ; Xue Ting FAN ; Xue Xin LU ; Sheng Li BI
Biomedical and Environmental Sciences 2018;31(5):343-350
OBJECTIVETo eliminate the side effects of aluminum adjuvant and His-tag, we constructed chimeric VLPs displaying the epitope of EV71 (SP70) without His-tagged. Then evaluating whether the VLPs could efficiently evoke not only humoral but also cellular immune responses against EV71 without adjuvant.
METHODSThe fusion protein was constructed by inserting SP70 into the MIR of truncated HBcAg sequence, expressed in E. Coli, and purified through ion exchange chromatography and density gradient centrifugation. Mice were immunized with the VLPs and sera were collected afterwards. The specific antibody titers, IgG subtypes and neutralizing efficacy were detected by ELISA, neutralization assay, and EV71 lethal challenge. IFN-γ and IL-4 secreted by splenocytes were tested by ELISPOT assay.
RESULTSHBc-SP70 proteins can self-assemble into empty VLPs. After immunization with HBc-SP70 VLPs, the detectable anti-EV71 antibodies were effective in neutralizing EV71 and protected newborn mice from EV71 lethal challenge. There was no significant difference for the immune efficacy whether the aluminum adjuvant was added or not. The specific IgG subtypes were mainly IgG1 and IgG2b and splenocytes from the mice immunized produced high levels of IFN-γ and IL-4.
CONCLUSIONThe fusion proteins without His-tagged was expressed and purified as soluble chimeric HBc-SP70 VLPs without renaturation. In the absence of adjuvant, they were efficient to elicit high levels of Th1/Th2 mixed immune response as well as assisted by aluminum adjuvant. Furthermore, the chimeric VLPs have potential to prevent HBV and EV71 infection simultaneously.
Adjuvants, Immunologic ; Animals ; Antibodies, Neutralizing ; Antibodies, Viral ; blood ; Enterovirus A, Human ; genetics ; Enterovirus Infections ; immunology ; virology ; Epitopes ; immunology ; metabolism ; Escherichia coli ; metabolism ; Female ; Immunity, Cellular ; Immunity, Humoral ; Mice ; Recombinant Fusion Proteins ; immunology
5.Identificaiton of Novel Immunogenic Human Papillomavirus Type 16 E7-Specific Epitopes Restricted to HLA-A*33;03 for Cervical Cancer Immunotherapy.
Sunghoon KIM ; Hye Won CHUNG ; Hoon Young KONG ; Jong Baeck LIM
Yonsei Medical Journal 2017;58(1):43-50
PURPOSE: To identify new immunogenic HLA-A*33;03-restricted epitopes from the human papillomavirus (HPV) 16 E7 protein for immunotherapy against cervical cancer. MATERIALS AND METHODS: We synthesized fourteen overlapping 15-amino acid peptides and measured intracellular interferon-γ (IFN-γ) production in PBMC and CD8+ cytotoxic T lymphocytes (CTLs) after sensitization with these peptides using flow cytometry and ELISpot assay. The immunogenicity of epitopes was verified using a ⁵¹Cr release assay with SNU1299 cells. RESULTS: Among the fourteen 15-amino acid peptides, E7₄₉₋₆₃ (RAHYNIVTFCCKCDS) demonstrated the highest IFN-γ production from peripheral blood mononuclear cells (PBMCs), and CD8+ CTLs sensitized with E7₄₉₋₆₃ showed higher cytotoxic effect against SNU1299 cells than did CD8+ CTLs sensitized with other peptides or a negative control group. Thirteen 9- or 10-amino acid overlapping peptides spanning E7₄₉₋₆₃, E7₅₀₋₅₉ (AHYNIVTFCC), and E7₅₂₋₆₁ (YNIVTFCCKC) induced significantly higher IFN-γ production and cytotoxic effects against SNU1299 cells than the other peptides and negative controls, and the cytotoxicity of E7₅₀₋₅₉- and E7₅₂₋₆₁-sensitized PBMCs was induced via the cytolytic effect of CD8+ CTLs. CONCLUSION: We identified E7₅₀₋₅₉ and E7₅₂₋₆₁ as novel HPV 16 E7 epitopes for HLA-A*33;03. CD8+ CTL sensitized with these peptides result in an antitumor effect against cervical cancer cells. These epitopes could be useful for immune monitoring and immunotherapy for cervical cancer and HPV 16-related diseases including anal cancer and oropharyngeal cancer.
Amino Acid Sequence
;
CD8-Positive T-Lymphocytes/immunology/metabolism
;
Epitopes/*immunology/therapeutic use
;
Female
;
*HLA-A Antigens
;
Human papillomavirus 16/*immunology
;
Humans
;
*Immunotherapy
;
Interferon-gamma/analysis/*biosynthesis
;
Leukocytes, Mononuclear/immunology/metabolism
;
T-Lymphocytes, Cytotoxic/immunology/metabolism
;
Uterine Cervical Neoplasms/*therapy
6.Allergenic Characterization of 27-kDa Glycoprotein, a Novel Heat Stable Allergen, from the Pupa of Silkworm, Bombyx mori.
