1.Cellular senescence in kidney diseases.
Xiaojie WANG ; Yujia LI ; Qingqing CHU ; Hang LV ; Jing LI ; Fan YI
Chinese Medical Journal 2025;138(18):2234-2242
Cellular senescence, stable cell cycle arrest that can be triggered in normal cells in response to various intrinsic and extrinsic stressors, has been highlighted as one of the most important mechanisms involved in kidney diseases. It not only serves as a fundamental biological process promoting normal organogenesis and successful wound repair but also contributes to organ dysfunction, tissue fibrosis, and the generalized aging phenotype. Moreover, senescent cells exhibit reduced regenerative capacity, which impairs renal function recovery from injuries. Importantly, senescent cells are involved in immune regulation via secreting a diverse array of proinflammatory and profibrotic factors known as senescence-associated secretory phenotype (SASP) with autocrine, paracrine, and endocrine activities. Thus, eliminating detrimental senescent cells or inhibiting SASP production holds great promise for developing innovative therapeutic strategies for kidney diseases. In this review, we summarize the current knowledge of the intricate mechanisms and hallmarks of cellular senescence in kidney diseases and emphasize novel therapeutic targets, including epigenetic regulators, G protein-coupled receptors, and lysosome-related proteins. Particularly, we highlight the recently identified senotherapeutics, which provide new therapeutic strategies for treating kidney diseases.
Humans
;
Cellular Senescence/genetics*
;
Kidney Diseases/pathology*
;
Senescence-Associated Secretory Phenotype/physiology*
;
Animals
;
Epigenesis, Genetic/physiology*
2.Progress on the mechanism and application of hyperbaric oxygen therapy for neurodegenerative diseases.
Fang-Fang WANG ; Nan WANG ; Heng-Rong YUAN ; Ji XU ; Jun MA ; Xiao-Chen BAO ; Yi-Qun FANG
Acta Physiologica Sinica 2025;77(2):318-326
In 2040, neurodegenerative diseases (NDD) will overtake cancer as the second leading cause of death after cardiovascular and cerebrovascular diseases. Therefore, the search for effective intervention measures has become the top priority to deal with this difficult burden. Hyperbaric oxygen therapy (HBOT) has been used for the past 50 years to treat conditions such as decompression sickness, carbon monoxide poisoning and radiation damage. In recent years, studies have confirmed that HBOT has good effects in improving cognitive impairment after brain injury and stroke, and alleviating neurodegeneration and dysfunction related to NDD. Here we reviewed the pathogenesis and treatment state of NDD, introduced the application of HBOT in animal models and clinical studies of NDD, and expounded the application potential of HBOT in the treatment of NDD from the perspective of mitochondrial function, neuroinflammation, neurogenesis and angiogenesis, oxidative stress, apoptosis, microcirculation and epigenetics.
Hyperbaric Oxygenation
;
Humans
;
Neurodegenerative Diseases/physiopathology*
;
Animals
;
Oxidative Stress
;
Apoptosis
;
Mitochondria/physiology*
;
Neurogenesis
;
Epigenesis, Genetic
3.A convenient research strategy for functional verification of epigenetic regulators during spermatogenesis.
Shan LI ; Ying YUAN ; Ke-Yu ZHANG ; Yi-Dan GUO ; Lu-Tong WANG ; Xiao-Yuan ZHANG ; Shu ZHANG ; Qi YAN ; Rong ZHANG ; Jie CHEN ; Feng-Tang YANG ; Jing-Rui LI
Asian Journal of Andrology 2025;27(2):261-267
Spermatogenesis is a fundamental process that requires a tightly controlled epigenetic event in spermatogonial stem cells (SSCs). The mechanisms underlying the transition from SSCs to sperm are largely unknown. Most studies utilize gene knockout mice to explain the mechanisms. However, the production of genetically engineered mice is costly and time-consuming. In this study, we presented a convenient research strategy using an RNA interference (RNAi) and testicular transplantation approach. Histone H3 lysine 9 (H3K9) methylation was dynamically regulated during spermatogenesis. As Jumonji domain-containing protein 1A (JMJD1A) and Jumonji domain-containing protein 2C (JMJD2C) demethylases catalyze histone H3 lysine 9 dimethylation (H3K9me2), we firstly analyzed the expression profile of the two demethylases and then investigated their function. Using the convenient research strategy, we showed that normal spermatogenesis is disrupted due to the downregulated expression of both demethylases. These results suggest that this strategy might be a simple and alternative approach for analyzing spermatogenesis relative to the gene knockout mice strategy.
