1.Transcriptomic analysis of suspended Vero cells and reduction of cellular autophagy by epidermal growth factor.
Muzi LI ; Na SUN ; Runsheng PENG ; Fangfang MA ; Jiamin WANG ; Zilin QIAO ; Jianguo CHEN ; Abudureyimu AYIMUGL
Chinese Journal of Biotechnology 2025;41(4):1671-1689
The culture of suspended Vero cells is facing difficulties such as low cell viability and long doubling time. To investigate the main reasons for the slow growth and low viability of suspended Vero cells, this study conducted transcriptomic analysis of suspended Vero cells (Vero-XF) and adherent Vero cells (Vero-AD) to screen the differentially expressed genes (DEGs) affecting the growth of suspended cells. In addition, epidermal growth factor (EGF) was supplemented to the culture system to improve the growth of Vero-XF. The results showed that compared with the Vero-AD group, the Vero-XF group had 7 376 significant DEGs. Kyoto encyclopedia of genes and genomes enrichment analysis revealed that the DEGs were mainly enriched in the autophagy and mitophagy pathways. Eleven DEGs were selected and verified by quantitative real-time PCR, which showed up-regulated expression of ATG9B, WIPI2, LAMP2, OPTN, Rab7a, and DEPTOR and down-regulated expression of ATG4D, being consistent with the results of transcriptomic analysis. In addition, the Vero-XF group showed significantly up-regulated expression of ATG101, ATG2A, and STX17 and insignificant change in the expression of NBR1, compared with the Vero-AD group. The protein levels of LC3 and P62 in Vero-XF and Vero-AD were determined by Western blotting, which showed up-regulated expression of LC3Ⅱ/Ⅰ and down-regulated expression of P62 in Vero-XF, indicating a higher level of autophagy. Finally, the exogenous supplementation of EGF at 10, 20, and 30 μg/L in the culture system reduced the autophagy level of Vero-XF by 22.35%, 48.15%, and 71.29%, increased the specific growth rate by 15.48%, 33.33%, and 57.14%, and decreased the apoptosis rate by 2.84%, 15.46%, and 16.23%, respectively. The results of this study preliminarily reveal that the activation of autophagy is one of the reasons for the slow growth of Vero-XF, which provides reference for the subsequent culture of suspended Vero cells.
Animals
;
Vero Cells
;
Autophagy/genetics*
;
Chlorocebus aethiops
;
Epidermal Growth Factor/pharmacology*
;
Gene Expression Profiling
;
Transcriptome
;
Cell Survival
2.Enhancing the expression level of human epidermal growth factor using the polyhedrin protein sequence of BmNPV.
Yuedong LI ; Xingyang WANG ; Shuohao LI ; Xiaofeng WU
Chinese Journal of Biotechnology 2024;40(11):4211-4218
Human epidermal growth factor (hEGF) can be applied in the treatment of surgical trauma (burns, scalds), tissue repair, skin moisturizing, beauty, skincare, etc. However, the low expression and high cost limit the application of hEGF. In order to improve the expression level of hEGF and reduce the production cost, considering the high expression of polyhedrin, this study fused a partial sequence of polyhedrin with hEGF and expressed the fused sequence by using a silkworm baculovirus expression vector system. In view of the small molecular weight of hEGF, we connected hEGF genes in series and optimized the codons to construct multiple fusion expression vectors by fusing different partial sequences of polyhedrin at the N-terminus. The results showed that through the above strategy, the protein expression level of hEGF was significantly increased. The expression vector containing three concatenated hEGF genes with optimized codons and fused with the sequence encoding 25 or 35 residues at the N-terminus of polyhedrin showed the highest expression level.
Humans
;
Epidermal Growth Factor/biosynthesis*
;
Genetic Vectors/genetics*
;
Recombinant Fusion Proteins/biosynthesis*
;
Animals
;
Bombyx/metabolism*
;
Occlusion Body Matrix Proteins/genetics*
;
Nucleopolyhedroviruses/genetics*
;
Amino Acid Sequence
3.Risk modeling based on HER-2 related genes for bladder cancer survival prognosis assessment.
Huan Rui LIU ; Xiang PENG ; Sen Lin LI ; Xin GOU
Journal of Peking University(Health Sciences) 2023;55(5):793-801
OBJECTIVE:
To investigate the correlation between the human epidermal growth factor receptor-2-related genes (HRGs) and survival prognosis of bladder cancer and to construct a predictive model for survival prognosis of bladder cancer patients based on HRGs.
