1.Advances in enzyme immobilization based on hierarchical porous metal-organic frameworks.
Yawei CHEN ; Huijie ZHENG ; Yiting CAO ; Jiajia YANG ; Huiyun ZHOU
Chinese Journal of Biotechnology 2023;39(3):930-941
As an excellent hosting matrices for enzyme immobilization, metal-organic framework (MOFs) provides superior physical and chemical protection for biocatalytic reactions. In recent years, the hierarchical porous metal-organic frameworks (HP-MOFs) have shown great potential in enzyme immobilization due to their flexible structural advantages. To date, a variety of HP-MOFs with intrinsic or defective porous have been developed for the immobilization of enzymes. The catalytic activity, stability and reusability of enzyme@HP-MOFs composites are significantly enhanced. This review systematically summarized the strategies for developing enzyme@HP-MOFs composites. In addition, the latest applications of enzyme@HP-MOFs composites in catalytic synthesis, biosensing and biomedicine were described. Moreover, the challenges and opportunities in this field were discussed and envisioned.
Metal-Organic Frameworks/chemistry*
;
Porosity
;
Enzymes, Immobilized/chemistry*
;
Biocatalysis
;
Catalysis
2.Preparation and catalytic properties of catalase-inorganic hybrid nanoflowers.
Jiao PANG ; Mengtong JIANG ; Yuxin LIU ; Mingyu LI ; Jiaming SUN ; Conggang WANG ; Xianzhen LI
Chinese Journal of Biotechnology 2022;38(12):4705-4718
Catalase is widely used in the food, medical, and textile industries. It possesses exceptional properties including high catalytic efficiency, high specificity, and environmental friendliness. Free catalase cannot be recycled and reused in industry, resulting in a costly industrial biotransformation process if catalase is used as a core ingredient. Developing a simple, mild, cost-effective, and environmentally friendly approach to immobilize catalase is anticipated to improve its utilization efficiency and enzymatic performance. In this study, the catalase KatA derived from Bacillus subtilis 168 was expressed in Escherichia coli. Following separation and purification, the purified enzyme was prepared as an immobilized enzyme in the form of enzyme-inorganic hybrid nanoflowers, and the enzymatic properties were investigated. The results indicated that the purified KatA was obtained through a three-step procedure that included ethanol precipitation, DEAE anion exchange chromatography, and hydrophobic chromatography. Then, by optimizing the process parameters, a novel KatA/Ca3(PO4)2 hybrid nanoflower was developed. The optimum reaction temperature of the free KatA was determined to be 35 ℃, the optimum reaction temperature of KatA/Ca3(PO4)2 hybrid nanoflowers was 30-35 ℃, and the optimum reaction pH of both was 11.0. The free KatA and KatA/Ca3(PO4)2 hybrid nanoflowers exhibited excellent stability at pH 4.0-11.0 and 25-50 ℃. The KatA/Ca3(PO4)2 hybrid nanoflowers demonstrated increased storage stability than that of the free KatA, maintaining 82% of the original enzymatic activity after 14 d of storage at 4 ℃, whereas the free KatA has only 50% of the original enzymatic activity. In addition, after 5 catalytic reactions, the nanoflower still maintained 55% of its initial enzymatic activity, indicating that it has good operational stability. The Km of the free KatA to the substrate hydrogen peroxide was (8.80±0.42) mmol/L, and the kcat/Km was (13 151.53± 299.19) L/(mmol·s). The Km of the KatA/Ca3(PO4)2 hybrid nanoflowers was (32.75±2.96) mmol/L, and the kcat/Km was (4 550.67±107.51) L/(mmol·s). Compared to the free KatA, the affinity of KatA/Ca3(PO4)2 hybrid nanoflowers to the substrate hydrogen peroxide was decreased, and the catalytic efficiency was also decreased. In summary, this study developed KatA/Ca3(PO4)2 hybrid nanoflowers using Ca2+ as a self-assembly inducer, which enhanced the enzymatic properties and will facilitate the environmentally friendly preparation and widespread application of immobilized catalase.
Catalase
;
Nanostructures/chemistry*
;
Hydrogen Peroxide/metabolism*
;
Enzymes, Immobilized/chemistry*
;
Catalysis
3.Structural regulation by calcium ion in preparing cross-linked enzyme aggregates.
