1.A large family of Nascimento form of syndromic X-linked intellectual developmental disorder caused by large segment deletion of the UBE2A gene: a case report and literature review.
Dan XU ; Jia-Yang XIE ; Xiao-Li ZHANG ; Meng-Yue WANG ; Man-Man CHU ; Rui HAN ; Jun-Ling WANG ; Xiao-Li LI ; Tian-Ming JIA
Chinese Journal of Contemporary Pediatrics 2025;27(7):859-863
This article reports the clinical features and gene mutation types of a large family with Nascimento form of syndromic X-linked intellectual developmental disorder (MRXSN), involving 9 individuals across 3 generations, and a literature review was conducted. In this family, 9 individuals had similar manifestations including mental retardation and unusual facies, and 4 of them had passed away. Genetic testing showed that the proband had the deletion of exons 2-3 of the UBE2A gene, which was inherited from the mother. Fluorescent quantitative polymerase chain reaction showed that the proband and his uncle had the deletion of exons 2-3 of the UBE2A gene; the proband's mother, grandmother, and great-aunt had a heterozygous deletion of exons 2-3 of the UBE2A gene; the proband's father, sister, and aunt had a normal copy number of exons 2-3 of the UBE2A gene. The 34 patients reported in the literature had diverse clinical phenotypes, and UBE2A gene mutations (22/34, 65%) and large fragment deletions (12/34, 35%) were the main mutation types. Moderate to severe mental retardation (34/34, 100%), speech and language impairment (33/34, 97%), and unusual facies (32/34, 94%) were the main clinical manifestations of MRXSN patients. The disease has obvious phenotypic heterogeneity, and early diagnosis facilitates optimal prenatal and postnatal management to improve reproductive outcomes.
Humans
;
Male
;
Ubiquitin-Conjugating Enzymes/genetics*
;
Female
;
X-Linked Intellectual Disability/genetics*
;
Gene Deletion
;
Child
;
Pedigree
;
Child, Preschool
;
Adult
2.NIP7 upregulates the expression of ubiquitin-conjugating enzyme E2 C to promote tumor growth in anaplastic thyroid cancer.
Yingying GONG ; Ziwen FANG ; Yixuan WANG ; Minghua GE ; Zongfu PAN
Journal of Zhejiang University. Medical sciences 2025;54(3):372-381
OBJECTIVES:
To investigate the role of nucleolar pre-rRNA processing protein NIP7 (NIP7) in maintaining the malignant phenotype of anaplastic thyroid cancer (ATC) and its molecular mechanisms.
METHODS:
NIP7 expression in ATC tissues and its gene knock-out effects in ATC cells were analyzed using gene expression microarray (GSE33630), proteome database (IPX0008941000) and the Dependency Map database, respectively. Expression and localization of NIP7 in normal thyroid cells, papillary thyroid cancer cells, and ATC cells were detected by Western blotting. Small interfering RNA (siRNA) was transfected into ATC cells, and the knockdown efficiency of NIP7 was detected by quantitative reverse transcription polymerase chain reaction (qRT-PCR) and Western blotting. Cell proliferation was assessed by CCK-8 assay, colony formation was evaluated by colony formation assay, and tumor growth was assessed by xenograft tumor model in nude mice. SUnSET (surface sensing of translation) assay combined with co-immunoprecipitation were employed to evaluate the effect of NIP7 silencing on ubiquitin-conjugating enzyme E2 C (UBE2C) translation. Finally, gene set enrichment analysis was used to identify shared pathways of NIP7 and UBE2C, which were validated by qRT-PCR.
