1.The research on the mechanism of GBP2 promoting the progression of silicosis by inducing macrophage polarization and epithelial cell transformation.
Maoqian CHEN ; Jing WU ; Xuan LI ; Jiawei ZHOU ; Yafeng LIU ; Jianqiang GUO ; Anqi CHENG ; Dong HU
Chinese Journal of Cellular and Molecular Immunology 2025;41(7):611-619
Objective This study aims to investigate the expression, phenotypic changes, and mechanisms of action of guanylate-binding protein 2 (GBP2) in the process of silica-induced pulmonary fibrosis. Methods The expression and localization of GBP2 in silicotic lung tissue were detected by immunohistochemical staining and immunofluorescence. An in vitro cell model was constructed, and methods such as Western blot and real-time quantitative reverse transcription polymerasechain reaction were utilized to investigate the function of GBP2 in different cell lines following silica stimulation. The mechanism of action of GBP2 in various cell lines was elucidated using Western blot analysis. Results GBP2 was highly expressed in the lung tissue of patients with silicosis. Immunohistochemical staining and immunofluorescence have revealed that GBP2 was localized in macrophages and epithelial cells. In vitro cell experiments demonstrated that silicon dioxide stimulated THP-1 cells to activate the c-Jun pathway through GBP2, promoting the secretion of inflammatory factors and facilitating the occurrence of M2 macrophage polarization. In epithelial cells, GBP2 promoted the occurrence of epithelial to mesenchymal transition (EMT) by upregulating Krueppel-like factor 8 (KLF8). Conclusion GBP2 not only activates c-Jun in macrophages to promote the production of inflammatory factors and the occurrence of M2 macrophage polarization, but also activates the transcription factor KLF8 in epithelial cells to induce EMT, collectively promoting the progression of silicosis.
Humans
;
Silicosis/genetics*
;
Macrophages/cytology*
;
Epithelial Cells/pathology*
;
GTP-Binding Proteins/physiology*
;
Epithelial-Mesenchymal Transition
;
Disease Progression
;
Cell Line
;
Male
2.Effects of lncRNA RP11-499E18.1 on the malignant biological behavior of ovarian cancer cells.
Journal of Central South University(Medical Sciences) 2025;50(1):1-10
OBJECTIVES:
Ovarian cancer is a common gynecologic malignancy, with poor prognosis in advanced stages. This study aimed to identify differentially expressed long noncoding RNA (lncRNA) associated with ovarian cancer prognosis and to explore the effects of lncRNA RP11-499E18.1 on the malignant biological behavior of ovarian cancer cells.
METHODS:
Ovarian cancer-related lncRNA datasets were obtained from the Gene Expression Omnibus (GEO) database. Differentially expressed and prognostically relevant tumor-suppressive lncRNAs were screened using lncRNA sequencing combined with clinical data. Reverse transcription PCR (RT-PCR) was used to detect the expression of lncRNA RP11-499E18.1 in ovarian cancer tissues, adjacent normal tissues, the IOSE80 normal ovarian epithelial cell line, and various ovarian cancer cell lines. Fluorescence in situ hybridization (FISH) was performed to determine its subcellular localization. Ovarian cancer cell lines CaOV3 and SKOV3 were divided into 3 groups: a negative control (NC) group, a knockdown (si-RP11-499E18.1) group, and a overexpression (pcDNA-RP11-499E18.1) group. Methyl thiazolyl tetrazolium (MTT) and Transwell assays were used to assess the effects of lncRNA RP11-499E18.1 on cell proliferation and migration. Western blotting was used to evaluate its effect on epithelial-mesenchymal transition (EMT)-related molecules. BALB/c nude mice were injected with CaOV3 cells transfected with pcDNA-RP11-499E18.1 (experimental group) or empty vector (control group), and tumor growth was monitored. Immunohistochemistry was used to assess the expression of Caspase 3 and Ki67 in tumor tissues.