Xiaoqi HAN ; Shu BAI ; Qinghong SHI
Chinese Journal of Biotechnology 2016;32(12):1676-1684
We studied the effect of calcium ion on particle size and pore structure of cross-linked enzyme aggregates (CLEAs) of glucose oxidase, with activity and stability of the enzyme as evaluation criteria. With calcium ion to prepare CLEA significantly decreased particle sizes of CLEAs whilst the pore structures of CLEAs gradually disappeared with the increase of calcium concentration. When glucose oxidase was precipitated at 0.1 mmol/L Ca²⁺, glucose oxidase in CLEA showed the definitive pore structure. Moreover, glucose oxidase activity in CLEA with Ca²⁺ was 1.69 times higher than that without Ca²⁺. Even at Ca²⁺ as high as 1.0 mmol/L, glucose oxidase activity in CLEA was 42% higher than that of CLEA without Ca²⁺. Furthermore, CLEA prepared with 0.1 mmol/L Ca²⁺ not only exhibited higher substrate conversion and operational stability, but also increased the maximum reaction speed. Therefore, calcium ion improved the performance of glucose oxidase in CLEAs.
Calcium
;
chemistry
;
Cross-Linking Reagents
;
Enzyme Stability
;
Enzymes, Immobilized
;
Glucose Oxidase
;
chemistry
;
Oxidation-Reduction
;
Particle Size
4.Transformation of icariin by immobilized β-glucosidase and snailase.
Jing PENG ; Yi-hua MA ; Yan CHEN ; Cong-Yan LIU ; Xia GAO ; Jing ZHOU
Acta Pharmaceutica Sinica 2015;50(12):1652-1659
This study was performed to prepare immobilized β-glucosidase and snailase, then optimize and compare the process conditions for conversion of icariin. Immobilized β-glucosidase and snailase were prepared using crosslink-embedding method. The best conditions of the preparation process were optimized by single factor analysis and the properties of immobilized β-glucosidase and snailase were investigated. The reaction conditions including temperature, pH, substrate ratio, substrate concentration, reaction time and reusing times of the conversion of icariin using immobilized β-glucosidase or snailase were optimized. Immobilized β-glucosidase and snailase exhibited better heat stabilities and could remain about 60% activity after storage at 4 degrees C for 4 weeks. The optimized conditions for the conversion of icariin were as follows, the temperature of 50 degrees C, pH of 5.0, enzyme and substrate ratio of 1 : 1, substrate concentration of 0.1 mg x mL(-1), reaction time of 6 h for β-glucosidase and 2 h for snailase, respectively. In 5 experiments, the average conversion ratio of immobilized β-glucosidase and snailase was 70.76% and 74.97%. The results suggest an effect of promoted stabilities, prolonged lifetimes in both β-glucosidase and snailase after immobilization. The immobilized β-glucosidase and snailase exhibited a higher conversion rate and reusability compared to the free β-glucosidase and snailase. Moreover, the conversion rate of immobilized snailase was higher than that of immobilized β-glucosidase. The process of icariin conversion using immobilized β-glucosidase and snailase was moderate and feasible, which suggests that immobilized enzymes may hold a promise for industrial usage.
Enzymes, Immobilized
;
chemistry
;
Flavonoids
;
chemistry
;
Hydrolysis
;
Temperature
;
beta-Glucosidase
;
chemistry
5.Study on hydrolysis of baicalin into baicalein by immobilized beta-glucosidase in a two-phase system.
Yi-Shun YANG ; Tao CHENG ; Jun YANG ; Tong ZHANG ; Zhen-Zhen CAI
China Journal of Chinese Materia Medica 2014;39(4):669-673
The optimum conditions of baicalin hydrolysis into baicalein by immobilized beta-glucosidase in a two-phase system was studied and the yield was observed. A two-phase system comprising of sodium acetate buffer and chloroform was determined by comparing the solubleness of baicalein in different solvents and partition coefficient of baicalein in related aqueous-organic two-phase system. beta-Glucosidase was immobilized by the crosslinking-embedding method using sodium alginate as the carrier The optimum reaction temperature, pH value, Michaelis constant, the thermal stability and pH stability were assayed. By comparing the yield of baicalin hydrolysis into baicalein by immobilized beta-glucosidase in two-phase system, the optimum reaction conditions were determined-the optimum reaction temperature, pH value and time were 50 degrees C, 5.0 and 10 h, respectively. The yield of baicalein was 85.28%. Compare with one-phase system, two-phase system had an advantage in reaction rate and yield.