RESULTS:
Compared with normal tissues and papillary thyroid cancer, NIP7 was significantly upregulated in ATC tissues, and had a gene knock-out fitness effect on different ATC cell lines. The relative protein levels of NIP7 in ATC cells were significantly higher than those in normal thyroid follicular cells, and the protein was mainly expressed in the nucleus. NIP7 silencing significantly inhibited cell proliferation and reduced colony formation. Xenograft tumor model showed that NIP7 knockdown significantly slowed down the growth of ATC xenograft, and the tumor volume and weight were significantly lower than those in the control group (all P<0.05). NIP7 silencing downregulated the protein level of UBE2C, but did not affect the expression of UBE2C mRNA. Compared to the control group, UBE2C silencing significantly inhibited ATC cells proliferation (P<0.01) and colony formation (P<0.05). UBE2C overexpression reversed the proliferation-inhibitory effect induced by NIP7 silencing (P<0.01). Gene set enrichment analysis indicated that NIP7 and UBE2C were both involved in DNA replication. NIP7 or UBE2C silencing could significantly downregulate the expression levels of DNA polymerase epsilon, catalytic subunit 2 and replication factor C4 in DNA replication pathway.
CONCLUSIONS
NIP7 promotes ATC tumor growth by upregulating UBE2C to mediate DNA replication.
Humans
;
Ubiquitin-Conjugating Enzymes/genetics*
;
Thyroid Neoplasms/genetics*
;
Thyroid Carcinoma, Anaplastic/genetics*
;
Animals
;
Mice, Nude
;
Mice
;
Cell Line, Tumor
;
Cell Proliferation
;
Up-Regulation
;
RNA, Small Interfering/genetics*
;
Nuclear Proteins/metabolism*
;
Gene Expression Regulation, Neoplastic
3.Blended teaching reform practice in Protein Engineering and Enzyme Engineering.
Dongbang YAO ; Wei FANG ; Hui PENG
Chinese Journal of Biotechnology 2025;41(8):3318-3330
Protein Engineering and Enzyme Engineering is a professional core course for life science-related majors in higher education, aiming to help students apply theoretical knowledge to engineering practice. The rapid development of biomanufacturing has placed new demands on the training of protein and enzyme engineers. However, due to the complexity and strong interdisciplinary nature of the course contents, traditional offline teaching modes have poor teaching performance and are unable to meet the era's demand for high-tech innovative talents in the field of biomanufacturing. To solve the above problems, we carried out the exploration and practice of blended teaching in Protein Engineering and Enzyme Engineering. We designed the teaching philosophy characterized by collaboration of online and offline learning, integration of pre-class preparation, in-class learning, and post-class review, linkage of online platforms, learning resources, teachers, and students, and enhancement via scientific research, scientific contests, course experiments, production practice, and lesson learning. We developed a three-phase (pre-class, in-class, and post-class) teaching program and established a two-level (online-offline) teaching evaluation mechanism. This teaching mode upholds the student-oriented concept, strengthens the deep integration of theory and practice, and focuses on cultivating students' innovative thinking and practical ability. The practical results show that this teaching mode can improve the teaching quality of Protein Engineering and Enzyme Engineering, enhance students' scientific and technological innovation ability, and meet the national demand for biomanufacturing talents.
Protein Engineering
;
Teaching
;
Enzymes/genetics*
;
Humans
4.Deubiquitinating enzyme JOSD2 affects susceptibility of non-small cell lung carcinoma cells to anti-cancer drugs through DNA damage repair.
Fujing GE ; Xiangning LIU ; Hongyu ZHANG ; Tao YUAN ; Hong ZHU ; Bo YANG ; Qiaojun HE
Journal of Zhejiang University. Medical sciences 2023;52(5):533-543
OBJECTIVES:
To investigate the effects and mechanisms of deubiquitinating enzyme Josephin domain containing 2 (JOSD2) on susceptibility of non-small cell lung carcinoma (NSCLC) cells to anti-cancer drugs.
METHODS:
The transcriptome expression and clinical data of NSCLC were downloaded from the Gene Expression Omnibus. Principal component analysis and limma analysis were used to investigate the deubiquitinating enzymes up-regulated in NSCLC tissues. Kaplan-Meier analysis was used to investigate the relationship between the expression of deubiquitinating enzymes and overall survival of NSCLC patients. Gene ontology enrichment and gene set enrichment analysis (GSEA) were used to analyze the activation of signaling pathways in NSCLC patients with high expression of JOSD2. Gene set variation analysis and Pearson correlation were used to investigate the correlation between JOSD2 expression levels and DNA damage response (DDR) pathway. Western blotting was performed to examine the expression levels of JOSD2 and proteins associated with the DDR pathway. Immunofluorescence was used to detect the localization of JOSD2. Sulforhodamine B staining was used to examine the sensitivity of JOSD2-knock-down NSCLC cells to DNA damaging drugs.