Kyoung Yong JEONG ; Mina SON ; June Yong LEE ; Kyung Hee PARK ; Jae Hyun LEE ; Jung Won PARK
Journal of Korean Medical Science 2016;31(1):18-24
Boiled silkworm pupa is a traditional food in Asia, and patients with silkworm pupa food allergy are common in these regions. Still now only one allergen from silkworm, arginine kinase, has been identified. The purpose of this study was to identify novel food allergens in silkworm pupa by analyzing a protein extract after heat treatment. Heat treated extracts were examined by proteomic analysis. A 27-kDa glycoprotein was identified, expressed in Escherichia coli, and purified. IgE reactivity of the recombinant protein was investigated by ELISA. High molecular weight proteins (above 100 kDa) elicited increased IgE binding after heat treatment compared to that before heat treatment. The molecular identities of these proteins, however, could not be determined. IgE reactivity toward a 27-kDa glycoprotein was also increased after heating the protein extract. The recombinant protein was recognized by IgE antibodies from allergic subjects (33.3%). Glycation or aggregation of protein by heating may create new IgE binding epitopes. Heat stable allergens are shown to be important in silkworm allergy. Sensitization to the 27-kDa glycoprotein from silkworm may contribute to elevation of IgE to silkworm.
Adolescent
;
Adult
;
Allergens/*chemistry/*immunology
;
Amino Acid Sequence
;
Animals
;
Bombyx/*chemistry/genetics/growth & development/*immunology
;
Epitopes/immunology
;
Female
;
Food Hypersensitivity/etiology
;
Glycoproteins/*chemistry/genetics/*immunology
;
Hot Temperature
;
Humans
;
Immunoglobulin E/immunology
;
Male
;
Molecular Sequence Data
;
Molecular Weight
;
Proteomics
;
Pupa/chemistry/immunology
;
Recombinant Proteins/biosynthesis/chemistry/immunology
;
Sequence Alignment
7.Identifying Novel B Cell Epitopes within Toxoplasma gondii GRA6.
Yanhua WANG ; Guangxiang WANG ; Jian Ping CAI
The Korean Journal of Parasitology 2016;54(4):431-437
The study of antigenic epitopes from Toxoplasma gondii has not only enhanced our understanding of the structure and function of antigens, the reactions between antigens and antibodies, and many other aspects of immunology, but it also plays a significant role in the development of new diagnostic reagents and vaccines. In the present study, T. gondii GRA6 epitopes were identified using bioinformatics tools and a synthetic peptide technique. The potential B cell epitopes of GRA6 predicted by bioinformatics tools concentrated upon 3 regions of GRA6, 1-20 aa, 44-103 aa, and 172-221 aa. Ten shorter peptides from the 3 regions were synthesized and assessed by ELISA using pig sera from different time points after infection. Three of the 10 peptides (amino acids 44-63, 172-191, and 192-211) tested were recognized by all sera and determined to be immunodominant B-cell epitopes of GRA6. The results indicated that we precisely and accurately located the T. gondii GRA6 epitopes using pig sera collected at different time points after infection. The identified epitopes may be very useful for further studies of epitope-based vaccines and diagnostic reagents.
Allergy and Immunology
;
Antibodies
;
Computational Biology
;
Enzyme-Linked Immunosorbent Assay
;
Epitopes
;
Epitopes, B-Lymphocyte*
;
Indicators and Reagents
;
Peptides
;
Toxoplasma*
;
Vaccines
8.A novel M2e-multiple antigenic peptide providing heterologous protection in mice.
Feng WEN ; Ji Hong MA ; Hai YU ; Fu Ru YANG ; Meng HUANG ; Yan Jun ZHOU ; Ze Jun LI ; Xiu Hui WANG ; Guo Xin LI ; Yi Feng JIANG ; Wu TONG ; Guang Zhi TONG
Journal of Veterinary Science 2016;17(1):71-78
Swine influenza viruses (SwIVs) cause considerable morbidity and mortality in domestic pigs, resulting in a significant economic burden. Moreover, pigs have been considered to be a possible mixing vessel in which novel strains loom. Here, we developed and evaluated a novel M2e-multiple antigenic peptide (M2e-MAP) as a supplemental antigen for inactivated H3N2 vaccine to provide cross-protection against two main subtypes of SwIVs, H1N1 and H3N2. The novel tetra-branched MAP was constructed by fusing four copies of M2e to one copy of foreign T helper cell epitopes. A high-yield reassortant H3N2 virus was generated by plasmid based reverse genetics. The efficacy of the novel H3N2 inactivated vaccines with or without M2e-MAP supplementation was evaluated in a mouse model. M2e-MAP conjugated vaccine induced strong antibody responses in mice. Complete protection against the heterologous swine H1N1 virus was observed in mice vaccinated with M2e-MAP combined vaccine. Moreover, this novel peptide confers protection against lethal challenge of A/Puerto Rico/8/34 (H1N1). Taken together, our results suggest the combined immunization of reassortant inactivated H3N2 vaccine and the novel M2e-MAP provided cross-protection against swine and human viruses and may serve as a promising approach for influenza vaccine development.