RESULTS:
LncRNA sequencing identified RP11-499E18.1 as a differentially expressed and associated with prognosis. GEO data analysis showed that low RP11-499E18.1 expression was correlated with shorter overall and progression-free survival (both P<0.05). Its expression was significantly lower in ovarian cancer tissues and cell lines compared to normal controls (P<0.05 or P<0.001), and it was localized in both the nucleus and cytoplasm. In CaOV3 and SKOV3 cells, proliferation rates increased significantly in the si-RP11-499E18.1 group and decreased in the pcDNA-RP11-499E18.1 group (P<0.05 or P<0.001). Cell migration was enhanced in the si-RP11-499E18.1 group and suppressed in the pcDNA-RP11-499E18.1 group. Overexpression increased E-cadherin and decreased vimentin expression, while knockdown had the opposite effect. Tumor volume in the mouse model was significantly smaller in the experimental group (P<0.001), with increased Caspase 3 and decreased Ki67 expression in tumor tissues (both P<0.05).
CONCLUSIONS
LncRNA RP11-499E18.1 inhibits proliferation, migration, and EMT of ovarian cancer cells, and its low expression is associated with poor prognosis.
Female
;
Humans
;
RNA, Long Noncoding/physiology*
;
Ovarian Neoplasms/pathology*
;
Cell Line, Tumor
;
Animals
;
Mice
;
Mice, Nude
;
Cell Proliferation
;
Prognosis
;
Mice, Inbred BALB C
;
Gene Expression Regulation, Neoplastic
;
Cell Movement
;
Epithelial-Mesenchymal Transition
3.EZH2 promotes malignant biological behavior in esophageal squamous cell carcinoma via EMT.
Yuying JING ; Kaige YANG ; Yiting CHENG ; Tianping HUANG ; Sufang CHEN ; Kai CHEN ; Jianming HU
Journal of Central South University(Medical Sciences) 2025;50(2):155-166
OBJECTIVES:
Esophageal squamous cell carcinoma (ESCC) is characterized by complex pathogenesis and poor prognosis. In recent years, epithelial-mesenchymal transition (EMT) in tumor initiation and progression has attracted increasing attention. Enhancer of zeste homolog 2 (EZH2), which is aberrantly expressed in various tumors, may be closely related to the EMT process. This study aims to examine the expression and correlation of EZH2 and EMT markers in ESCC cells and tissues, evaluate the effects of EZH2 knockdown on ESCC cell proliferation, invasion, and migration, and explore how EZH2 contributes to the malignant biological behavior of ESCC.
METHODS:
Bioinformatics analyses were used to assess EZH2 expression levels in ESCC. Small interfering RNA was used to knock down EZH2 in ESCC cell lines EC109 and EC9706. Cell proliferation, invasion, and migration were evaluated using cell counting kit-8 (CCK-8), wound healing, and Transwell assays. Protein and mRNA expression levels of EZH2, E-cadherin (E-cad), and vimentin (Vim) were detected by Western blotting and real time fluorogenic quantitative PCR (RT-qPCR), respectively. Immunohistochemical (IHC) staining was performed on 70 ESCC tissue samples and 40 paired adjacent normal tissues collected from the First Affiliated Hospital of Shihezi University between 2010 and 2016 to assess the expression of EZH2, E-cad, and Vim, and to analyze their associations with clinicopathological feature and patient prognosis.
RESULTS:
Bioinformatics analysis showed that EZH2 was highly expressed in ESCC (P<0.001), and high EZH2 expression was associated with worse prognosis (P<0.001). CCK-8, wound healing, and Transwell assays demonstrated that EZH2 knockdown significantly suppressed the proliferation, invasion, and migration of ESCC cells (P<0.001). In addition, Vim expression was significantly reduced, while E-cad expression was significantly increased at both protein and mRNA levels in EZH2-silenced cells (all P<0.05). IHC staining analysis revealed higher expression of EZH2 and Vim and lower expression of E-cad in ESCC tissues compared to adjacent normal tissues. Kaplan-Meier survival analysis showed that low expression of EZH2 and Vim and high expression of E-cad were associated with longer survival (all P<0.05).
CONCLUSIONS
EZH2 promotes malignant biological behavior in ESCC by mediating EMT. Elevated EZH2 expression is associated with poor prognosis in ESCC patients.
Humans
;
Enhancer of Zeste Homolog 2 Protein/physiology*
;
Esophageal Squamous Cell Carcinoma/pathology*
;
Epithelial-Mesenchymal Transition/genetics*
;
Esophageal Neoplasms/metabolism*
;
Cell Proliferation
;
Cell Line, Tumor
;
Cell Movement
;
Cadherins/genetics*
;
Vimentin/genetics*
;
Male
;
Female
;
Middle Aged
;
Neoplasm Invasiveness
;
Prognosis
;
RNA, Small Interfering/genetics*
;
Gene Expression Regulation, Neoplastic
4.Shen Qi Wan attenuates renal interstitial fibrosis through upregulating AQP1.
