1.Electrotaxis of alveolar epithelial cells in direct-current electric fields.
Chao-Yue YANG ; Jian-Hui SUN ; Kan ZHU ; Juan DU ; Ying ZHANG ; Cong-Hua LU ; Wen-Yi LIU ; Ke-Jun ZHANG ; An-Qiang ZHANG ; Ling ZENG ; Jian-Xin JIANG ; Li LI
Chinese Journal of Traumatology 2023;26(3):155-161
PURPOSE:
This study aims to elucidate the electrotaxis response of alveolar epithelial cells (AECs) in direct-current electric fields (EFs), explore the impact of EFs on the cell fate of AECs, and lay the foundation for future exploitation of EFs for the treatment of acute lung injury.
METHODS:
AECs were extracted from rat lung tissues using magnetic-activated cell sorting. To elucidate the electrotaxis responses of AECs, different voltages of EFs (0, 50, 100, and 200 mV/mm) were applied to two types of AECs, respectively. Cell migrations were recorded and trajectories were pooled to better demonstrate cellular activities through graphs. Cell directionality was calculated as the cosine value of the angle formed by the EF vector and cell migration. To further demonstrate the impact of EFs on the pulmonary tissue, the human bronchial epithelial cells transformed with Ad12-SV40 2B (BEAS-2B cells) were obtained and experimented under the same conditions as AECs. To determine the influence on cell fate, cells underwent electric stimulation were collected to perform Western blot analysis.
RESULTS:
The successful separation and culturing of AECs were confirmed through immunofluorescence staining. Compared with the control, AECs in EFs demonstrated a significant directionality in a voltage-dependent way. In general, type Ⅰ alveolar epithelial cells migrated faster than type Ⅱ alveolar epithelial cells, and under EFs, these two types of cells exhibited different response threshold. For type Ⅱ alveolar epithelial cells, only EFs at 200 mV/mm resulted a significant difference to the velocity, whereas for, EFs at both 100 mV/mm and 200 mV/mm gave rise to a significant difference. Western blotting suggested that EFs led to an increased expression of a AKT and myeloid leukemia 1 and a decreased expression of Bcl-2-associated X protein and Bcl-2-like protein 11.
CONCLUSION
EFs could guide and accelerate the directional migration of AECs and exert antiapoptotic effects, which indicated that EFs are important biophysical signals in the re-epithelialization of alveolar epithelium in lung injury.
Humans
;
Rats
;
Animals
;
Alveolar Epithelial Cells
;
Lung
;
Lung Injury
;
Cell Movement/physiology*
2.The role of macrophage polarization and interaction with renal tubular epithelial cells in ischemia-reperfusion induced acute kidney injury.
Wei WANG ; Wen-Li SAI ; Bin YANG
Acta Physiologica Sinica 2022;74(1):28-38
Acute kidney injury (AKI) is a common critical clinical disease characterized by a sharp decline of renal function. Ischemia-reperfusion (IR) is one of the main causes of AKI. The mortality of AKI remains high due to the lack of early diagnosis and cause specific treatment. IR rapidly initiates innate immune responses, activates complement and innate immune cells, releasing a large number of injury-related molecules such as high mobility group box-1 (HMGB1), inflammatory mediators such as caspase-3, and then recruits immune inflammatory cells including M1 macrophages (Mϕ) to the microenvironment of injury, causing apoptosis and necrosis of renal tubular epithelial cells (TECs). Dead cells and associated inflammation further activate the adaptive immune system, which not only aggravates tissue damage, but also initiates M2 Mϕ participated inflammatory clearance, tissue repair and regeneration. Mϕ, professional phagocytes, and TECs, semi-professional phagocytes, can phagocytose around damaged cells including apoptotic Mϕ and TECs, which are key innate immune cells to regulate the outcome of injury, repair or fibrosis. In recent years, it has been found that erythropoietin (EPO) not only binds to the homodimeric receptor (EPOR)2 to induce erythropoiesis, but also binds to the heterodimeric receptor EPOR/βcR, also known as innate repair receptor, which plays renoprotective roles. Properdin is the only positive regulator in the complement activation of alternative pathway. It also can effectively identify and bind to early apoptotic T cells and facilitate phagocytic clearing by Mϕ through a non-complement activation-dependent mechanism. Our previous studies have shown that Mϕ and TECs associated with EPO and its receptors and properdin are involved in IR injury and repair, but the underlying mechanism needs to be further explored. As an important carrier of cell-to-cell signal transmission, exosomes participate in the occurrence and development of a variety of renal diseases. The role of exosomes involved in the interaction between Mϕ and TECs in IR-induced AKI is not fully defined. Based on the available results in the role of Mϕ and TECs in renal IR-induced AKI, this review discussed the role of Mϕ polarization and interaction with TECs in renal IR injury, as well as the participation of EPO and its receptors, properdin and exosomes.