Biocatalysis
;
Drugs, Chinese Herbal
;
chemistry
;
Enzyme Stability
;
Enzymes, Immobilized
;
chemistry
;
Flavanones
;
chemistry
;
Flavonoids
;
chemistry
;
Hydrolysis
;
beta-Glucosidase
;
chemistry
6.Progress in the application of conducting polymer in glucose biosensor.
Cang WANG ; Dajing CHEN ; Liling CHENG ; Yuquan CHEN ; Wei CHEN ; Min PAN
Journal of Biomedical Engineering 2013;30(5):1112-1116
Conducting polymers have stable long-chain structure and good electrical conductivity. They have been used in various types of biosensors because of their excellent characteristics of the immobilization and electrical signal transmission. In recent years, researchers mainly study on improving its micro-nano structures and its signal conductivity to enhance its effect on the enzyme immobilization and signal conductive properties. This paper reviews firstly the application of conducting polymer on enzyme-immobilized glucose biosensor and the new technologies and methods in this field. This paper also points out the future application of conducting polymers in enzyme immobilization and biosensor preparation areas.
Biosensing Techniques
;
methods
;
trends
;
Blood Glucose
;
metabolism
;
Electric Conductivity
;
Enzymes, Immobilized
;
Glucose Oxidase
;
metabolism
;
Nanostructures
;
Polymers
;
chemistry
7.Covalent immobilization of glucose oxidase within organic media.
Tao ZHOU ; Xiongjun ZHU ; Jianhua SU ; Dongsheng YAO ; Daling LIU
Chinese Journal of Biotechnology 2012;28(4):476-487
Activity losing during the covalent immobilization of enzyme is a serious problem. Here we studied organic phase immobilization by using glucose oxidase (GOD) as a model. After lyophilized at optimum pH, GOD is covalently immobilized onto glutaraldhyde-activated chitosan microsphere carrier under the condition of water, 1, 4-dioxane, ether and ethanol separately. The special activities, enzyme characterization and kinetic parameters are determined. Results show that all of the organic phase immobilized GODs have higher special activities and larger K(cat) than that of aqueous phase. Under the conditions of 0.1% of glutaraldehyde, 1.6% moisture content with 80 mg of GOD added to per gram of carrier, 2.9-fold of the special activity and 3-fold of the effective activity recovery ratio were obtained, and 3-fold of the residue activity was demonstrated after 7 runs when compares 1, 4-dioxane phase immobilized GOD with water phase immobilized one. In addition, kinetic study shows that 1,4-dioxane immobilized GOD (Km(app) = 5.63 mmol/L, V(max) = 1.70 micromol/(min x mg GOD), K(cat) = 0.304 s(-1) was superior to water immobilized GOD (Km(app) = 7.33 mmol/L, V(max) = 1.02 micromol/(min x mg GOD), K(cat) = 0.221 s(-1)). All above indicated GOD immobilized in proper organic media presented a better activity with improved catalytic performance. Organic phase immobilization might be one of the ways to overcome the conformational denature of enzyme protein during covalent modification.
Chitosan
;
chemistry
;
Dioxanes
;
chemistry
;
Enzymes, Immobilized
;
chemistry
;
Freeze Drying
;
Glucose Oxidase
;
chemistry
;
Kinetics
;
Microspheres
8.Immobilization of catalase on Fe (III) modified collagen fiber.
Shuang CHEN ; Na SONG ; Xuepin LIAO ; Bi SHI
Chinese Journal of Biotechnology 2011;27(7):1076-1081
Fe (III) modified collagen fibers were used to immobilize catalase through the cross-linking of glutaraldehyde. The loading amount of catalase on the supporting matrix was 16.7 mg/g, and 35% enzymatic activity was remained. A series of experiments were conducted on free and immobilized catalase in order to investigate their optimal pH and temperature, and the thermal, storage and operation stability. Results suggest that the free and immobilized catalase prefer similar pH and temperature condition, which were pH 7.0 and 25 degrees C. It should be noted that the thermal stability of catalase was considerably improved after immobilization owing to the fact that the enzyme kept 30% of relative activity after incubation at 75 degrees C for 5 h. On the contrary, the free catalase was completely inactive. As for the storage stability, the immobilized catalase kept 88% of relative activity after stored at room temperature for 12 days while the free one was completely inactive under the same conditions. Moreover, the immobilized catalase preserved 57% of relative activity after being reused 26 times, exhibiting excellent operation stability. Consequently, this investigation suggests that collagen fiber can be used as excellent supporting matrix for the immobilization of catalase, and it is potential to be used for the immobilization of similar enzymes.