METHODS:
HRGs in bladder cancer were found by downloading bladder tumor tissue mRNA sequencing data and clinical data from the cancer genome atlas (TCGA), downloading HER-2 related genes from the molecular signatures database (MsigDB), and crossing the two databases. Further identifying HRGs associated with bladder cancer survival (P < 0.05) by using single and multi-factor Cox regression analysis and constructing HRGs risk score model (HRSM), the bladder cancer patients were categorized into high-risk and low-risk groups accor-ding to the median risk score. Survival analysis of the patients in high- and low-risk groups was conducted using R language and correlation of HRGs with clinical characteristics. A multi-factor Cox regression analysis was used to verify the independent factors affecting the prognosis of the patients with bladder cancer. The area under the curve (AUC) of the receiver operating characteristic curve (ROC) of HRSM was calculated, and a nomogram was constructed for survival prediction of the bladder cancer patients. Analysis of HRSM and patient immune cell infiltration correlation was made using the TIMER database.
RESULTS:
A total of 13 HRGs associated with patient survival were identified in this study. Five genes (BTC, CDC37, EGF, PTPRR and EREG) were selected for HRSM by multi-factor Cox regression analysis. The 5-year survival rate of the bladder cancer patients in the high-risk group was significantly lower than that of the patients in the low-risk group. High expression of PTPRR was found to be significantly and negatively correlated with tumor grade and stage by clinical correlation analysis, while EREG was found to be the opposite; Increased expression of EGF was associated with high grade, however, the high expression ofCDC37showed the opposite result. And no significant correlation was found between BTC expression and clinical features. Correlation analysis of HRSM with immune cells revealed a positive correlation between risk score and infiltration of dendritic cells, CD8+T cells, CD4+T cells, neutrophils and macrophages.
CONCLUSION
HRGs have an important role in the prognosis of bladder cancer patients and may serve as new predictive biomarkers and potential targets for treatment.
Humans
;
Epidermal Growth Factor
;
Prognosis
;
Urinary Bladder Neoplasms/genetics*
;
Nomograms
;
Urinary Bladder
4.Role of metabolic reprogramming in drug resistance to epidermal growth factor tyrosine kinase inhibitors in non-small cell lung cancer.
Journal of Central South University(Medical Sciences) 2021;46(5):545-551
Epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) can effectively inhibit the growth of EGFR-dependent mutant non-small cell lung cancer (NSCLC). Unfortunately, NSCLC patients often develop severe drug resistance after long-term EGFR-TKI treatment. Studies have shown that the disorder of energy metabolism in tumor cells can induce EGFR-TKI resistance. Due to the drug action, gene mutation and other factors, tumor cells undergo metabolic reprogramming, which increases the metabolic rate and intensity of tumor cells, promotes the intake and synthesis of nutrients (such as sugar, fat and glutamine), forms a microenvironment conducive to tumor growth, enhances the bypass activation, phenotype transformation and abnormal proliferation of tumor cells, and inhibits the activity of immune cells and apoptosis of tumor cells, ultimately leading to drug resistance of tumor cells to EGFR-TKI. Therefore, targeting energy metabolism of NSCLC may be a potential way to alleviate TKI resistance.
Carcinoma, Non-Small-Cell Lung/genetics*
;
Cell Line, Tumor
;
Drug Resistance, Neoplasm/genetics*
;
Epidermal Growth Factor
;
ErbB Receptors/genetics*
;
Humans
;
Lung Neoplasms/genetics*
;
Mutation
;
Protein Kinase Inhibitors/therapeutic use*
;
Tumor Microenvironment
5.Progress in human epidermal growth factor research.
Meiyu WU ; Jinghua RUAN ; Boxiong ZHONG
Chinese Journal of Biotechnology 2020;36(12):2813-2823
Human epidermal growth factor (hEGF) is a typical member of the growth factor family that activates epidermal growth factor receptors. It is synthesized and secreted by multiple tissues and organs of the human body, regulating the cell proliferation, differentiation and migration via binding to receptors and activating a series of signaling pathways. In recent years, the research on hEGF has been extended to its role in human physiology and pathology, especially in tissue regeneration and wound healing. This paper reviews the research progress of hEGF, briefly describes its gene and protein structure and characteristics, mechanisms and biological effects, with the emphasis on the roles and influences in the healing of gastrointestinal ulcers, skin wound repair and tumor pathology.