Spermatogenesis/physiology*
;
Animals
;
Male
;
Mice
;
Epigenesis, Genetic
;
Jumonji Domain-Containing Histone Demethylases/metabolism*
;
Histones/metabolism*
;
RNA Interference
;
Testis/metabolism*
;
Methylation
;
Mice, Knockout
;
Histone Demethylases
4.Circadian genes CLOCK and BMAL1 in cancer: mechanistic insights and therapeutic strategies.
Yuli SHEN ; Yuqian ZHAO ; Xue SUN ; Guimei JI ; Daqian XU ; Zheng WANG
Journal of Zhejiang University. Science. B 2025;26(10):935-948
The circadian clock is a highly conserved timekeeping system in organisms, which maintains physiological homeostasis by precisely regulating periodic fluctuations in gene expression. Substantial clinical and experimental evidence has established a close association between circadian rhythm disruption and the development of various malignancies. Research has revealed characteristic alterations in the circadian gene expression profiles in tumor tissues, primarily manifested as a dysfunction of core clock components (particularly circadian locomotor output cycles kaput (CLOCK) and brain and muscle ARNT-like 1 (BMAL1)) and the widespread dysregulation of their downstream target genes. Notably, CLOCK demonstrates non-canonical oncogenic functions, including epigenetic regulation via histone acetyltransferase activity and the circadian-independent modulation of cancer pathways. This review systematically elaborates on the oncogenic mechanisms mediated by CLOCK/BMAL1, encompassing multidimensional effects such as cell cycle control, DNA damage response, metabolic reprogramming, and tumor microenvironment (TME) remodeling. Regarding the therapeutic strategies, we focus on cutting-edge approaches such as chrononutritional interventions, chronopharmacological modulation, and treatment regimen optimization, along with a discussion of future perspectives. The research breakthroughs highlighted in this work not only deepen our understanding of the crucial role of circadian regulation in cancer biology but also provide novel insights for the development of chronotherapeutic oncology, particularly through targeting the non-canonical functions of circadian proteins to develop innovative anti-cancer strategies.
Humans
;
ARNTL Transcription Factors/physiology*
;
Neoplasms/therapy*
;
CLOCK Proteins/physiology*
;
Circadian Clocks/genetics*
;
Animals
;
Circadian Rhythm/genetics*
;
Tumor Microenvironment
;
Epigenesis, Genetic
;
Gene Expression Regulation, Neoplastic
5.Role and mechanisms of histone methylation in osteogenic/odontogenic differentiation of dental mesenchymal stem cells.
International Journal of Oral Science 2025;17(1):24-24
Dental mesenchymal stem cells (DMSCs) are pivotal for tooth development and periodontal tissue health and play an important role in tissue engineering and regenerative medicine because of their multidirectional differentiation potential and self-renewal ability. The cellular microenvironment regulates the fate of stem cells and can be modified using various optimization techniques. These methods can influence the cellular microenvironment, activate disparate signaling pathways, and induce different biological effects. "Epigenetic regulation" refers to the process of influencing gene expression and regulating cell fate without altering DNA sequences, such as histone methylation. Histone methylation modifications regulate pivotal transcription factors governing DMSCs differentiation into osteo-/odontogenic lineages. The most important sites of histone methylation in tooth organization were found to be H3K4, H3K9, and H3K27. Histone methylation affects gene expression and regulates stem cell differentiation by maintaining a delicate balance between major trimethylation sites, generating distinct chromatin structures associated with specific downstream transcriptional states. Several crucial signaling pathways associated with osteogenic differentiation are susceptible to modulation via histone methylation modifications. A deeper understanding of the regulatory mechanisms governing histone methylation modifications in osteo-/odontogenic differentiation and immune-inflammatory responses of DMSCs will facilitate further investigation of the epigenetic regulation of histone methylation in DMSC-mediated tissue regeneration and inflammation. Here is a concise overview of the pivotal functions of epigenetic histone methylation at H3K4, H3K9, and H3K27 in the regulation of osteo-/odontogenic differentiation and renewal of DMSCs in both non-inflammatory and inflammatory microenvironments. This review summarizes the current research on these processes in the context of tissue regeneration and therapeutic interventions.