Acute Kidney Injury/metabolism*
;
Animals
;
Epithelial Cells/metabolism*
;
Humans
;
Ischemia/metabolism*
;
Kidney
;
Macrophages/physiology*
;
Mice
;
Mice, Inbred C57BL
;
Reperfusion
;
Reperfusion Injury
3.microRNA let-7g-3p regulates proliferation, migration, invasion and apoptosis of bladder cancer cells by targeting HMGB2.
Zhen Hai ZOU ; Qi CHENG ; Zhong LI ; Wu Yue GAO ; Wei SUN ; Bei Bei LIU ; Yuan Yuan GUO ; Jian Min LIU
Journal of Southern Medical University 2022;42(9):1335-1343
OBJECTIVE:
To explore the molecular mechanism by which microRNA let-7g-3p regulates biological behaviors of bladder cancer cells.
METHODS:
The expression levels of let-7g-3p in bladder cancer and adjacent tissues, normal bladder epithelial cells (HUC cells) and bladder cancer cells (T24, 5637 and EJ cells) were detected using qRT- PCR. T24 cells were transfected with let-7g-3p mimic or inhibitor, and the changes in cell proliferation, migration, invasion, and apoptosis were examined. Transcriptome sequencing was carried out in cells overexpressing let-7g-3p, and the results of bioinformatics analysis, double luciferase reporter gene assay, qRT-PCR and Western blotting confirmed that HMGB2 gene was the target gene of let-7g-3p. The expression of HMGB2 was examined in HUC, T24, 5637 and EJ cells, and in cells with HMGB2 knockdown, the effect of let-7g-3p knockdown on the biological behaviors were observed.
RESULTS:
qRT-qPCR confirmed that let-7g-3p expression was significantly lower in bladder cancer tissues and cells (P < 0.01). Overexpression of let-7g-3p inhibited cell proliferation, migration and invasion, and promoted cell apoptosis, while let-7g-3p knock-down produced the opposite effects. Bioinformatics and transcriptome sequencing results showed that HMGB2 was the key molecule that mediate the effect of let-7g-3p on bladder cancer cells. Luciferase reporter gene assay, qRT-PCR and Western blotting all confirmed that HMGB2 was negatively regulated by let-7g-3p (P < 0.01). Knocking down HMGB2 could partially reverse the effect of let-7g-3p knockdown on the biological behaviors of the bladder cancer cells.
CONCLUSION
The microRNA let-7g-3p can inhibit the biological behavior of bladder cancer cells by negatively regulating HMGB2 gene.
Apoptosis
;
Cell Line, Tumor
;
Cell Movement/physiology*
;
Cell Proliferation
;
Epithelial Cells/metabolism*
;
Gene Expression Regulation, Neoplastic
;
HMGB2 Protein/metabolism*
;
Humans
;
MicroRNAs/metabolism*
;
Urinary Bladder
;
Urinary Bladder Neoplasms/genetics*
4.Host metabolism dysregulation and cell tropism identification in human airway and alveolar organoids upon SARS-CoV-2 infection.
Rongjuan PEI ; Jianqi FENG ; Yecheng ZHANG ; Hao SUN ; Lian LI ; Xuejie YANG ; Jiangping HE ; Shuqi XIAO ; Jin XIONG ; Ying LIN ; Kun WEN ; Hongwei ZHOU ; Jiekai CHEN ; Zhili RONG ; Xinwen CHEN
Protein & Cell 2021;12(9):717-733
The coronavirus disease 2019 (COVID-19) pandemic is caused by infection with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is spread primary via respiratory droplets and infects the lungs. Currently widely used cell lines and animals are unable to accurately mimic human physiological conditions because of the abnormal status of cell lines (transformed or cancer cells) and species differences between animals and humans. Organoids are stem cell-derived self-organized three-dimensional culture in vitro and model the physiological conditions of natural organs. Here we showed that SARS-CoV-2 infected and extensively replicated in human embryonic stem cells (hESCs)-derived lung organoids, including airway and alveolar organoids which covered the complete infection and spread route for SARS-CoV-2 within lungs. The infected cells were ciliated, club, and alveolar type 2 (AT2) cells, which were sequentially located from the proximal to the distal airway and terminal alveoli, respectively. Additionally, RNA-seq revealed early cell response to virus infection including an unexpected downregulation of the metabolic processes, especially lipid metabolism, in addition to the well-known upregulation of immune response. Further, Remdesivir and a human neutralizing antibody potently inhibited SARS-CoV-2 replication in lung organoids. Therefore, human lung organoids can serve as a pathophysiological model to investigate the underlying mechanism of SARS-CoV-2 infection and to discover and test therapeutic drugs for COVID-19.