Cell Proliferation
;
Epidermal Growth Factor/genetics*
;
ErbB Receptors/genetics*
;
Humans
;
Skin
;
Wound Healing
6.Peptide Nucleic Acid Clamping and Direct Sequencing in the Detection of Oncogenic Alterations in Lung Cancer: Systematic Review and Meta-Analysis.
Yonsei Medical Journal 2018;59(2):211-218
PURPOSE: Molecular testing in non-small cell lung cancer (NSCLC) aids in identifying oncogenic alterations. The aim of this study was to compare the rates of detection of oncogenic alterations and responsiveness to epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) according to EGFR mutation status as determined by peptide nucleic acid (PNA) clamping or direct sequencing (DS). MATERIALS AND METHODS: We performed a systematic literature search using MEDLINE, EMBASE, and the Cochrane Central Register. Data from included studies were pooled to yield summary sensitivity, specificity, positive and negative likelihood ratios, diagnostic odds ratio, and receiver operating characteristic curves. A meta-regression analysis was conducted to identify potential sources of heterogeneity between selected studies. RESULTS: We identified 10 studies comprising 924 patients. Oncogenic alterations were detected in 340 of 924 cases (36.8%) with PNA clamping and in 250 of 924 (27.1%) with DS. The pooled sensitivities of PNA clamping and DS were 0.93 [95% confidence interval (CI): 0.90−0.95] and 0.69 (95% CI: 0.64−0.73), respectively. According to meta-regression analysis, none of the covariates were found to be significant sources of heterogeneity. With respect to treatment responses to EGFR-TKIs, there was no significant difference therein between EGFR mutations detected by PNA clamping and DS (53.4% vs. 50.8%; risk ratio, 0.99; 95% CI 0.83−1.19; p=0.874). CONCLUSION: We demonstrated that PNA clamping has a higher sensitivity than DS for detecting oncogenic alterations in NSCLC. Our findings suggest that PNA clamping is a more useful method for clinical practice.
Antineoplastic Agents/therapeutic use
;
Carcinoma, Non-Small-Cell Lung/drug therapy/*genetics
;
Constriction
;
Humans
;
Lung Neoplasms/*genetics
;
Molecular Diagnostic Techniques
;
Mutation
;
Peptide Nucleic Acids/*genetics
;
Protein Kinase Inhibitors/*therapeutic use
;
Receptor Protein-Tyrosine Kinases/*genetics
;
Receptor, Epidermal Growth Factor/*genetics
;
Sensitivity and Specificity
;
Sequence Analysis
;
Sequence Analysis, DNA
;
Translocation, Genetic
7.Detection of Rare Mutations in EGFR-ARMS-PCR-Negative Lung Adenocarcinoma by Sanger Sequencing
Chaoyue LIANG ; Zhuolin WU ; Xiaohong GAN ; Yuanbin LIU ; You YOU ; Chenxian LIU ; Chengzhi ZHOU ; Ying LIANG ; Haiyun MO ; Allen M CHEN ; Jiexia ZHANG
Yonsei Medical Journal 2018;59(1):13-19
PURPOSE: This study aimed to identify potential epidermal growth factor receptor (EGFR) gene mutations in non-small cell lung cancer that went undetected by amplification refractory mutation system-Scorpion real-time PCR (ARMS-PCR). MATERIALS AND METHODS: A total of 200 specimens were obtained from the First Affiliated Hospital of Guangzhou Medical University from August 2014 to August 2015. In total, 100 ARMS-negative and 100 ARMS-positive specimens were evaluated for EGFR gene mutations by Sanger sequencing. The methodology and sensitivity of each method and the outcomes of EGFR-tyrosine kinase inhibitor (TKI) therapy were analyzed. RESULTS: Among the 100 ARMS-PCR-positive samples, 90 were positive by Sanger sequencing, while 10 cases were considered negative, because the mutation abundance was less than 10%. Among the 100 negative cases, three were positive for a rare EGFR mutation by Sanger sequencing. In the curative effect analysis of EGFR-TKIs, the progression-free survival (PFS) analysis based on ARMS and Sanger sequencing results showed no difference. However, the PFS of patients with a high abundance of EGFR mutation was 12.4 months [95% confidence interval (CI), 11.6−12.4 months], which was significantly higher than that of patients with a low abundance of mutations detected by Sanger sequencing (95% CI, 10.7−11.3 months) (p < 0.001). CONCLUSION: The ARMS method demonstrated higher sensitivity than Sanger sequencing, but was prone to missing mutations due to primer design. Sanger sequencing was able to detect rare EGFR mutations and deemed applicable for confirming EGFR status. A clinical trial evaluating the efficacy of EGFR-TKIs in patients with rare EGFR mutations is needed.
