1.Influence of autologous adipose stem cell matrix gel on wound healing and scar hyperplasia of full-thickness skin defects in rabbit ears.
Liang LI ; Nan BAI ; Yan Jie FU ; Can WU ; Yu Jiao ZHANG ; Yuan Zheng CHEN
Chinese Journal of Burns 2023;39(2):132-140
Objective: To investigate the influence of autologous adipose stem cell matrix gel on wound healing and scar hyperplasia of full-thickness skin defects in rabbit ears, and to analyze the related mechanism. Methods: Experimental research methods were adopted. The complete fat pads on the back of 42 male New Zealand white rabbits aged 2 to 3 months were cut to prepare adipose stem cell matrix gel, and a full-thickness skin defect wound was established on the ventral side of each ear of each rabbit. The left ear wounds were included in adipose stem cell matrix gel group (hereinafter referred to as matrix gel group), and the right ear wounds were included in phosphate buffer solution (PBS) group, which were injected with autologous adipose stem cell matrix gel and PBS, respectively. The wound healing rate was calculated on post injury day (PID) 7, 14, and 21, and the Vancouver scar scale (VSS) scoring of scar tissue formed on the wound (hereinafter referred to as scar tissue) was performed in post wound healing month (PWHM) 1, 2, 3, and 4. Hematoxylin-eosin staining was performed to observe and measure the histopathological changes of wound on PID 7, 14, and 21 and the dermal thickness of scar tissue in PWHM 1, 2, 3, and 4. Masson staining was performed to observe the collagen distribution in wound tissue on PID 7, 14, and 21 and scar tissue in PWHM 1, 2, 3, and 4, and the collagen volume fraction (CVF) was calculated. The microvessel count (MVC) in wound tissue on PID 7, 14, and 21 and the expressions of transforming growth factor β1 (TGF-β1) and α smooth muscle actin (α-SMA) in scar tissue in PWHM 1, 2, 3, and 4 were detected by immunohistochemical method, and the correlation between the expression of α-SMA and that of TGF-β1 in scar tissue in matrix gel group was analyzed. The expressions of vascular endothelial growth factor (VEGF) and epidermal growth factor (EGF) in wound tissue were detected by enzyme-linked immunosorbent assay on PID 7, 14, and 21. The number of samples at each time point in each group was 6. Data were statistically analyzed with analysis of variance for repeated measurement, analysis of variance for factorial design, paired sample t test, least significant difference test, and Pearson correlation analysis. Results: On PID 7, the wound healing rate in matrix gel group was (10.3±1.7)%, which was close to (8.5±2.1)% in PBS group (P>0.05). On PID 14 and 21, the wound healing rates in matrix gel group were (75.5±7.0)% and (98.7±0.8)%, respectively, which were significantly higher than (52.7±6.7)% and (90.5±1.7)% in PBS group (with t values of 5.79 and 10.37, respectively, P<0.05). In PWHM 1, 2, 3, and 4, the VSS score of scar tissue in matrix gel group was significantly lower than that in PBS group (with t values of -5.00, -2.86, -3.31, and -4.45, respectively, P<0.05). Compared with the previous time point within the group, the VSS score of scar tissue at each time point after wound healing in the two groups was significantly increased (P<0.05), except for PWHM 4 in matrix gel group (P>0.05). On PID 7, the granulation tissue regeneration and epithelialization degree of the wounds between the two groups were similar. On PID 14 and 21, the numbers of fibroblasts, capillaries, and epithelial cell layers in wound tissue of matrix gel group were significantly more than those in PBS group. In PWHM 1, 2, 3, and 4, the dermal thickness of scar tissue in matrix gel group was significantly thinner than that in PBS group (with t values of -4.08, -5.52, -6.18, and -6.30, respectively, P<0.05). Compared with the previous time point within the group, the dermal thickness of scar tissue in the two groups thickened significantly at each time point after wound healing (P<0.05). Compared with those in PBS group, the collagen distribution in wound tissue in matrix gel group was more regular and the CVF was significantly increased on PID 14 and 21 (with t values of 3.98 and 3.19, respectively, P<0.05), and the collagen distribution in scar tissue was also more regular in PWHM 1, 2, 3, and 4, but the CVF was significantly decreased (with t values of -7.38, -4.20, -4.10, and -4.65, respectively, P<0.05). Compared with the previous time point within the group, the CVFs in wound tissue at each time point after injury and scar tissue at each time point after wound healing in the two groups