1.EZH2/miR-142-3p/HMGB1 axis mediates chondrocyte pyroptosis by regulating endoplasmic reticulum stress in knee osteoarthritis.
Yang CHEN ; Shanshan DONG ; Xin ZENG ; Qing XU ; Mingwei LIANG ; Guangneng LIAO ; Lan LI ; Bin SHEN ; Yanrong LU ; Haibo SI
Chinese Medical Journal 2025;138(1):79-92
BACKGROUND:
Knee osteoarthritis (OA) is still challenging to prevent or treat. Enhanced endoplasmic reticulum (ER) stress and increased pyroptosis in chondrocytes may be responsible for cartilage degeneration. This study aims to investigate the effect of ER stress on chondrocyte pyroptosis and the upstream regulatory mechanisms, which have rarely been reported.
METHODS:
The expression of the histone methyltransferase enhancer of zeste homolog 2 (EZH2), microRNA-142-3p (miR-142-3p), and high mobility group box 1 (HMGB1) and the levels of ER stress, pyroptosis, and metabolic markers in normal and OA chondrocytes were investigated by western blotting, quantitative polymerase chain reaction, immunohistochemistry, fluorescence in situ hybridization, fluorescein amidite-tyrosine-valine-alanine-aspartic acid-fluoromethyl ketone (FAM-YVAD-FMK)/Hoechst 33342/propidium iodide (PI) staining, lactate dehydrogenase (LDH) release assays, and cell viability assessments. The effects of EZH2, miR-142-3p, and HMGB1 on ER stress and pyroptosis and the hierarchical regulatory relationship between them were analyzed by chromatin immunoprecipitation, luciferase reporters, gain/loss-of-function assays, and rescue assays in interleukin (IL)-1β-induced OA chondrocytes. The mechanistic contribution of EZH2, miR-142-3p, and HMGB1 to chondrocyte ER stress and pyroptosis and therapeutic prospects were validated radiologically, histologically, and immunohistochemically in surgically induced OA rats.
RESULTS:
Increased EZH2 and HMGB1, decreased miR-142-3p, enhanced ER stress, and activated pyroptosis in chondrocytes were associated with OA occurrence and progression. EZH2 and HMGB1 exacerbated and miR-142-3p alleviated ER stress and pyroptosis in OA chondrocytes. EZH2 transcriptionally silenced miR-142-3p via H3K27 trimethylation, and miR-142-3p posttranscriptionally silenced HMGB1 by targeting the 3'-UTR of the HMGB1 gene. Moreover, ER stress mediated the effects of EZH2, miR-142-3p, and HMGB1 on chondrocyte pyroptosis. In vivo experiments mechanistically validated the hierarchical regulatory relationship between EZH2, miR-142-3p, and HMGB1 and their effects on chondrocyte ER stress and pyroptosis.
CONCLUSIONS
A novel EZH2/miR-142-3p/HMGB1 axis mediates chondrocyte pyroptosis and cartilage degeneration by regulating ER stress in OA, contributing novel mechanistic insights into OA pathogenesis and providing potential targets for future therapeutic research.
Enhancer of Zeste Homolog 2 Protein/genetics*
;
Osteoarthritis, Knee/pathology*
;
Chondrocytes/metabolism*
;
Pyroptosis/physiology*
;
HMGB1 Protein/genetics*
;
MicroRNAs/metabolism*
;
Endoplasmic Reticulum Stress/genetics*
;
Humans
;
Animals
;
Rats
;
Male
;
Rats, Sprague-Dawley
;
Middle Aged
2.EZH2 promotes malignant biological behavior in esophageal squamous cell carcinoma via EMT.
Yuying JING ; Kaige YANG ; Yiting CHENG ; Tianping HUANG ; Sufang CHEN ; Kai CHEN ; Jianming HU
Journal of Central South University(Medical Sciences) 2025;50(2):155-166
OBJECTIVES:
Esophageal squamous cell carcinoma (ESCC) is characterized by complex pathogenesis and poor prognosis. In recent years, epithelial-mesenchymal transition (EMT) in tumor initiation and progression has attracted increasing attention. Enhancer of zeste homolog 2 (EZH2), which is aberrantly expressed in various tumors, may be closely related to the EMT process. This study aims to examine the expression and correlation of EZH2 and EMT markers in ESCC cells and tissues, evaluate the effects of EZH2 knockdown on ESCC cell proliferation, invasion, and migration, and explore how EZH2 contributes to the malignant biological behavior of ESCC.