Adenocarcinoma/genetics
;
Adenocarcinoma/pathology
;
Aged
;
Aged, 80 and over
;
Animals
;
Base Sequence
;
Disease-Free Survival
;
Female
;
Humans
;
Lung Neoplasms/genetics
;
Lung Neoplasms/pathology
;
Male
;
Middle Aged
;
Mutation/genetics
;
Mutation Rate
;
Real-Time Polymerase Chain Reaction/methods
;
Receptor, Epidermal Growth Factor/genetics
;
Sequence Analysis, DNA/methods
;
Treatment Outcome
8.1-Methoxycarbony-β-carboline from Picrasma quassioides exerts anti-angiogenic properties in HUVECs in vitro and zebrafish embryos in vivo.
Qing-Hua LIN ; Wei QU ; Jian XU ; Feng FENG ; Ming-Fang HE
Chinese Journal of Natural Medicines (English Ed.) 2018;16(8):599-609
Angiogenesis is a crucial process in the development of inflammatory diseases, including cancer, psoriasis and rheumatoid arthritis. Recently, several alkaloids from Picrasma quassioides had been screened for angiogenic activity in the zebrafish model, and the results indicated that 1-methoxycarbony-β-carboline (MCC) could effectively inhibit blood vessel formation. In this study, we further confirmed that MCC can inhibit, in a concentration-dependent manner, the viability, migration, invasion, and tube formation of human umbilical vein endothelial cells (HUVECs) in vitro, as well as the regenerative vascular outgrowth of zebrafish caudal fin in vivo. In the zebrafish xenograft assay, MCC inhibited the growth of tumor masses and the metastatic transplanted DU145 tumor cells. The proteome profile array of the MCC-treated HUVECs showed that MCC could down-regulate several angiogenesis-related self-secreted proteins, including ANG, EGF, bFGF, GRO, IGF-1, PLG and MMP-1. In addition, the expression of two key membrane receptor proteins in angiogenesis, TIE-2 and uPAR, were also down-regulated after MCC treatment. Taken together, these results shed light on the potential therapeutic application of MCC as a potent natural angiogenesis inhibitor via multiple molecular targets.
Angiogenesis Inhibitors
;
chemistry
;
pharmacology
;
Animals
;
Carbolines
;
chemistry
;
pharmacology
;
Cell Movement
;
drug effects
;
Cell Proliferation
;
drug effects
;
Epidermal Growth Factor
;
genetics
;
metabolism
;
Fibroblast Growth Factors
;
genetics
;
metabolism
;
Human Umbilical Vein Endothelial Cells
;
cytology
;
drug effects
;
metabolism
;
Humans
;
Insulin-Like Growth Factor I
;
genetics
;
metabolism
;
Neovascularization, Physiologic
;
drug effects
;
Picrasma
;
chemistry
;
Plant Extracts
;
chemistry
;
pharmacology
;
Receptor, TIE-2
;
genetics
;
metabolism
;
Zebrafish
;
embryology
9.EGF Induced RET Inhibitor Resistance in CCDC6-RET Lung Cancer Cells.
Hyun CHANG ; Ji Hea SUNG ; Sung Ung MOON ; Han Soo KIM ; Jin Won KIM ; Jong Seok LEE
Yonsei Medical Journal 2017;58(1):9-18
PURPOSE: Rearrangement of the proto-oncogene rearranged during transfection (RET) has been newly identified potential driver mutation in lung adenocarcinoma. Clinically available tyrosine kinase inhibitors (TKIs) target RET kinase activity, which suggests that patients with RET fusion genes may be treatable with a kinase inhibitor. Nevertheless, the mechanisms of resistance to these agents remain largely unknown. Thus, the present study aimed to determine whether epidermal growth factor (EGF) and hepatocyte growth factor (HGF) trigger RET inhibitor resistance in LC-2/ad cells with CCDC6-RET fusion genes. MATERIALS AND METHODS: The effects of EGF and HGF on the susceptibility of a CCDC6-RET lung cancer cell line to RET inhibitors (sunitinib, E7080, vandetanib, and sorafenib) were examined. RESULTS: CCDC6-RET lung cancer cells were highly sensitive to RET inhibitors. EGF activated epidermal growth factor receptor (EGFR) and triggered resistance to sunitinib, E7080, vandetanib, and sorafenib by transducing bypass survival signaling through ERK and AKT. Reversible EGFR-TKI (gefitinib) resensitized cancer cells to RET inhibitors, even in the presence of EGF. Endothelial cells, which are known to produce EGF, decreased the sensitivity of CCDC6-RET lung cancer cells to RET inhibitors, an effect that was inhibited by EGFR small interfering RNA (siRNA), anti-EGFR antibody (cetuximab), and EGFR-TKI (Iressa). HGF had relatively little effect on the sensitivity to RET inhibitors. CONCLUSION: EGF could trigger resistance to RET inhibition in CCDC6-RET lung cancer cells, and endothelial cells may confer resistance to RET inhibitors by EGF. E7080 and other RET inhibitors may provide therapeutic benefits in the treatment of RET-positive lung cancer patients.