were significantly increased (P<0.05), except for PWHM 1 in matrix gel group (P>0.05). On PID 14 and 21, the MVC in wound tissue in matrix gel group was significantly higher than that in PBS group (with t values of 4.33 and 10.10, respectively, P<0.05). Compared with the previous time point within the group, the MVC of wound at each time point after injury in the two groups was increased significantly (P<0.05), except for PID 21 in PBS group (P>0.05). In PWHM 1, 2, 3, and 4, the expressions of TGF-β1 and α-SMA in scar tissue in matrix gel group were significantly lower than those in PBS group (with t values of -2.83, -5.46, -5.61, -8.63, -10.11, -5.79, -8.08, and -11.96, respectively, P<0.05). Compared with the previous time point within the group, the expressions of TGF-β1 and α-SMA in scar tissue in the two groups were increased significantly at each time point after wound healing (P<0.05), except for the α-SMA expression in matrix gel group in PWHM 4 (P>0.05). There was a significantly positive correlation between the expression of α-SMA and that of TGF-β1 in scar tissue in matrix gel group (r=0.92, P<0.05). On PID 14 and 21, the expressions of VEGF (with t values of 6.14 and 6.75, respectively, P<0.05) and EGF (with t values of 8.17 and 5.85, respectively, P<0.05) in wound tissue in matrix gel group were significantly higher than those in PBS group. Compared with the previous time point within the group, the expression of VEGF of wound at each time point after injury in the two groups was increased significantly (P<0.05), and the expression of EGF was decreased significantly (P<0.05). Conclusions: Adipose stem cell matrix gel may significantly promote the wound healing of full-thickness skin defects in rabbit ears by promoting collagen deposition and expressions of VEGF and EGF in wound tissue, and may further inhibit the scar hyperplasia after wound healing by inhibiting collagen deposition and expressions of TGF-β1 and α-SMA in scar tissue.
Male
;
Rabbits
;
Animals
;
Cicatrix
;
Vascular Endothelial Growth Factor A
;
Epidermal Growth Factor
;
Hyperplasia
;
Wound Healing
;
Stem Cells
;
Transforming Growth Factor beta
2.A case of intramandibular epidermoid cyst and literature analysis.
Bihui REN ; Jieting DAI ; Yehao XU ; Shuigen GUO ; Hongwu WEI ; Weihua MAO
West China Journal of Stomatology 2023;41(4):478-482
Epidermoid cysts are generally benign neoplastic lesions, the etiology of which is unclear and is mainly related to epithelial cells left in the tissues during the embryonic period and traumatically implanted in the tissues. The most common intraosseous sites are the phalanges and the skull. Epidermoid cysts occurring in the jaws are clinically rare. In this paper, we report a case of epidermoid cyst occurring in the mandible with embedded teeth and discuss the etiology, clinical manifestations, diagnosis, and treatment of epidermoid cysts in the jaws in the context of the relevant literature.
Humans
;
Epidermal Cyst/surgery*
;
Skull
;
Mandible
;
Diagnosis, Differential
;
Epithelial Cells
3.Effect of Wnt/β-catenin signaling pathway in neural differentiation of human bone marrow mesenchymal stem cells.
Chinese Journal of Reparative and Reconstructive Surgery 2023;37(10):1276-1283
OBJECTIVE:
To explore the effect of basic fibroblast growth factor (bFGF), epidermal growth factor (EGF), and the combination of bFGF and EGF in the neural differentiation of human bone marrow mesenchymal stem cells (hBMSCs), and the role of Wnt/β-catenin signaling pathway in this process.
METHODS:
The identified 4th-generation hBMSCs were divided into five groups according to different induction conditions, namely control group (group A), EGF induction group (group B), bFGF induction group (group C), EGF and bFGF combined induction group (group D), and EGF, bFGF, and Dickkopf-related protein 1 (DKK-1) combined induction group (group E). After 7 days of continuous induction, the cell morphology was observed by inverted fluorescence phase contrast microscopy, levels of genes that were related to neural cells [Nestin, neuron-specific enolase (NSE), microtubule-associated protein 2 (MAP-2), and glial fibrillary acidic protein (GFAP)] and key components of the Wnt/β-catenin signaling pathway (β-catenin and Cyclin D1) were detected by RT-PCR, and the levels of proteins that were related to neural cells (Nestin and GFAP) as well as genes that were involved in Wnt/β-catenin signaling pathway [β-catenin, phosphorylation β-catenin (P-β-catenin), Cytoplasmic β-catenin, and Nuclear β-catenin] were explored by cellular immunofluorescence staining and Western blot.