METHODS:
Bioinformatics analyses were used to assess EZH2 expression levels in ESCC. Small interfering RNA was used to knock down EZH2 in ESCC cell lines EC109 and EC9706. Cell proliferation, invasion, and migration were evaluated using cell counting kit-8 (CCK-8), wound healing, and Transwell assays. Protein and mRNA expression levels of EZH2, E-cadherin (E-cad), and vimentin (Vim) were detected by Western blotting and real time fluorogenic quantitative PCR (RT-qPCR), respectively. Immunohistochemical (IHC) staining was performed on 70 ESCC tissue samples and 40 paired adjacent normal tissues collected from the First Affiliated Hospital of Shihezi University between 2010 and 2016 to assess the expression of EZH2, E-cad, and Vim, and to analyze their associations with clinicopathological feature and patient prognosis.
RESULTS:
Bioinformatics analysis showed that EZH2 was highly expressed in ESCC (P<0.001), and high EZH2 expression was associated with worse prognosis (P<0.001). CCK-8, wound healing, and Transwell assays demonstrated that EZH2 knockdown significantly suppressed the proliferation, invasion, and migration of ESCC cells (P<0.001). In addition, Vim expression was significantly reduced, while E-cad expression was significantly increased at both protein and mRNA levels in EZH2-silenced cells (all P<0.05). IHC staining analysis revealed higher expression of EZH2 and Vim and lower expression of E-cad in ESCC tissues compared to adjacent normal tissues. Kaplan-Meier survival analysis showed that low expression of EZH2 and Vim and high expression of E-cad were associated with longer survival (all P<0.05).
CONCLUSIONS
EZH2 promotes malignant biological behavior in ESCC by mediating EMT. Elevated EZH2 expression is associated with poor prognosis in ESCC patients.
Humans
;
Enhancer of Zeste Homolog 2 Protein/physiology*
;
Esophageal Squamous Cell Carcinoma/pathology*
;
Epithelial-Mesenchymal Transition/genetics*
;
Esophageal Neoplasms/metabolism*
;
Cell Proliferation
;
Cell Line, Tumor
;
Cell Movement
;
Cadherins/genetics*
;
Vimentin/genetics*
;
Male
;
Female
;
Middle Aged
;
Neoplasm Invasiveness
;
Prognosis
;
RNA, Small Interfering/genetics*
;
Gene Expression Regulation, Neoplastic
3.miRNA-101 inhibits the expression of the enhancer of zeste homolog 2 in androgen-independent prostate cancer LNCaP cell line.
Jian-xin LIU ; Qi-fa ZHANG ; Chang-hai TIAN ; Yong ZHANG ; Xiao-zhou HAN ; Hao GUO
National Journal of Andrology 2015;21(6):500-503
OBJECTIVETo investigate the effect of miRNA-101 on the expression of the enhancer of zeste homolog 2 (EXH2) in human androgen-independent prostated cancer LNCaP cells.
METHODSWe divided LNCaP cells into a blank control, a negative control, and a miRNA-l01 transfection group, constructed the vector by transfecting synthetic miRNA-101 mimics into the LNCaP cells, and evaluated the efficiency of transfection by fluorescence microscopy. Then we determined the expression level of EZH2 mRNA by qRT-PCR in the three groups of cells and that of the EZH2 protein in the negative control and transfection groups by Western blot.
RESULTSGreen fluorescence signals were observed in over 70% of the LNCaP cells in the transfection group after 24 hours of transfection. At 72 hours, the expression of miRNA-101 was significantly upregulated in the transfected cells (P < 0.01), that of EZH2 mRNA was remarkably lower in the transfection group (0.01 ± 0.10) than in the blank control (0.95 ± 0.40) and negative control (0.86 ± 0.30) groups (both P < 0.01), and that of the EZH2 protein was increased in the negative control but decreased in the transfection group with the extension of culture time.
CONCLUSIONmiRNA-101, with its inhibitory effect on the expression of EZH2 in LNCaP cells, is a potential biotherapeutic for prostate cancer.
Androgens ; Cell Line, Tumor ; Enhancer of Zeste Homolog 2 Protein ; Genetic Vectors ; Humans ; Male ; MicroRNAs ; physiology ; Polycomb Repressive Complex 2 ; genetics ; metabolism ; Prostatic Neoplasms ; metabolism ; RNA, Messenger ; metabolism ; Transfection
4.Bivalent histone modifications during tooth development.