Mesenchymal Stem Cells/physiology*
;
Humans
;
Osteogenesis/genetics*
;
Histones/metabolism*
;
Cell Differentiation/physiology*
;
Methylation
;
Odontogenesis/genetics*
;
Epigenesis, Genetic
6.Factors involved in human healthy aging: insights from longevity individuals.
Fan-Qian YIN ; Fu-Hui XIAO ; Qing-Peng KONG
Frontiers of Medicine 2025;19(2):226-249
The quest to decipher the determinants of human longevity has intensified with the rise in global life expectancy. Long-lived individuals (LLIs), who exceed the average life expectancy while delaying age-related diseases, serve as a unique model for studying human healthy aging and longevity. Longevity is a complex phenotype influenced by both genetic and non-genetic factors. This review paper delves into the genetic, epigenetic, metabolic, immune, and environmental factors underpinning the phenomenon of human longevity, with a particular focus on LLIs, such as centenarians. By integrating findings from human longevity studies, this review highlights a diverse array of factors influencing longevity, ranging from genetic polymorphisms and epigenetic modifications to the impacts of diet and physical activity. As life expectancy grows, understanding these factors is crucial for developing strategies that promote a healthier and longer life.
Humans
;
Healthy Aging/physiology*
;
Longevity/physiology*
;
Epigenesis, Genetic
;
Life Expectancy
;
Exercise
;
Aging/genetics*
;
Diet
;
Aged, 80 and over
7.Loss of TET Activity in the Postnatal Mouse Brain Perturbs Synaptic Gene Expression and Impairs Cognitive Function.
Ji-Wei LIU ; Ze-Qiang ZHANG ; Zhi-Chuan ZHU ; Kui LI ; Qiwu XU ; Jing ZHANG ; Xue-Wen CHENG ; Han LI ; Ying SUN ; Ji-Jun WANG ; Lu-Lu HU ; Zhi-Qi XIONG ; Yongchuan ZHU
Neuroscience Bulletin 2024;40(11):1699-1712
Conversion of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) by ten-eleven translocation (TET) family proteins leads to the accumulation of 5hmC in the central nervous system; however, the role of 5hmC in the postnatal brain and how its levels and target genes are regulated by TETs remain elusive. We have generated mice that lack all three Tet genes specifically in postnatal excitatory neurons. These mice exhibit significantly reduced 5hmC levels, altered dendritic spine morphology within brain regions crucial for cognition, and substantially impaired spatial and associative memories. Transcriptome profiling combined with epigenetic mapping reveals that a subset of genes, which display changes in both 5hmC/5mC levels and expression patterns, are involved in synapse-related functions. Our findings provide insight into the role of postnatally accumulated 5hmC in the mouse brain and underscore the impact of 5hmC modification on the expression of genes essential for synapse development and function.
Animals
;
Brain/growth & development*
;
5-Methylcytosine/metabolism*
;
Mice
;
Synapses/genetics*
;
Proto-Oncogene Proteins/metabolism*
;
DNA-Binding Proteins/metabolism*
;
Dioxygenases/metabolism*
;
Cognition/physiology*
;
Gene Expression
;
Mixed Function Oxygenases/metabolism*
;
Epigenesis, Genetic
;
Mice, Knockout
;
Mice, Inbred C57BL
8.Insights into epigenetic patterns in mammalian early embryos.