RESULTS:
When compared to groups A and B, the typical neuro-like cell changes were observed in groups C-E, and most obviously in group D. RT-PCR showed that the relative expressions of Nestin, NSE, and MAP-2 genes in groups C-E, the relative expressions of GFAP gene in groups D and E, the relative expression of NSE gene in group B, the relative expressions of β-catenin gene in groups C and D, and the relative expressions of Cyclin D1 gene in groups B-D significantly increased when compared with group A ( P<0.05). Compared with group E, the relative expressions of Nestin, NSE, MAP-2, GFAP, β-catenin, and CyclinD1 genes significantly increased in group D ( P<0.05); compared with group C, the relative expression of Nestin gene in group D significantly decreased ( P<0.05), while NSE, MAP-2, and GFAP genes significantly increased ( P<0.05). The cellular immunofluorescence staining showed that the ratio of NSE- and GFAP-positive cells significantly increased in groups C-E than in group A, in group D than in groups C and E ( P<0.05). Western blot assay showed that the relative expression of NSE protein was significantly higher in groups C and D than in group A and in group D than in groups C and E ( P<0.05). In addition, the relative expression of GFAP protein was significantly higher in groups C-E than in group A and in group D than in group E ( P<0.05). Besides, the relative expressions of β-catenin, Cytoplasmic β-catenin, Nuclear β-catenin, and the ratio of Nuclear β-catenin to Cytoplasmic β-catenin were significantly higher in groups C and D than in group A and in group D than in group E ( P<0.05), whereas the relative expression of P-β-catenin protein was significantly lower in groups C and D than in group A and in group D than in group E ( P<0.05).
CONCLUSION
Different from EGF, bFGF can induce neural differentiation of hBMSCs. In addition, EGF can enhance the hBMSCs neural differentiation of bFGF, while the Wnt/β-catenin signaling pathway may play a positive regulatory role in these processes.
Humans
;
beta Catenin/metabolism*
;
Bone Marrow Cells
;
Cell Differentiation
;
Cells, Cultured
;
Epidermal Growth Factor/metabolism*
;
Mesenchymal Stem Cells
;
Wnt Signaling Pathway
;
Neurons
;
Fibroblast Growth Factor 2/metabolism*
4.Research advances on the role and mechanism of epidermal stem cells in skin wound repair.
Zhi Yuan SHI ; Bo Han ZHANG ; Jia Chen SUN ; Xin Zhu LIU ; Zhuan An SHEN
Chinese Journal of Burns 2022;38(9):854-858
Epidermal stem cells play an pivotal role in skin self-renewal, wound repair, and re-epithelialization process. The emergence of new technologies and concepts such as single-cell sequencing and gene knockout further revealed a new mechanism of epidermal stem cells in epidermal self-renewal and wound repair, providing new ideas for wound repair. In this review, the mechanisms of proliferation, differentiation, and migration of epidermal stem cells are discussed. Combined with the analysis of researches on stem cell heterogeneity and cell plasticity, the physiological function of epidermal stem cells can be further understood. The application advances of epidermal stem cells in wound repair is also summarized, which would provide some advice for workers engaged in clinical and basic research on wound repair.
Epidermal Cells/physiology*
;
Epidermis
;
Humans
;
Re-Epithelialization
;
Skin
;
Soft Tissue Injuries
;
Stem Cells
5.Effect of P62 on the migration and motility of human epidermal cell line HaCaT in high glucose microenvironment and its mechanism.