Li-Wei ZHENG ; Bin-Peng ZHANG ; Ruo-Shi XU ; Xin XU ; Ling YE ; Xue-Dong ZHOU
International Journal of Oral Science 2014;6(4):205-211
Histone methylation is one of the most widely studied post-transcriptional modifications. It is thought to be an important epigenetic event that is closely associated with cell fate determination and differentiation. To explore the spatiotemporal expression of histone H3 lysine 4 trimethylation (H3K4me3) and histone H3 lysine 27 trimethylation (H3K27me3) epigenetic marks and methylation or demethylation transferases in tooth organ development, we measured the expression of SET7, EZH2, KDM5B and JMJD3 via immunohistochemistry and quantitative polymerase chain reaction (qPCR) analysis in the first molar of BALB/c mice embryos at E13.5, E15.5, E17.5, P0 and P3, respectively. We also measured the expression of H3K4me3 and H3K27me3 with immunofluorescence staining. During murine tooth germ development, methylation or demethylation transferases were expressed in a spatial-temporal manner. The bivalent modification characterized by H3K4me3 and H3K27me3 can be found during the tooth germ development, as shown by immunofluorescence. The expression of SET7, EZH2 as methylation transferases and KDM5B and JMJD3 as demethylation transferases indicated accordingly with the expression of H3K4me3 and H3K27me3 respectively to some extent. The bivalent histone may play a critical role in tooth organ development via the regulation of cell differentiation.
Animals
;
Cell Differentiation
;
physiology
;
DNA-Binding Proteins
;
analysis
;
Dental Papilla
;
embryology
;
Embryo, Mammalian
;
Enamel Organ
;
embryology
;
Enhancer of Zeste Homolog 2 Protein
;
Epigenesis, Genetic
;
physiology
;
Gene Expression Regulation, Developmental
;
Histone-Lysine N-Methyltransferase
;
analysis
;
Histones
;
metabolism
;
Jumonji Domain-Containing Histone Demethylases
;
analysis
;
Lysine
;
metabolism
;
Methylation
;
Mice
;
Mice, Inbred BALB C
;
Odontogenesis
;
physiology
;
Polycomb Repressive Complex 2
;
analysis
;
Protein Processing, Post-Translational
;
physiology
;
Tooth Germ
;
embryology
5.Overexpression of enhancer of zests homolog 2 in lymphoma.
Chinese Medical Journal 2012;125(20):3735-3739
OBJECTIVEThis article aimed to review the biological characteristics of enhancer of zests homolog 2 (EZH2), and the transcriptional repression mechanism of action of EZH2 in tumors, particularly in the progression of lymphoma.
DATA SOURCESThe data cited in this review were mainly obtained from the articles listed in PubMed and HighWare that were published from March 2004 to April 2012. The search terms were "enhancer of zests homolog 2", "polycomb group", and "lymphoma".
STUDY SELECTIONArticles regarding the mechanism of EZH2 in post-transcriptional modification, functions of polycomb group proteins, and the roles of EZH2 in lymphoma were selected.
RESULTSEZH2 acts as oncogene and involved in many kinds of tumors. Moreover, it plays an important role in tumorigenesis and lymphomagenesis by promoting the proliferation and aggressiveness of neoplastic cells, facilitating malignant tumor cell diffusion, and mediating transcriptional silencing.
CONCLUSIONEZH2 mediated transcriptional repression through its methyltransferase activity at the chromatin level has certain influence on lymphoma, and there might exist a therapeutic window for the development of new agents and identification of novel diagnostic markers based on EZH2.
Disease Progression ; Enhancer of Zeste Homolog 2 Protein ; Epigenesis, Genetic ; Histones ; metabolism ; Humans ; Lymphoma ; etiology ; genetics ; Methylation ; Mutation ; Polycomb Repressive Complex 2 ; genetics ; physiology
6.Inhibition of SIRT1 increases EZH2 protein level and enhances the repression of EZH2 on target gene expression.
Lu LU ; Lei LI ; Xiang LÜ ; Xue-song WU ; De-pei LIU ; Chih-chuan LIANG
Chinese Medical Sciences Journal 2011;26(2):77-84
OBJECTIVETo study the regulatory rolesof SIRT1 on EZH2 expression and the further effects on EZH 2’ s repression of target gene expression.