Animals
;
Antibodies, Viral/blood
;
Antigens, Viral/genetics/*immunology
;
Body Weight
;
Cross Protection/*immunology
;
Disease Models, Animal
;
Epitopes, T-Lymphocyte/genetics/immunology
;
Female
;
Influenza A Virus, H3N2 Subtype/genetics/*immunology
;
Influenza Vaccines/*immunology
;
Mice
;
Mice, Inbred BALB C
;
Orthomyxoviridae Infections/*immunology/mortality/pathology/prevention & control
;
Peptides/genetics/*immunology
;
Random Allocation
;
Survival Analysis
;
Vaccines, Synthetic/immunology
;
Virus Replication
9.Identification of Epitopes for Neutralizing Antibodies Against H10N8 Avian Influenza Virus Hemagglutinin.
Jin-Fang HU ; Chun-Yun SUN ; Mu-Ding RAO ; Liang-Zhi XIE
Acta Academiae Medicinae Sinicae 2016;38(4):404-410
Objective To develop neutralizing monoclonal antibodies (MAbs) against H10N8 avian influenza virus hemagglutinin and to identify the binding sites. Methods MAbs against hemagglutinin of H10N8 avian influenza virus were developed by genetic engineering. Neutralizing MAbs were screened by microneutralization assay,and then tested by enzyme-linked immunosorbent assay and Western blot to identity the binding sites.The homology modeling process was performed using Discovery Studio 3.5 software,while the binding epitopes were analyzed by BioEdit software. Results One MAb that could neutralize the H10N8 pseudovirus was obtained and characterized. Analysis about epitopes suggested that the antibody could bind to the HA1 region of hemagglutinin,while the epitopes on antigen were conserved in H10 subtypes.Conclusions One neutralizing antibody was obtained by this research.The MAb may potentially be further developed as a pre-clinical candidate to treat avian influenza H10N8 virus infection.
Antibodies, Monoclonal
;
immunology
;
Antibodies, Neutralizing
;
immunology
;
Antibodies, Viral
;
immunology
;
Enzyme-Linked Immunosorbent Assay
;
Epitopes
;
immunology
;
Hemagglutinin Glycoproteins, Influenza Virus
;
immunology
;
Influenza A Virus, H10N8 Subtype
;
Neutralization Tests
10.Bioinformatic analysis of non-VP1 capsid protein of coxsackievirus A6.
Hong-Bo LIU ; Guang-Fei YANG ; Si-Jia LIANG ; Jun LIN
Journal of Huazhong University of Science and Technology (Medical Sciences) 2016;36(4):607-613
This study bioinformatically analyzed the non-VP1 capsid proteins (VP2-VP4) of Coxasckievirus A6 (CVA6), with an attempt to predict their basic physicochemical properties, structural/functional features and linear B cell eiptopes. The online tools SubLoc, TargetP and the others from ExPASy Bioinformatics Resource Portal, and SWISS-MODEL (an online protein structure modeling server), were utilized to analyze the amino acid (AA) sequences of VP2-VP4 proteins of CVA6. Our results showed that the VP proteins of CVA6 were all of hydrophilic nature, contained phosphorylation and glycosylation sites and harbored no signal peptide sequences and acetylation sites. Except VP3, the other proteins did not have transmembrane helix structure and nuclear localization signal sequences. Random coils were the major conformation of the secondary structure of the capsid proteins. Analysis of the linear B cell epitopes by employing Bepipred showed that the average antigenic indices (AI) of individual VP proteins were all greater than 0 and the average AI of VP4 was substantially higher than that of VP2 and VP3. The VP proteins all contained a number of potential B cell epitopes and some eiptopes were located at the internal side of the viral capsid or were buried. We successfully predicted the fundamental physicochemical properties, structural/functional features and the linear B cell eiptopes and found that different VP proteins share some common features and each has its unique attributes. These findings will help us understand the pathogenicity of CVA6 and develop related vaccines and immunodiagnostic reagents.
Amino Acid Sequence
;
Capsid Proteins
;
genetics
;
immunology
;
Computational Biology
;
Enterovirus
;
genetics
;
pathogenicity
;
Epitopes, B-Lymphocyte
;
genetics
;
immunology
;
Humans

Result Analysis
Print
Save
E-mail