RESULTS:
Compared with adjacent tissues, the expression level of JOSD2 was significantly up-regulated in NSCLC tissues (P<0.05), and was significantly correlated with the prognosis in NSCLC patients (P<0.05). Compared with the tissues with low expression of JOSD2, the DDR-related pathways were significantly upregulated in NSCLC tissues with high expression of JOSD2 (all P<0.05). In addition, the expression of JOSD2 was positively correlated with the activation of DDR-related pathways (all P<0.01). Compared with the control group, overexpression of JOSD2 significantly promoted the DDR in NSCLC cells. In addition, DNA damaging agents significantly increase the nuclear localization of JOSD2, whereas depletion of JOSD2 significantly enhanced the sensitivity of NSCLC cells to DNA damaging agents (all P<0.05).
CONCLUSIONS
Deubiquitinating enzyme JOSD2 may regulate the malignant progression of NSCLC by promoting DNA damage repair pathway, and depletion of JOSD2 significantly enhances the sensitivity of NSCLC cells to DNA damaging agents.
Humans
;
Carcinoma, Non-Small-Cell Lung/genetics*
;
Antineoplastic Agents/pharmacology*
;
Lung Neoplasms/genetics*
;
DNA Damage
;
DNA
;
Deubiquitinating Enzymes/genetics*
5.Clinical feature difference between juvenile amyotrophic lateral sclerosis with SPTLC1 and FUS mutations.
Peishan WANG ; Qiao WEI ; Hongfu LI ; Zhi-Ying WU
Chinese Medical Journal 2023;136(2):176-183
BACKGROUND:
Juvenile amyotrophic lateral sclerosis (JALS) is an uncommon form of amyotrophic lateral sclerosis whose age at onset (AAO) is defined as prior to 25 years. FUS mutations are the most common cause of JALS. SPTLC1 was recently identified as a disease-causative gene for JALS, which has rarely been reported in Asian populations. Little is known regarding the difference in clinical features between JALS patients carrying FUS and SPTLC1 mutations. This study aimed to screen mutations in JALS patients and to compare the clinical features between JALS patients with FUS and SPTLC1 mutations.
METHODS:
Sixteen JALS patients were enrolled, including three newly recruited patients between July 2015 and August 2018 from the Second Affiliated Hospital, Zhejiang University School of Medicine. Mutations were screened by whole-exome sequencing. In addition, clinical features such as AAO, onset site and disease duration were extracted and compared between JALS patients carrying FUS and SPTLC1 mutations through a literature review.
RESULTS:
A novel and de novo SPTLC1 mutation (c.58G>A, p.A20T) was identified in a sporadic patient. Among 16 JALS patients, 7/16 carried FUS mutations and 5/16 carried respective SPTLC1 , SETX , NEFH , DCTN1 , and TARDBP mutations. Compared with FUS mutation patients, those with SPTLC1 mutations had an earlier AAO (7.9 ± 4.6 years vs. 18.1 ± 3.9 years, P < 0.01), much longer disease duration (512.0 [416.7-607.3] months vs. 33.4 [21.6-45.1] months, P < 0.01), and no onset of bulbar.
CONCLUSION
Our findings expand the genetic and phenotypic spectrum of JALS and help to better understand the genotype-phenotype correlation of JALS.
Humans
;
Amyotrophic Lateral Sclerosis/genetics*
;
DNA Helicases/genetics*
;
Genetic Association Studies
;
Multifunctional Enzymes/genetics*
;
Mutation/genetics*
;
RNA Helicases/genetics*
;
RNA-Binding Protein FUS/genetics*
;
Serine C-Palmitoyltransferase/genetics*
;
Child, Preschool
;
Child
;
Adolescent
;
Young Adult
6.Association of maternal MTHFD1 and MTHFD2 gene polymorphisms with congenital heart disease in offspring.