Adenosine Monophosphate/therapeutic use*
;
Alanine/therapeutic use*
;
Alveolar Epithelial Cells/virology*
;
Antibodies, Neutralizing/therapeutic use*
;
COVID-19/virology*
;
Down-Regulation
;
Drug Discovery
;
Human Embryonic Stem Cells/metabolism*
;
Humans
;
Immunity
;
Lipid Metabolism
;
Lung/virology*
;
RNA, Viral/metabolism*
;
SARS-CoV-2/physiology*
;
Virus Replication/drug effects*
5.Assessment of Benchmark Dose in BEAS-2B Cells by Evaluating the Cell Relative Viability with Particulates in Motorcycle Exhaust
Tao YU ; Xue Yan ZHANG ; Shu Fei LI ; Yu Mei ZHOU ; Bin LI ; Zhong Xu WANG ; Yu Fei DAI ; Sherleen Xue-Fu ADAMSON ; Yu Xin ZHENG ; Ping BIN
Biomedical and Environmental Sciences 2021;34(4):272-281
Objective:
This study aimed to use an air-liquid interface (ALI) exposure system to simulate the inhalation exposure of motorcycle exhaust particulates (MEPs) and then investigate the benchmark dose (BMD) of MEPs by evaluating cell relative viability (CRV) in lung epithelial BEAS-2B cells.
Methods:
The MEPs dose was characterized by measuring the number concentration (NC), surface area concentration (SAC), and mass concentration (MC). BEAS-2B cells were exposed to MEPs at different concentrations
Results:
Our results reveal that BMD of NC and SAC were estimated by the best-fitting Hill model, while MC was estimated by Polynomial model. The BMDL for CRV following ALI exposure to MEPs were as follows: 364.2#/cm
Conclusion
These results indicate that MEPs exposure
Benchmarking/statistics & numerical data*
;
Bronchi/physiology*
;
Cell Line
;
Cell Survival/drug effects*
;
Epithelial Cells/physiology*
;
Humans
;
Motorcycles
;
Particulate Matter/adverse effects*
;
Vehicle Emissions/analysis*
6.Mesenchymal stem cell therapy for acute respiratory distress syndrome: from basic to clinics.
Protein & Cell 2020;11(10):707-722
The 2019 novel coronavirus disease (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has occurred in China and around the world. SARS-CoV-2-infected patients with severe pneumonia rapidly develop acute respiratory distress syndrome (ARDS) and die of multiple organ failure. Despite advances in supportive care approaches, ARDS is still associated with high mortality and morbidity. Mesenchymal stem cell (MSC)-based therapy may be an potential alternative strategy for treating ARDS by targeting the various pathophysiological events of ARDS. By releasing a variety of paracrine factors and extracellular vesicles, MSC can exert anti-inflammatory, anti-apoptotic, anti-microbial, and pro-angiogenic effects, promote bacterial and alveolar fluid clearance, disrupt the pulmonary endothelial and epithelial cell damage, eventually avoiding the lung and distal organ injuries to rescue patients with ARDS. An increasing number of experimental animal studies and early clinical studies verify the safety and efficacy of MSC therapy in ARDS. Since low cell engraftment and survival in lung limit MSC therapeutic potentials, several strategies have been developed to enhance their engraftment in the lung and their intrinsic, therapeutic properties. Here, we provide a comprehensive review of the mechanisms and optimization of MSC therapy in ARDS and highlighted the potentials and possible barriers of MSC therapy for COVID-19 patients with ARDS.