Yiyou LIN ; Jiale WEI ; Yehui ZHANG ; Junhao HUANG ; Sichen WANG ; Qihan LUO ; Hongxia YU ; Liting JI ; Xiaojie ZHOU ; Changyu LI
Chinese Journal of Natural Medicines (English Ed.) 2023;21(5):359-370
Renal interstitial fibrosis (RIF) is the crucial pathway in chronic kidney disease (CKD) leading to the end-stage renal failure. However, the underlying mechanism of Shen Qi Wan (SQW) on RIF is not fully understood. In the current study, we investigated the role of Aquaporin 1 (AQP1) in SQW on tubular epithelial-to-mesenchymal transition (EMT). A RIF mouse model induced by adenine and a TGF-β1-stimulated HK-2 cell model were etablished to explore the involvement of AQP 1 in the protective effect of SQW on EMT in vitro and in vivo. Subsequently, the molecular mechanism of SQW on EMT was explored in HK-2 cells with AQP1 knockdown. The results indicated that SQW alleviated kidney injury and renal collagen deposition in the kidneys of mice induced by adenine, increased the protein expression of E-cadherin and AQP1 expression, and decreased the expression of vimentin and α-smooth muscle actin (α-SMA). Similarly, treatmement with SQW-containing serum significantly halted EMT process in TGF-β1 stimulated HK-2 cells. The expression of snail and slug was significantly upregulated in HK-2 cells after knockdown of AQP1. AQP1 knockdown also increased the mRNA expression of vimentin and α-SMA, and decreased the expression of E-cadherin. The protein expression of vimentin increased, while the expression of E-cadherin and CK-18 significantly decreased after AQP1 knockdown in HK-2 cells. These results revealed that AQP1 knockdown promoted EMT. Furthermore, AQP1 knockdown abolished the protective effect of SQW-containing serum on EMT in HK-2 cells. In sum, SQW attentuates EMT process in RIF through upregulation of the expression of AQP1.
Drugs, Chinese Herbal/pharmacology*
;
Humans
;
Animals
;
Mice
;
Male
;
Cell Line
;
Rats
;
Kidney/physiology*
;
Fibrosis/drug therapy*
;
Renal Insufficiency, Chronic/drug therapy*
;
Adenine
;
Epithelial-Mesenchymal Transition
;
Aquaporin 1/metabolism*
5.Role of LINC00152 in non-small cell lung cancer.
Journal of Zhejiang University. Science. B 2020;21(3):179-191
Non-small cell lung cancer (NSCLC) accounts for about 85% of all lung cancer cases. The pathogenesis of NSCLC involves complex gene networks that include different types of non-coding RNAs, such as long non-coding RNAs (lncRNAs). The role of lncRNAs in NSCLC is gaining an increasing interest as their function is being explored in various human cancers. Recently, a new oncogenic lncRNA, LINC00152 (cytoskeleton regulator RNA (CYTOR)), has been identified in different tumor types. In NSCLC, the high expression of LINC00152 in tumor tissue and peripheral blood samples has been shown to be associated with worse prognoses of NSCLC patients. Overexpression of LINC00152 has been confirmed to promote the proliferation, invasion, and migration of NSCLC cells in vitro, as well as increase tumor growth in vivo. This review discusses the role of LINC00152 in NSCLC.
Apoptosis
;
Biomarkers, Tumor/blood*
;
Carcinoma, Non-Small-Cell Lung/radiotherapy*
;
Cell Cycle Checkpoints
;
Computational Biology
;
Epithelial-Mesenchymal Transition
;
Humans
;
Lung Neoplasms/radiotherapy*
;
Prognosis
;
RNA, Long Noncoding/physiology*
;
Radiation Tolerance
6.Inhibition of chemotherapy-related breast tumor EMT by application of redox-sensitive siRNA delivery system CSO-ss-SA/siRNA along with doxorubicin treatment.