Yu Ping ZHANG ; Qiong ZHANG ; Fang DENG ; Bing CHEN ; Jun Hui ZHANG ; Jiongyu HU
Chinese Journal of Burns 2022;38(11):1014-1022
Objective: To investigate the effect of P62 on the migration and motility of human epidermal cell line HaCaT in high glucose microenvironment and its possible molecular mechanism, so as to explore the mechanism of refractory diabetic foot wound healing. Methods: The method of experimental research was used. HaCaT cells in logarithmic growth phase was taken for experiment. The cells were collected and divided into normal control group (culture solution containing glucose with final molarity of 5.5 mmol/L) and high glucose (culture solution containing glucose with final molarity of 30.0 mmol/L) 24 h group, high glucose 48 h group, and high glucose 72 h group according to the random number table (the same grouping method below). The cells in normal control group were routinely cultured for 72 h, cells in high glucose 72 h group were cultured with high glucose for 72 h, cells in high glucose 48 h group were routinely cultured for 24 h then cultured with high glucose for 48 h, cells in high glucose 24 h group were routinely cultured for 48 h then cultured with high glucose for 24 h. Then the protein expression of P62 was detected by Western blotting. The cells were collected and divided into normal control group and high glucose group. After being correspondingly cultured for 48 h as before, the protein expression of P62 was detected by immunofluorescence method (indicated as green fluorescence). The cells were collected and divided into negative control small interfering RNA (siRNA) group, P62-siRNA-1 group, P62-siRNA-2 group, and P62-siRNA-3 group, and transfected with the corresponding reagents. At post transfection hour (PTH) 72, the protein expression of P62 was detected by Western blotting. The cells were collected and divided into normal glucose+negative control siRNA group, normal glucose+P62-siRNA group, high glucose+negative control siRNA group, and high glucose+P62-siRNA group. After the corresponding treatment, the protein expression of P62 was detected by Western blotting at PTH 72 h, the cell migration rate was detected and calculated at 24 h after scratching by scratch test, with the number of samples being 9; and the range of cell movement was observed and the trajectory velocity was calculated within 3 h under the living cell workstation, with the number of samples being 76, 75, 80, and 79 in normal glucose+negative control siRNA group, normal glucose+P62-siRNA group, high glucose+negative control siRNA group, and high glucose+P62-siRNA group, respectively. The cells were collected and divided into normal glucose+phosphate buffered solution (PBS) group, high glucose+PBS group, and high glucose+N-acetylcysteine (NAC) group. After the corresponding treatment, the protein expression of P62 at 48 h of culture was detected by Western blotting and immunofluorescence method, respectively. Except for scratch test and cell motility experiment, the number of samples was all 3 in the rest experiments. Data were statistically analyzed with one-way analysis of variance and least significant difference test. Results: Compared with the protein expression in normal control group, the protein expressions of P62 of cells in high glucose 24 h group, high glucose 48 h group, and high glucose 72 h group were significantly increased (P<0.01). At 48 h of culture, the green fluorescence of P62 of cells in high glucose group was stronger than that in normal control group. At PTH 72, compared with the protein expression in negative control siRNA group, the protein expressions of P62 of cells in P62-siRNA-1 group, P62-siRNA-2 group, and P62-siRNA-3 group were significantly decreased (P<0.01). At PTH 72, compared with the protein expression in normal glucose+negative control siRNA group, the protein expression of P62 of cells in normal glucose+P62-siRNA group was significantly decreased (P<0.01), while the protein expression of P62 of cells in high glucose+negative control siRNA group was significantly increased (P<0.01); compared with the protein expression in high glucose+negative control siRNA group, the protein expression of P62 of cells in high glucose+P62-siRNA group was significantly decreased (P<0.01). At 24 h after scratching, compared with (55±7)% in normal glucose+negative control siRNA group, the cell migration rate in normal glucose+P62-siRNA group was significantly increased ((72±14)%, P<0.01), while the cell migration rate in high glucose+negative control siRNA group was significantly decreased ((37±7)%, P<0.01); compared with that in high glucose+negative control siRNA group, the cell migration rate in high glucose+P62-siRNA group was significantly increased ((54±10)%, P<0.01). Within 3 h of observation, the cell movement range in high glucose+negative control siRNA group was smaller than that in normal glucose+negative control siRNA group, while the cell movement range in normal glucose+P62-siRNA group was larger than that in normal glucose+negative control siRNA group, and the cell movement range in high glucose+P62-siRNA group was larger than that in high glucose+negative control siRNA group. Compared with that in normal glucose+negative control siRNA group, the cell trajectory speed in normal glucose+P62-siRNA group was significantly increased (P<0.01), while the cell trajectory speed in high glucose+negative control siRNA group was significantly decreased (P<0.01); compared with that in high glucose+negative control siRNA group, the cell trajectory speed in high glucose+P62-siRNA group was significantly increased (P<0.01). At 48 h of culture, compared with that in normal glucose+PBS group, the protein expression of P62 of cells in high glucose+PBS group was significantly increased (P<0.01); compared with that in high glucose+PBS group, the protein expression of P62 of cells in high glucose+NAC group was significantly decreased (P<0.01). At 48 h of culture, the green fluorescence of P62 of cells in high glucose+PBS group was stronger than that in normal glucose+PBS group, while the green fluorescence of P62 of cells in high glucose+NAC group was weaker than that in high glucose+PBS group. Conclusions: In HaCaT cells, high glucose microenvironment can promote the protein expression of P62; knockdown of P62 protein can promote the migration and increase the mobility of HaCaT cells; and the increase of reactive oxygen species in high glucose microenvironment may be the underlying mechanism for the increase of P62 expression.