Adoptive Transfer
;
Alveolar Epithelial Cells
;
pathology
;
Animals
;
Apoptosis
;
Betacoronavirus
;
Body Fluids
;
metabolism
;
CD4-Positive T-Lymphocytes
;
immunology
;
Clinical Trials as Topic
;
Coinfection
;
prevention & control
;
therapy
;
Coronavirus Infections
;
complications
;
immunology
;
Disease Models, Animal
;
Endothelial Cells
;
pathology
;
Extracorporeal Membrane Oxygenation
;
Genetic Therapy
;
methods
;
Genetic Vectors
;
administration & dosage
;
therapeutic use
;
Humans
;
Immunity, Innate
;
Inflammation Mediators
;
metabolism
;
Lung
;
pathology
;
physiopathology
;
Mesenchymal Stem Cell Transplantation
;
methods
;
Mesenchymal Stem Cells
;
physiology
;
Multiple Organ Failure
;
etiology
;
prevention & control
;
Pandemics
;
Pneumonia, Viral
;
complications
;
immunology
;
Respiratory Distress Syndrome, Adult
;
immunology
;
pathology
;
therapy
;
Translational Medical Research
7.Inhibition of chemotherapy-related breast tumor EMT by application of redox-sensitive siRNA delivery system CSO-ss-SA/siRNA along with doxorubicin treatment.
Xuan LIU ; Xue-Qing ZHOU ; Xu-Wei SHANG ; Li WANG ; Yi LI ; Hong YUAN ; Fu-Qiang HU
Journal of Zhejiang University. Science. B 2020;21(3):218-233
Metastasis is one of the main reasons causing death in cancer patients. It was reported that chemotherapy might induce metastasis. In order to uncover the mechanism of chemotherapy-induced metastasis and find solutions to inhibit treatment-induced metastasis, the relationship between epithelial-mesenchymal transition (EMT) and doxorubicin (DOX) treatment was investigated and a redox-sensitive small interfering RNA (siRNA) delivery system was designed. DOX-related reactive oxygen species (ROS) were found to be responsible for the invasiveness of tumor cells in vitro, causing enhanced EMT and cytoskeleton reconstruction regulated by Ras-related C3 botulinum toxin substrate 1 (RAC1). In order to decrease RAC1, a redox-sensitive glycolipid drug delivery system (chitosan-ss-stearylamine conjugate (CSO-ss-SA)) was designed to carry siRNA, forming a gene delivery system (CSO-ss-SA/siRNA) downregulating RAC1. CSO-ss-SA/siRNA exhibited an enhanced redox sensitivity compared to nonresponsive complexes in 10 mmol/L glutathione (GSH) and showed a significant safety. CSO-ss-SA/siRNA could effectively transmit siRNA into tumor cells, reducing the expression of RAC1 protein by 38.2% and decreasing the number of tumor-induced invasion cells by 42.5%. When combined with DOX, CSO-ss-SA/siRNA remarkably inhibited the chemotherapy-induced EMT in vivo and enhanced therapeutic efficiency. The present study indicates that RAC1 protein is a key regulator of chemotherapy-induced EMT and CSO-ss-SA/siRNA silencing RAC1 could efficiently decrease the tumor metastasis risk after chemotherapy.
Amines/chemistry*
;
Antineoplastic Agents/adverse effects*
;
Breast Neoplasms/pathology*
;
Chitosan/chemistry*
;
Doxorubicin/adverse effects*
;
Drug Delivery Systems
;
Epithelial-Mesenchymal Transition/drug effects*
;
Female
;
Humans
;
MCF-7 Cells
;
Neoplasm Metastasis/prevention & control*
;
Oxidation-Reduction
;
RNA, Small Interfering/administration & dosage*
;
Reactive Oxygen Species/metabolism*
;
rac1 GTP-Binding Protein/physiology*
8.Catalpol ameliorates LPS-induced endometritis by inhibiting inflammation and TLR4/NF-κB signaling.