Xuan LIU ; Xue-Qing ZHOU ; Xu-Wei SHANG ; Li WANG ; Yi LI ; Hong YUAN ; Fu-Qiang HU
Journal of Zhejiang University. Science. B 2020;21(3):218-233
Metastasis is one of the main reasons causing death in cancer patients. It was reported that chemotherapy might induce metastasis. In order to uncover the mechanism of chemotherapy-induced metastasis and find solutions to inhibit treatment-induced metastasis, the relationship between epithelial-mesenchymal transition (EMT) and doxorubicin (DOX) treatment was investigated and a redox-sensitive small interfering RNA (siRNA) delivery system was designed. DOX-related reactive oxygen species (ROS) were found to be responsible for the invasiveness of tumor cells in vitro, causing enhanced EMT and cytoskeleton reconstruction regulated by Ras-related C3 botulinum toxin substrate 1 (RAC1). In order to decrease RAC1, a redox-sensitive glycolipid drug delivery system (chitosan-ss-stearylamine conjugate (CSO-ss-SA)) was designed to carry siRNA, forming a gene delivery system (CSO-ss-SA/siRNA) downregulating RAC1. CSO-ss-SA/siRNA exhibited an enhanced redox sensitivity compared to nonresponsive complexes in 10 mmol/L glutathione (GSH) and showed a significant safety. CSO-ss-SA/siRNA could effectively transmit siRNA into tumor cells, reducing the expression of RAC1 protein by 38.2% and decreasing the number of tumor-induced invasion cells by 42.5%. When combined with DOX, CSO-ss-SA/siRNA remarkably inhibited the chemotherapy-induced EMT in vivo and enhanced therapeutic efficiency. The present study indicates that RAC1 protein is a key regulator of chemotherapy-induced EMT and CSO-ss-SA/siRNA silencing RAC1 could efficiently decrease the tumor metastasis risk after chemotherapy.
Amines/chemistry*
;
Antineoplastic Agents/adverse effects*
;
Breast Neoplasms/pathology*
;
Chitosan/chemistry*
;
Doxorubicin/adverse effects*
;
Drug Delivery Systems
;
Epithelial-Mesenchymal Transition/drug effects*
;
Female
;
Humans
;
MCF-7 Cells
;
Neoplasm Metastasis/prevention & control*
;
Oxidation-Reduction
;
RNA, Small Interfering/administration & dosage*
;
Reactive Oxygen Species/metabolism*
;
rac1 GTP-Binding Protein/physiology*
7.Cyclooxygenase-2 promotes ovarian cancer cell migration and cisplatin resistance via regulating epithelial mesenchymal transition.
Lin DENG ; Ding-Qing FENG ; Bin LING
Journal of Zhejiang University. Science. B 2020;21(4):315-326
OBJECTIVE:
Drug-resistance and metastasis are major reasons for the high mortality of ovarian cancer (OC) patients. Cyclooxygenase-2 (COX-2) plays a critical role in OC development. This study was designed to evaluate the effects of COX-2 on migration and cisplatin (cis-dichloro diammine platinum, CDDP) resistance of OC cells and explore its related mechanisms.
METHODS:
Cell counting kit-8 (CCK-8) assay was used to detect the cytotoxicity effects of celecoxib (CXB) and CDDP on SKOV3 and ES2 cells. The effect of COX-2 on migration was evaluated via the healing test. Western blot and real-time quantitative polymerase chain reaction (qPCR) were used to analyze E-cadherin, vimentin, Snail, and Slug levels.
RESULTS:
COX-2 promoted drug-resistance and cell migration. CXB inhibited these effects. The combination of CDDP and CXB increased tumor cell sensitivity, reduced the amount of CDDP required, and shortened treatment administration time. COX-2 upregulation increased the expression of Snail and Slug, resulting in E-cadherin expression downregulation and vimentin upregulation.
CONCLUSIONS
COX-2 promotes cancer cell migration and CDDP resistance and may serve as a potential target for curing OC.
Celecoxib/pharmacology*
;
Cell Line, Tumor
;
Cell Movement
;
Cisplatin/pharmacology*
;
Cyclooxygenase 2/physiology*
;
Drug Resistance, Neoplasm
;
Epithelial-Mesenchymal Transition
;
Female
;
Humans
;
Ovarian Neoplasms/pathology*
;
Polymerase Chain Reaction
8.MicroRNA-340 Inhibits Epithelial-Mesenchymal Transition by Impairing ROCK-1-Dependent Wnt/β-Catenin Signaling Pathway in Epithelial Cells from Human Benign Prostatic Hyperplasia.