Qian CHEN ; Peng HUANG ; Xin-Li SONG ; Yi-Ping LIU ; Meng-Ting SUN ; Ting-Ting WANG ; Sen-Mao ZHANG ; Jia-Bi QIN
Chinese Journal of Contemporary Pediatrics 2022;24(7):797-805
OBJECTIVES:
To study the association of maternal methylenetetrahydrofolate dehydrogenase 1 (MTHFD1) and methylenetetrahydrofolate dehydrogenase 2 (MTHFD2) gene polymorphisms with congenital heart disease (CHD) in offspring.
METHODS:
A hospital-based case-control study was conducted. The mothers of 683 children with CHD alone who attended Hunan Children's Hospital, from November 2017 to March 2020 were enrolled as the case group, and the mothers of 740 healthy children who attended the same hospital during the same period and did not have any deformity were enrolled as the control group. A questionnaire survey was performed to collect related exposure data, and then venous blood samples (5 mL) were collected from the mothers to detect MTHFD1 and MTHFD2 gene polymorphisms. A multivariate logistic regression analysis was used to evaluate the association of MTHFD1 and MTHFD2 gene polymorphisms with CHD. The four-gamete test in Haploview 4.2 software was used to construct haplotypes and evaluate the association between haplotypes and CHD. The generalized multifactor dimensionality reduction method and logistic regression analysis were used to examine gene-gene interaction and its association with CHD.
RESULTS:
The multivariate logistic regression analysis showed that maternal MTHFD1 gene polymorphisms at rs11849530 (GA vs AA: OR=1.49; GG vs AA: OR=2.04) andat rs1256142 (GA vs GG: OR=2.34; AA vs GG: OR=3.25) significantly increased the risk of CHD in offspring (P<0.05), while maternal MTHFD1 gene polymorphisms at rs1950902 (AA vs GG: OR=0.57) and MTHFD2 gene polymorphisms at rs1095966 (CA vs CC: OR=0.68) significantly reduced the risk of CHD in offspring (P<0.05). The haplotypes of G-G-G (OR=1.86) and G-A-G (OR=1.35) in mothers significantly increased the risk of CHD in offspring (P<0.05). The gene-gene interaction analyses showed that the first-order interaction between MTHFD1 rs1950902 and MTHFD1 rs2236222 and the second-order interaction involving MTHFD1 rs1950902, MTHFD1 rs1256142, and MTHFD2 rs1095966 might be associated with risk of CHD (P<0.05).
CONCLUSIONS
Maternal MTHFD1 and MTHFD2 gene polymorphisms and their haplotypes, as well as the interaction between MTHFD1 rs1950902 and MTHFD1 rs2236222 and between MTHFD1 rs1950902, MTHFD1 rs1256142, and MTHFD2 rs1095966, are associated with the risk of CHD in offspring.
Aminohydrolases/genetics*
;
Case-Control Studies
;
Child
;
Female
;
Genetic Predisposition to Disease
;
Heart Defects, Congenital/genetics*
;
Humans
;
Methylenetetrahydrofolate Dehydrogenase (NADP)/genetics*
;
Minor Histocompatibility Antigens/genetics*
;
Mothers
;
Multifunctional Enzymes/genetics*
;
Polymorphism, Single Nucleotide
;
Risk Factors
7.Genetic distribution in Chinese patients with hereditary peripheral neuropathy.
Xiao Xuan LIU ; Xiao Hui DUAN ; Shuo ZHANG ; A Ping SUN ; Ying Shuang ZHANG ; Dong Sheng FAN
Journal of Peking University(Health Sciences) 2022;54(5):874-883
OBJECTIVE:
To analyze the distribution characteristics of hereditary peripheral neuropathy (HPN) pathogenic genes in Chinese Han population, and to explore the potential pathogenesis and treatment prospects of HPN and related diseases.