Catalase
;
chemistry
;
metabolism
;
Collagen
;
chemistry
;
metabolism
;
Enzymes, Immobilized
;
chemistry
;
metabolism
;
Ferric Compounds
;
chemistry
9.Progress on biodiesel production with enzymatic catalysis in China.
Tianwei TAN ; Jike LU ; Kaili NIE ; Haixia ZHANG ; Li DENG ; Fang WANG
Chinese Journal of Biotechnology 2010;26(7):903-906
This paper reports the progress of biodiesel production with enzymatic catalysis in Beijing University of Chemical Technology, one of the leaders in biodiesel R & D in China, which includes screening of high-yield lipase production strains, optimization and scale-up of the lipase fermentation process, lipase immobilization, bioreactor development and scale-up, biodiesel separation and purification and the by-product glycerol utilization. Firstly, lipase fermentation was carried out at industrial scale with the 5 m3 stirred tank bioreactor, and the enzyme activity as high as 8 000 IU/mL was achieved by the species Candida sp. 99-125. Then, the lipase was purified and immobilized on textile membranes. Furthermore, biodiesel production was performed in the 5 m3 stirred tank bioreactor with an enzyme dosage as low as 0.42%, and biodiesel that met the German biodiesel standard was produced. And in the meantime, the byproduct glycerol was used for the production of 1,3-propanediol to partly offset the production cost of biodiesel, and 76.1 g/L 1,3-propanediol was obtained in 30 L fermentor with the species Klebsiella pneumoniae.
Biofuels
;
Bioreactors
;
Biotechnology
;
economics
;
methods
;
Candida
;
enzymology
;
Catalysis
;
China
;
Enzymes, Immobilized
;
metabolism
;
Esterification
;
Fermentation
;
Lipase
;
metabolism
;
Plant Oils
;
chemistry
10.Immobilization of lipase labeled with fluorescent probe and its stability.
Jiayin XU ; Chi ZHANG ; Xijin SONG ; Jie WANG
Chinese Journal of Biotechnology 2010;26(1):100-107
The lipase labeled with the fluorescein isothiocyanat (FITC) was immobilized on the derivatives of the polyethylene glycol. The article discussed the effect of factors on the characters of lipase and analyzed the relationships among the activity of lipase, conformation, and fluorescence spectrum while the activity and the fluorescence spectrum of immobilized lipase were determined. The results demonstrated that polyethylene glycol 400-diacrylate could form appropriate network to improve the activity of enzyme. Adding ligand induced the lipase's catalytic conformation to increase the activity twice more than before. The active centre of lipase could be released by the extraction of ligand thus increasing the activity. After immobilization, the stability of labeled lipase improved greatly: immobilized lipases retained more than 70% and 60% of initial activity under conditions of 90 degrees C and strong acid or alkali, respectively. After immersing immobilized lipases into guanidine hydrochloride or urea for 15 days, the lipases retained upwards of 70% activity. The fluorescence spectrum could obviously reflect the changes of the activity and conformation of lipase. The fluorescence intensity was the minimum in the optimal pH and temperature. In the denaturing agent it declined as time passed. These results indicated that the unfolded processes of immobilized lipases are different under different conditions.
Dextrans
;
chemistry
;
Enzyme Stability
;
Enzymes, Immobilized
;
chemistry
;
metabolism
;
Fluorescein-5-isothiocyanate
;
analogs & derivatives
;
chemistry
;
Fluorescent Dyes
;
chemistry
;
Lipase
;
chemistry
;
metabolism
;
Polyethylene Glycols
;
chemistry
;
Protein Unfolding
;
drug effects

Result Analysis
Print
Save
E-mail