Humans
;
RNA, Small Interfering/genetics*
;
Cell Line
;
Epidermis
;
Glucose/pharmacology*
;
Epidermal Cells
6.Regulatory effects of bio-intensity electric field on microtubule acetylation in human epidermal cell line HaCaT.
Ya Ting WU ; Ze ZHANG ; Ran JI ; Shu Hao ZHANG ; Wen Ping WANG ; Chao WU ; Jia Ping ZHANG ; Xu Pin JIANG ; Hengshu ZHANG
Chinese Journal of Burns 2022;38(11):1066-1072
Objective: To investigate the regulatory effects of bio-intensity electric field on directional migration and microtubule acetylation in human epidermal cell line HaCaT, aiming to provide molecular theoretical basis for the clinical treatment of wound repair. Methods: The experimental research methods were used. HaCaT cells were collected and divided into simulated electric field group (n=54) placed in the electric field device without electricity for 3 h and electric field treatment group (n=52) treated with 200 mV/mm electric field for 3 h (the same treatment methods below). The cell movement direction was observed in the living cell workstation and the movement velocity, trajectory velocity, and direction of cosθ of cell movement within 3 h of treatment were calculated. HaCaT cells were divided into simulated electric field group and electric field treatment 1 h group, electric field treatment 2 h group, and electric field treatment 3 h group which were treated with 200 mV/mm electric field for corresponding time. HaCaT cells were divided into simulated electric field group and 100 mV/mm electric field group, 200 mV/mm electric field group, and 300 mV/mm electric field group treated with electric field of corresponding intensities for 3 h. The protein expression of acetylated α-tubulin was detected by Western blotting (n=3). HaCaT cells were divided into simulated electric field group and electric field treatment group, and the protein expression of acetylated α-tubulin was detected and located by immunofluorescence method (n=3). Data were statistically analyzed with Kruskal-Wallis H test,Mann-Whitney U test, Bonferroni correction, one-way analysis of variance, least significant difference test, and independent sample t test. Results: Within 3 h of treatment, compared with that in simulated electric field group, the cells in electric field treatment group had obvious tendency to move directionally, the movement velocity and trajectory velocity were increased significantly (with Z values of -8.53 and -2.05, respectively, P<0.05 or P<0.01), and the directionality was significantly enhanced (Z=-8.65, P<0.01). Compared with (0.80±0.14) in simulated electric field group, the protein expressions of acetylated α-tubulin in electric field treatment 1 h group (1.50±0.08) and electric field treatment 2 h group (1.89±0.06) were not changed obviously (P>0.05), while the protein expression of acetylated α-tubulin of cells in electric field treatment 3 h group (3.37±0.36) was increased significantly (Z=-3.06, P<0.05). After treatment for 3 h, the protein expressions of acetylated α-tubulin of cells in 100 mV/mm electric field group, 200 mV/mm electric field group, and 300 mV/mm electric field group were 1.63±0.05, 2.24±0.08, and 2.00±0.13, respectively, which were significantly more than 0.95±0.27 in simulated electric field group (P<0.01). Compared with that in 100 mV/mm electric field group, the protein expressions of acetylated α-tubulin in 200 mV/mm electric field group and 300 mV/mm electric field group were increased significantly (P<0.01); the protein expression of acetylated α-tubulin of cells in 300 mV/mm electric field group was significantly lower than that in 200 mV/mm electric field group (P<0.05). After treatment for 3 h, compared with that in simulated electric field group, the acetylated α-tubulin of cells had enhanced directional distribution and higher protein expression (t=5.78, P<0.01). Conclusions: Bio-intensity electric field can induce the directional migration of HaCaT cells and obviously up-regulate the level of α-ubulin acetylation after treatment at 200 mV/mm bio-intensity electric field for 3 h.