Si-Yang CHEN ; Yuan DU ; Jian SONG
Chinese Medical Journal 2018;131(16):2008-2012
Cell Line, Tumor
;
Epithelial Cells
;
metabolism
;
pathology
;
Epithelial-Mesenchymal Transition
;
genetics
;
physiology
;
Gene Expression Regulation, Neoplastic
;
genetics
;
physiology
;
Humans
;
Male
;
MicroRNAs
;
genetics
;
metabolism
;
Prostatic Hyperplasia
;
genetics
;
metabolism
;
pathology
;
Wnt Signaling Pathway
;
genetics
;
physiology
;
beta Catenin
;
genetics
;
metabolism
;
rho-Associated Kinases
;
genetics
;
metabolism
9.Epithelial-to-mesenchymal transition in cancer: complexity and opportunities.
Frontiers of Medicine 2018;12(4):361-373
The cell-biological program termed the epithelial-to-mesenchymal transition (EMT) plays an important role in both development and cancer progression. Depending on the contextual signals and intracellular gene circuits of a particular cell, this program can drive fully epithelial cells to enter into a series of phenotypic states arrayed along the epithelial-mesenchymal phenotypic axis. These cell states display distinctive cellular characteristics, including stemness, invasiveness, drug-resistance and the ability to form metastases at distant organs, and thereby contribute to cancer metastasis and relapse. Currently we still lack a coherent overview of the molecular and biochemical mechanisms inducing cells to enter various states along the epithelial-mesenchymal phenotypic spectrum. An improved understanding of the dynamic and plastic nature of the EMT program has the potential to yield novel therapies targeting this cellular program that may aid in the management of high-grade malignancies.
Carcinogenesis
;
metabolism
;
pathology
;
Disease Progression
;
Epithelial-Mesenchymal Transition
;
physiology
;
Humans
;
Neoplasm Metastasis
10.SIRT1 participates in epithelial-mesenchymal transition of EC-9706 and Eca-109 cells by regulating Snail expression.
Yuxiang WU ; Dao XIN ; Can LIU ; Feng WANG
Journal of Southern Medical University 2018;38(11):1325-1330
OBJECTIVE:
To explore the role of SIRT1 in the occurrence of epithelial-mesenchymal transition (EMT) in EC-9706 and Eca-109 cells and the possible mechanism.
METHODS:
Three chemically synthesized siRNA targeting SIRT1 were transfected into EC-9706 and Eca-109 cells with the non-transfected cells and cells transfected with the negative siRNAs as controls. Real-time PCR and Western blotting were used to detect the expressions of SIRT1, E-cadherin, vimentin, Snail, Twist1 and ZEB in the cells. Transwell invasion assay and wounding healing assay were used to examine the changes in the invasion and metastasis abilities of the cells after transfection.
RESULTS:
EC-9706 and Eca-109 cells transfected with SIRT1 siRNA1 and SIRT1 siRNA3 showed significantly decreased mRNA and protein expressions of SIRT1 ( < 0.05). Transwell invasion assay and wounding healing assay showed that transfection with SIRT1 siRNA1 and SIRT1 siRNA3 caused significantly lowered invasion and metastasis abilities in EC-9706 and Eca-109 cells ( < 0.05). In EC-9706 and Eca-109 cells transfected with SIRT1 siRNA1 and SIRT1 siRNA3, the expression level of E-cadherin was significantly increased while the expressions of vimentin, Snail and Twist were significantly lowered ( < 0.05).
CONCLUSIONS
SIRT1 participates in the invasion and metastasis of EC-9706 and Eca- 109 cells probably by inducing EMT via regulating the expression of Snail.
Antigens, CD
;
metabolism
;
Cadherins
;
metabolism
;
Cell Line, Tumor
;
Cell Movement
;
Epithelial-Mesenchymal Transition
;
physiology
;
Humans
;
Neoplasm Invasiveness
;
Nuclear Proteins
;
metabolism
;
RNA, Messenger
;
metabolism
;
RNA, Small Interfering
;
metabolism
;
Sirtuin 1
;
genetics
;
metabolism
;
Snail Family Transcription Factors
;
metabolism
;
Transfection
;
Twist-Related Protein 1
;
metabolism
;
Vimentin
;
metabolism
;
Zinc Finger E-box-Binding Homeobox 1
;
metabolism

Result Analysis
Print
Save
E-mail