METHODS:
Six hundred and fifty-six index patients with HPN were enrolled in Peking University Third Hospital and China-Japan Friendship Hospital from January 2007 to May 2022. The PMP22 duplication and deletion mutations were screened and validated by multiplex ligation probe amplification technique. The next-generation sequencing gene panel or whole exome sequencing was used, and the suspected genes were validated by Sanger sequencing.
RESULTS:
Charcot-Marie-Tooth (CMT) accounted for 74.3% (495/666) of the patients with HPN, of whom 69.1% (342/495) were genetically confirmed. The most common genes of CMT were PMP22 duplication, MFN2 and GJB1 mutations, which accounted for 71.3% (244/342) of the patients with genetically confirmed CMT. Hereditary motor neuropathy (HMN) accounted for 16.1% (107/666) of HPN, and 43% (46/107) of HPN was genetically confirmed. The most common genes of HMN were HSPB1, aminoacyl tRNA synthetases and SORD mutations, which accounted for 56.5% (26/46) of the patients with genetically confirmed HMN. Most genes associated with HMN could cause different phenotypes. HMN and CMT shared many genes (e.g. HSPB1, GARS, IGHMBP2). Some genes associated with dHMN-plus shared genes associated with amyotrophic lateral sclerosis (KIF5A, FIG4, DCTN1, SETX, VRK1), hereditary spastic paraplegia (KIF5A, ZFYVE26, BSCL2) and spinal muscular atrophy (MORC2, IGHMBP, DNAJB2), suggesting that HMN was a continuum rather than a distinct entity. Hereditary sensor and autosomal neuropathy (HSAN) accounted for a small proportion of 2.6% (17/666) in HPN. The most common pathogenic gene was SPTLC1 mutation. TTR was the main gene causing hereditary amyloid peripheral neuropathy. The most common types of gene mutations were p.A117S and p.V50M. The symptoms were characterized by late-onset and prominent autonomic nerve involvement.
CONCLUSION
CMT and HMN are the most common diseases of HPN. There is a large overlap between HMN and motor-CMT2 pathogenic genes, and some HMN pathogenic genes overlap with amyotrophic lateral sclerosis, hereditary spastic hemiplegia and spinal muscular atrophy, suggesting that there may be a potential common pathogenic pathway between different diseases.
Amyotrophic Lateral Sclerosis
;
Charcot-Marie-Tooth Disease/genetics*
;
DNA Helicases/genetics*
;
DNA-Binding Proteins/genetics*
;
Flavoproteins
;
HSP40 Heat-Shock Proteins
;
Humans
;
Intracellular Signaling Peptides and Proteins/genetics*
;
Kinesins
;
Ligases/genetics*
;
Molecular Chaperones
;
Multifunctional Enzymes
;
Muscular Atrophy, Spinal/genetics*
;
Mutation
;
Phosphoric Monoester Hydrolases
;
Protein Serine-Threonine Kinases
;
RNA Helicases/genetics*
;
RNA, Transfer
;
Transcription Factors/genetics*
8.Impact of metabolic enzymes overexpression on transient expression of anti-hLAG3 by CHO cells.
Liping LIU ; Zhao YANG ; Zongyi SHEN ; Changyuan YU
Chinese Journal of Biotechnology 2021;37(1):312-320
To enhance recombinant protein production by CHO cells, We compared the impact of overexpression of metabolic enzymes, namely pyruvate carboxylase 2 (PYC2), malate dehydrogenase Ⅱ (MDH2), alanine aminotransferase Ⅰ (ALT1), ornithine transcarbamylase (OTC), carbamoyl phosphate synthetase Ⅰ (CPSⅠ), and metabolism related proteins, namely taurine transporter (TAUT) and Vitreoscilla hemoglobin (VHb), on transient expression of anti-hLAG3 by ExpiCHO-S. Overexpression of these 7 proteins could differentially enhance antibody production. OTC, CPSI, MDH2, and PYC2 overexpression could improve antibody titer by 29.2%, 27.6%, 24.1%, and 20.3%, respectively. Specifically, OTC and MDH2 could obviously improve early-stage antibody production rate and the culture period was shortened by 4 days compared with that of the control. In addition, OTC and MDH2 had little impact on the affinity of anti-hLAG3. In most cases, overexpression of these proteins had little impact on the cell growth of ExpiCHO-S. MDH2 and ALT1 overexpression in H293T cells could also improve antibody production. Overall, overexpression of enzymes involved in cellular metabolism is an effective tool to improve antibody production in transient expression system.