Ruimin XU ; Chong LI ; Xiaoyu LIU ; Shaorong GAO
Protein & Cell 2021;12(1):7-28
Mammalian fertilization begins with the fusion of two specialized gametes, followed by major epigenetic remodeling leading to the formation of a totipotent embryo. During the development of the pre-implantation embryo, precise reprogramming progress is a prerequisite for avoiding developmental defects or embryonic lethality, but the underlying molecular mechanisms remain elusive. For the past few years, unprecedented breakthroughs have been made in mapping the regulatory network of dynamic epigenomes during mammalian early embryo development, taking advantage of multiple advances and innovations in low-input genome-wide chromatin analysis technologies. The aim of this review is to highlight the most recent progress in understanding the mechanisms of epigenetic remodeling during early embryogenesis in mammals, including DNA methylation, histone modifications, chromatin accessibility and 3D chromatin organization.
Animals
;
Chromatin Assembly and Disassembly
;
DNA Methylation
;
DNA Transposable Elements
;
Embryo, Mammalian
;
Embryonic Development/genetics*
;
Epigenesis, Genetic
;
Epigenome
;
Female
;
Fertilization/physiology*
;
Gene Expression Regulation, Developmental
;
Histone Code
;
Histones/metabolism*
;
Male
;
Mice
;
Oocytes/metabolism*
;
Spermatozoa/metabolism*
9.Research progress of long noncoding RNA in regulating adipogenesis.
Haoneng TANG ; Yaru CHEN ; Houde ZHOU
Journal of Central South University(Medical Sciences) 2018;43(8):912-919
Long noncoding RNA (lncRNA) is once thought to be the genome transcriptional "noise". However, it has received considerable attention in the past few years and is emerging as potentially important player in biological regulation. Recent studies have revealed that increasing number of lncRNA plays pivotal roles in regulating the gene expression which involves in the development of the human disease. Functions of lncRNA include 3 types of interaction: RNA-RNA, RNA-DNA, and RNA-protein, which may participate in gene expression regulation through epigenetic modifications, transcriptional regulation, post-transcriptional regulation, acting as biological media. Due to the prevalence of obesity and related diseases, some attempts have been done to explore the pathogenesis of obesity from the field of noncoding RNA. Several lncRNAs have been identified to be involved in the regulation of the adipogenesis (white adipose tissue and brown adipose tissue) and energy metabolism. In this review, we summarized recent advances of lncRNAs to provide a new sight for the mechanism of obesity.
Adipogenesis
;
genetics
;
Epigenesis, Genetic
;
Gene Expression Regulation
;
Humans
;
RNA, Long Noncoding
;
physiology
;
RNA, Untranslated
10.Epigenetics of male infertility: An update.
Qi-Jie ZHANG ; Jie XU ; Chao QIN
National Journal of Andrology 2017;23(6):566-569
Epigenetic factors play an important role in male infertility though about 60%-65% of the disease is idiopathic and its underlying causes are not yet clear. Many studies have indicated that epigenetic modifications, including DNA methylation, histone tail modifications, chromatin remodeling, and non-coding RNAs, may be involved in idiopathic male infertility. Abnormal methylation is associated with decreased sperm quality and fertility. It is known that 1 881 miRNAs are related to male fertility and such non-coding RNAs as piRNA, IncRNA, and circRNA play a regulating role in male reproduction. This review focuses on the value of epigenetics in the etiology and pathogenesis of male infertility, aiming to provide some evidence for the establishment of some strategies for the treatment and prediction of the disease.
DNA Methylation
;
Epigenesis, Genetic
;
Fertility
;
Humans
;
Infertility, Male
;
genetics
;
Male
;
MicroRNAs
;
physiology
;
RNA, Small Interfering
;
Spermatozoa

Result Analysis
Print
Save
E-mail