Humans
;
Acetylation
;
Tubulin/metabolism*
;
Microtubules/metabolism*
;
Electricity
;
Epidermal Cells/metabolism*
7.Current Development and Research Trend of Chemotherapeutic Agents for Head and Neck Squamous Cell Carcinoma
Korean Journal of Otolaryngology - Head and Neck Surgery 2019;62(9):487-498
After FDA approval of cetuximab at 2006, receptor tyrosine kinase, including an epidermal growth factor receptor, blocking agents have been evaluated for head and neck squamous cell carcinoma (HNSCC). Agents targeting PI3K/Akt/mTOR, IL-6/JAK/STAT3, vascular endothelial growth factor receptor, and cyclin D-CDK-4/6-INK4/Rb pathway have developed. Most of them have failed to demonstrate better treatment outcome in recurrent and/or metastatic (R/M) HNSCC than conventional chemotherapy. Since a pivotal role of PD-1/PD-L1 pathway in immunological tumor microenvironment was revealed, the immune checkpoint inhibitors, including pembrolizumab and nivolumab, have opened new paradigm of cancer treatment modality and propagates other immune-based therapies for R/M HNSCC. Various types of combination trials consisting of immunotherapy with other class of immunotherapy, targeted agents, radiation therapy, or conventional chemotherapy have been under investigation to improve treatment outcome. Biomarker studies to find an optimal candidate for the newly developed agents are accompanied. These clinical trials lead to tailored approach based on immunotherapy with precision medicine is expected to lead to promising results.
Carcinoma, Squamous Cell
;
Cetuximab
;
Cyclins
;
Drug Therapy
;
Epithelial Cells
;
Head
;
Immunotherapy
;
Molecular Targeted Therapy
;
Neck
;
Precision Medicine
;
Protein-Tyrosine Kinases
;
Receptor, Epidermal Growth Factor
;
Receptors, Vascular Endothelial Growth Factor
;
Treatment Outcome
;
Tumor Microenvironment
8.Growth Factor- and Phorbol Ester-induced Production and Gene Expression of MUC5AC Mucin in Human Airway Epithelial NCI-H292 Cells Were Inhibited by Afzelin and Natural Products Derived from Houttuynia Cordata
Yu jin KIM ; Hyun Jae LEE ; Choong Jae LEE
Natural Product Sciences 2019;25(3):248-254
In the present study, we investigated whether quercitrin, quercetin and afzelin derived from Houttuynia cordata affect the production and gene expression of MUC5AC mucin from airway epithelial cells. Confluent NCI-H292 cells were pretreated with quercitrin, quercetin or afzelin for 30 min and then stimulated with epidermal growth factor (EGF) or phorbol 12-myristate 13-acetate (PMA) for 24 h. The MUC5AC mucin gene expression and production were measured by RT-PCR and ELISA, respectively. The results were as follows: (1) Quercitrin, quercetin and afzelin inhibited EGF- and PMA-induced MUC5AC mucin production from NCI-H292 cells; (2) The three natural products also decreased EGF- and PMA-induced MUC5AC mucin gene expression in NCI-H292 cells. These results suggest that quercitrin, quercetin and afzelin showed the regulatory effect on the steps of gene expression and production of mucin, by directly acting on airway epithelial cells.