Adenocarcinoma/drug therapy/*genetics
;
Cell Line, Tumor
;
Cetuximab/pharmacology
;
Drug Resistance, Neoplasm/drug effects/*genetics
;
Epidermal Growth Factor/metabolism/*pharmacology
;
*Gene Rearrangement
;
Hepatocyte Growth Factor/*pharmacology
;
Humans
;
Indoles/pharmacology
;
Lung Neoplasms/drug therapy/*genetics
;
MAP Kinase Signaling System
;
*Mutation
;
Niacinamide/analogs & derivatives/pharmacology
;
Phenylurea Compounds/pharmacology
;
Piperidines/pharmacology
;
Protein Kinase Inhibitors/therapeutic use
;
Proto-Oncogene Proteins c-ret/*antagonists & inhibitors/genetics
;
Pyrroles/pharmacology
;
Quinazolines/pharmacology
;
RNA, Small Interfering/pharmacology
;
Receptor, Epidermal Growth Factor/genetics/metabolism
;
Signal Transduction/drug effects
;
fms-Like Tyrosine Kinase 3/metabolism
10.Detection of EGFR and KRAS Mutation by Pyrosequencing Analysis in Cytologic Samples of Non-Small Cell Lung Cancer.
Seung Eun LEE ; So Young LEE ; Hyung Kyu PARK ; Seo Young OH ; Hee Joung KIM ; Kye Young LEE ; Wan Seop KIM
Journal of Korean Medical Science 2016;31(8):1224-1230
EGFR and KRAS mutations are two of the most common mutations that are present in lung cancer. Screening and detecting these mutations are of issue these days, and many different methods and tissue samples are currently used to effectively detect these two mutations. In this study, we aimed to evaluate the testing for EGFR and KRAS mutations by pyrosequencing method, and compared the yield of cytology versus histology specimens in a consecutive series of patients with lung cancer. We retrospectively reviewed EGFR and KRAS mutation results of 399 (patients with EGFR mutation test) and 323 patients (patients with KRAS mutation test) diagnosed with lung cancer in Konkuk University Medical Center from 2008 to 2014. Among them, 60 patients had received both EGFR and KRAS mutation studies. We compared the detection rate of EGFR and KRAS tests in cytology, biopsy, and resection specimens. EGFR and KRAS mutations were detected in 29.8% and 8.7% of total patients, and the positive mutation results of EGFR and KRAS were mutually exclusive. The detection rate of EGFR mutation in cytology was higher than non-cytology (biopsy or resection) materials (cytology: 48.5%, non-cytology: 26.1%), and the detection rate of KRAS mutation in cytology specimens was comparable to non-cytology specimens (cytology: 8.3%, non-cytology: 8.7%). We suggest that cytology specimens are good alternatives that can readily substitute tissue samples for testing both EGFR and KRAS mutations. Moreover, pyrosequencing method is highly sensitive in detecting EGFR and KRAS mutations in lung cancer patients.
Adult
;
Aged
;
Aged, 80 and over
;
Carcinoma, Non-Small-Cell Lung/genetics/metabolism/*pathology
;
DNA Mutational Analysis
;
DNA, Neoplasm/chemistry/metabolism
;
Female
;
Humans
;
Lung Neoplasms/genetics/metabolism/*pathology
;
Male
;
Middle Aged
;
Mutation
;
Receptor, Epidermal Growth Factor/*genetics/metabolism
;
Retrospective Studies
;
ras Proteins/*genetics/metabolism

Result Analysis
Print
Save
E-mail