Animals
;
CHO Cells
;
Cricetinae
;
Cricetulus
;
Enzymes/metabolism*
;
Recombinant Proteins/genetics*
9.Application of immobilized glycosidase in the synthesis of glycoside compounds.
Jiawei DAI ; Hanchi CHEN ; Xiao JIN ; Xiaocan MAO ; Linjiang ZHU ; Yuele LU ; Xiaolong CHEN
Chinese Journal of Biotechnology 2021;37(12):4169-4186
Glycoside compounds are widely used in medicine, food, surfactant, and cosmetics. The glycosidase-catalyzed synthesis of glycoside can be operated at mild reaction conditions with low material cost. The glycosidase-catalyzed processes include reverse hydrolysis and transglycosylation, appropriately reducing the water activity in both processes may effectively improve the catalytic efficiency of glucosidase. However, glucosidase is prone to be deactivated at low water activity. Thus, glucosidase was immobilized to maintain its activity in the low water activity environment, and even in neat organic solvent system. This article summarizes the advances in glycosidase immobilization in the past 30 years, including single or comprehensive immobilization techniques, and immobilization techniques combined with genetic engineering, with the aim to provide a reference for the synthesis of glycosides using immobilized glycosidases.
Catalysis
;
Enzymes, Immobilized
;
Glycoside Hydrolases/genetics*
;
Glycosides/biosynthesis*
;
Hydrolysis
10.Construction and immobilization of recombinant Bacillus subtilis with D-allulose 3-epimerase.
Yuxia WEI ; Xian ZHANG ; Mengkai HU ; Yu SHAO ; Shan PAN ; Morihisa FUJITA ; Zhiming RAO
Chinese Journal of Biotechnology 2021;37(12):4303-4313
D-allulose-3-epimerase (DPEase) is the key enzyme for isomerization of D-fructose to D-allulose. In order to improve its thermal stability, short amphiphilic peptides (SAP) were fused to the N-terminal of DPEase. SDS-PAGE analysis showed that the heterologously expressed DPEase folded correctly in Bacillus subtilis, and the protein size was 33 kDa. After incubation at 40 °C for 48 h, the residual enzyme activity of SAP1-DSDPEase was 58%. To make the recombinant B. subtilis strain reusable, cells were immobilized with a composite carrier of sodium alginate (SA) and titanium dioxide (TiO2). The results showed that 2% SA, 2% CaCl2, 0.03% glutaraldehyde solution and a ratio of TiO2 to SA of 1:4 were optimal for immobilization. Under these conditions, up to 82% of the activity of immobilized cells could be retained. Compared with free cells, the optimal reaction temperature of immobilized cells remained unchanged at 80 °C but the thermal stability improved. After 10 consecutive cycles, the mechanical strength remained unchanged, while 58% of the enzyme activity could be retained, with a conversion rate of 28.8% achieved. This study demonstrated a simple approach for using SAPs to improve the thermal stability of recombinant enzymes. Moreover, addition of TiO2 into SA during immobilization was demonstrated to increase the mechanical strength and reduce cell leakage.
Bacillus subtilis/metabolism*
;
Carbohydrate Epimerases/genetics*
;
Enzyme Stability
;
Enzymes, Immobilized/metabolism*
;
Fructose
;
Hydrogen-Ion Concentration
;
Racemases and Epimerases
;
Temperature

Result Analysis
Print
Save
E-mail