Biological Products
;
Enzyme-Linked Immunosorbent Assay
;
Epidermal Growth Factor
;
Epithelial Cells
;
Gene Expression
;
Houttuynia
;
Humans
;
Mucins
;
Quercetin
9.The Krüppel-like factor (KLF5) as a predictive biomarker in preoperative chemoradiation therapy for rectal cancer
Jeong Yeon KIM ; Sung Gil PARK ; Kyung Sub KIM ; Yong Hee CHOI ; Nam Kyu KIM
Annals of Surgical Treatment and Research 2019;97(2):83-92
PURPOSE: Preoperative chemoradiation therapy (CRT) has become the standard treatment for patients with locally advanced rectal cancer, 15%–30% of patients still progress while being treated with CRT. The aim of this study was to identify as important biomarker of poor response and evaluate the mechanism associated with CRT resistance. METHODS: This study included 60 human colon tumour pre-irradiation specimens. Expressions of epidermal growth factor receptor (EGFR), p53, Krüppel-like factor 5 (KLF5), C-ern, Ki67 were assessed and correlated with tumor regression grades and complete remission. We added in vitro study with biomarker which has been identified as important biomarker of poor response to evaluate the mechanism associated with CRT resistance. RESULTS: Pathologic complete remission (pCR) was achieved by 9 patients (18%). EGFR and KLF5 were significantly associated with pCR (P = 0.048, P = 0.023, respectfully). And multivariate analysis showed high KLF5 intensity was worse factor for pCR (P = 0.012). In vitro study, radiation or chemotherapy therapy stabilized KLF5 protein levels in a time- and dose-depended manner in HCT116 and Caco-2 cells. KLF5 overexpression in HCT116 stable cell line showed significantly better cell viability by increasing cyclinD1 and b-catenin compared to control cells in MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay, suggesting that KLF5 mediates cell survival. CONCLUSION: KLF5 was significantly associated with the presence of KRAS mutations, and KLF5 was an independent poor response predictor of CRT in rectal cancer. Our study is pilot study and more research will be needed in the future.
Caco-2 Cells
;
Cell Line
;
Cell Survival
;
Chemoradiotherapy
;
Colon
;
Drug Therapy
;
Humans
;
In Vitro Techniques
;
Multivariate Analysis
;
Pilot Projects
;
Polymerase Chain Reaction
;
Prognosis
;
Receptor, Epidermal Growth Factor
;
Rectal Neoplasms
10.EGFR Mutation Is Associated with Short Progression-Free Survival in Patients with Stage III Non-squamous Cell Lung Cancer Treated with Concurrent Chemoradiotherapy
Song Ee PARK ; Jae Myoung NOH ; You Jin KIM ; Han Sang LEE ; Jang Ho CHO ; Sung Won LIM ; Yong Chan AHN ; Hongryull PYO ; Yoon La CHOI ; Joungho HAN ; Jong Mu SUN ; Se Hoon LEE ; Jin Seok AHN ; Keunchil PARK ; Myung Ju AHN
Cancer Research and Treatment 2019;51(2):493-501
PURPOSE: This study was conducted to evaluate the relationship between epidermal growth factor receptor (EGFR) mutation and clinical outcomes in patients with stage III non-squamous cell lung cancer treated with definitive concurrent chemoradiotherapy (CCRT). MATERIALS AND METHODS: From January 2008 to December 2013, the medical records of 197 patients with stage III non- squamous non-small cell lung cancer treated with definitive CCRT were analyzed to determine progression-free survival (PFS) and overall survival (OS) according to EGFR mutation status. RESULTS: Among 197 eligible patients, 81 patients were EGFR wild type, 36 patients had an EGFR mutation (exon 19 Del, n=18; L858R, n=9, uncommon [G719X, L868, T790M], n=9), and 80 patients had unknown EGFR status. The median age was 59 years (range, 28 to 80 years) and 136 patients (69.0%) were male. The median follow-up duration was 66.5 months (range, 1.9 to 114.5 months). One hundred sixty-four patients (83.2%) experienced disease progression. Median PFS was 8.9 months for the EGFR mutation group, 11.8 months for EGFR wild type, and 10.5 months for the unknown EGFR group (p=0.013 and p=0.042, respectively). The most common site of metastasis in the EGFR mutant group was the brain. However, there was no significant difference in OS among the three groups (34.6 months for EGFR mutant group vs. 31.9 months for EGFR wild type vs. 22.6 months for EGFR unknown group; p=0.792 and p=0.284). A total of 29 patients (80.6%) with EGFR mutation were treated with EGFR tyrosine kinase inhibitor (gefitinib, n=24; erlotinib, n=3; afatinib, n=2) upon progression. CONCLUSION: EGFR mutation is associatedwith short PFS and the brain is the most common site of distant metastasis in patients with stage III non- squamous cell lung cancer treated with CCRT.
Brain
;
Carcinoma, Non-Small-Cell Lung
;
Chemoradiotherapy
;
Disease Progression
;
Disease-Free Survival
;
Epithelial Cells
;
Erlotinib Hydrochloride
;
Follow-Up Studies
;
Humans
;
Lung Neoplasms
;
Lung
;
Male
;
Medical Records
;
Neoplasm Metastasis
;
Protein-Tyrosine Kinases
;
Receptor, Epidermal Growth Factor

Result Analysis
Print
Save
E-mail