Hua ZHANG ; Zhi-Min WU ; Ya-Ping YANG ; Aftab SHAUKAT ; Jing YANG ; Ying-Fang GUO ; Tao ZHANG ; Xin-Ying ZHU ; Jin-Xia QIU ; Gan-Zhen DENG ; Dong-Mei SHI
Journal of Zhejiang University. Science. B 2019;20(10):816-827
Catalpol is the main active ingredient of an extract from Radix rehmanniae, which in a previous study showed a protective effect against various types of tissue injury. However, a protective effect of catalpol on uterine inflammation has not been reported. In this study, to investigate the protective mechanism of catalpol on lipopolysaccharide (LPS)-induced bovine endometrial epithelial cells (bEECs) and mouse endometritis, in vitro and in vivo inflammation models were established. The Toll-like receptor 4 (TLR4)/nuclear factor-κB (NF-κB) signaling pathway and its downstream inflammatory factors were detected by enzyme-linked immunosorbent assay (ELISA), quantitative real-time polymerase chain reaction (qRT-PCR), western blot (WB), and immunofluorescence techniques. The results from ELISA and qRT-PCR showed that catalpol dose-dependently reduced the expression of pro-inflammatory cytokines such as tumor necrosis factor α (TNF-α), interleukin (IL)-1β, and IL-6, and chemokines such as C-X-C motif chemokine ligand 8 (CXCL8) and CXCL5, both in bEECs and in uterine tissue. From the experimental results of WB, qRT-PCR, and immunofluorescence, the expression of TLR4 and the phosphorylation of NF-κB p65 were markedly inhibited by catalpol compared with the LPS group. The inflammatory damage to the mouse uterus caused by LPS was greatly reduced and was accompanied by a decline in myeloperoxidase (MPO) activity. The results of this study suggest that catalpol can exert an anti-inflammatory impact on LPS-induced bEECs and mouse endometritis by inhibiting inflammation and activation of the TLR4/NF-κB signaling pathway.
Animals
;
Cattle
;
Chemokines/genetics*
;
Cytokines/genetics*
;
Endometritis/drug therapy*
;
Epithelial Cells/drug effects*
;
Female
;
Inflammation/prevention & control*
;
Iridoid Glucosides/therapeutic use*
;
Lipopolysaccharides/pharmacology*
;
Mice
;
NF-kappa B/physiology*
;
Signal Transduction/drug effects*
;
Toll-Like Receptor 4/physiology*
9.Influence of dexamethasone on the cell polarity and PAR complex of the embryonic epithelial cells in the palate.
Ma LI ; Shi BING ; Zheng QIAN
West China Journal of Stomatology 2018;36(1):9-16
OBJECTIVE:
This study aims to investigate whether dexamethasone (DEX) can down-regulate the PAR complex and disrupt the cell polarity in the palatal epithelium during palatal fusion.
METHODS:
Pregnant rats were randomly divided into control and DEX groups, which were injected intraperitoneally with 0.9% sodium chloride (0.1 mL) and DEX (6 mg·kg ⁻¹), respectively, every day from E10 to E12. The palatal epithelial morphology was observed using hematoxylin and eosin staining and scanning electron microscopy. Immunofluorescence staining, Western Blot analysis, and real-time polymerase chain reaction were performed to detect the expression of PAR3, PAR6, and aPKC.
RESULTS:
The incidence of cleft palate in DEX group (46.15%) was significantly higher than that in control group (3.92%), and the difference was statistically significant (χ2=24.335, P=0.00). DEX can also retard the growth of the palatal shelves and the short palatal shelves. The morphology and arrangement of MEE cells changed from polarized bilayer cells to nonpolarized monolayer ones. Additionally, the spherical structure decreased, which caused the cleft palate. PAR3 and PAR6 were only detected in the palatal epithelium, and aPKC was expressed in the palatal epithelium and mesenchyme. DEX can reduce the expression levels of PAR3, PAR6, and aPKC in the protein and gene levels.
CONCLUSIONS
DEX can down-regulate the complex gene expression in the MEE cells, thereby destroying the cell polarity and causing cleft palate.
Animals
;
Carrier Proteins
;
physiology
;
Cell Polarity
;
drug effects
;
Cleft Palate
;
etiology
;
Dexamethasone
;
pharmacology
;
Epithelial Cells
;
drug effects
;
Female
;
Glucocorticoids
;
pharmacology
;
Palate
;
Pregnancy
;
Rats
10.MicroRNA-340 Inhibits Epithelial-Mesenchymal Transition by Impairing ROCK-1-Dependent Wnt/β-Catenin Signaling Pathway in Epithelial Cells from Human Benign Prostatic Hyperplasia.
Si-Yang CHEN ; Yuan DU ; Jian SONG
Chinese Medical Journal 2018;131(16):2008-2012
Cell Line, Tumor
;
Epithelial Cells
;
metabolism
;
pathology
;
Epithelial-Mesenchymal Transition
;
genetics
;
physiology
;
Gene Expression Regulation, Neoplastic
;
genetics
;
physiology
;
Humans
;
Male
;
MicroRNAs
;
genetics
;
metabolism
;
Prostatic Hyperplasia
;
genetics
;
metabolism
;
pathology
;
Wnt Signaling Pathway
;
genetics
;
physiology
;
beta Catenin
;
genetics
;
metabolism
;
rho-Associated Kinases
;
genetics
;
metabolism

Result Analysis
Print
Save
E-mail