METHODSThe stable SIRT1 RNAi and Control RNAi HeLa cells were established by infection with retroviruses expressing shSIRT1 and shLuc respectively followed by puromycin selection. EZH2 protein level was detected by Western blot in either whole cell lysate or the fractional cell extract. Reverse transcription-polymerase chain reaction was performed to detect the mRNA level of EZH2. Cycloheximide was used to treat SIRT1 RNAi and Control RNAi cells for protein stability assay. Chromatin immunoprecipitation(ChIP) assay was applied to measure enrichment of SIRT1, EZH2, and trimethylated H3K27 (H3K27me3) at SATB1 promoter in SIRT1 RNAi and Control RNAi cells.
RESULTSWestern blot results showed that EZH2 protein level increased upon SIRT1 depletion. Fractional extraction results showed unchanged cytoplasmic fraction and increased chromatin fraction of EZH2 protein in SIRT1 RNAi cells. The mRNA level of EZH2 was not affected by knockdown of SIRT1. SIRT1 recruitment was not detected at the promoter regionof EZH2 gene locus. The protein stability assay showed that the protein stability of EZH2 increases upon SIRT1 knockdown. Upon SIRT1 depletion, EZH2 and H3K27me3 recruitment at SATB1 promoter increases and the mRNA level of SATB1 decreases.
CONCLUSIONSDepletion of SIRT1 increases the protein stability of EZH2. The regulation of EZH2 protein level by SIRT1 affects the repressive effects of EZH2 on the target gene expression.
DNA-Binding Proteins ; analysis ; chemistry ; physiology ; Enhancer of Zeste Homolog 2 Protein ; Gene Expression Regulation ; HeLa Cells ; Humans ; Polycomb Repressive Complex 2 ; Repressor Proteins ; physiology ; Sirtuin 1 ; antagonists & inhibitors ; physiology ; Transcription Factors ; analysis ; chemistry ; physiology
7.Epigenetic repression of SATB1 by polycomb group protein EZH2 in epithelial cells.
Li LEI ; Lu LU ; Lv XIANG ; Wu XUE-SONG ; Liu DE-PEI ; Liang CHIH-CHUAN
Chinese Medical Sciences Journal 2010;25(4):199-205
OBJECTIVETo study the regulatory mechanism of SATB1 repression in cells other than T cells or erythroid cells, which have high expression level of SATB1.
METHODSHeLa epithelial cells were treated with either histone deacetylase inhibitor (HDACi) trichostatin A (TSA) or DNA methylation inhibitor 5-Aza-C before detecting SATB1 expression. Luciferase reporter system was applied to measure effects of EZH2 on SATB1 promoter activity. Over-expression or knockdown of EZH2 and subsequent quantitative reverse transcription-polymerase chain reaction were performed to determine the effect of this Polycomb group protein on SATB1 transcription. Chromatin immunoprecipitation (ChIP) assay was applied to measure enrichment of EZH2 and trimethylated H3K27 (H3K27me3) at SATB1 promoter in HeLa cells. K562 cells and Jurkat cells, both having high-level expression of SATB1, were used in the ChIP experiment as controls.
RESULTSBoth TSA and 5-Aza-C increased SATB1 expression in HeLa cells. Over-expression of EZH2 reduced promoter activity as well as the mRNA level of SATB1, while knockdown of EZH2 apparently enhanced SATB1 expression in HeLa cells but not in K562 cells and Jurkat cells. ChIP assay Results suggested that epigenetic silencing of SATB1 by EZH2 in HeLa cells was mediated by trimethylation modification of H3K27. In contrast, enrichment of EZH2 and H3K27me3 was not detected within proximal promoter region of SATB1 in either K562 or Jurkat cells.
CONCLUSIONSATB1 is a bona fide EZH2 target gene in HeLa cells and the repression of SATB1 by EZH2 may be mediated by trimethylation modification on H3K27.
Azacitidine ; pharmacology ; Base Sequence ; Cell Line ; Chromatin Immunoprecipitation ; DNA Methylation ; DNA Primers ; DNA-Binding Proteins ; physiology ; Enhancer of Zeste Homolog 2 Protein ; Epigenesis, Genetic ; physiology ; Epithelium ; metabolism ; Gene Silencing ; Humans ; Hydroxamic Acids ; pharmacology ; Matrix Attachment Region Binding Proteins ; genetics ; Polycomb Repressive Complex 2 ; Reverse Transcriptase Polymerase Chain Reaction ; Transcription Factors ; physiology
8.Role of Ezh2 in the all-trans retinoic acid induced P19 neural differentiation.
Cui-ting GE ; Ye ZHANG ; Yu-fei SHEN
Acta Academiae Medicinae Sinicae 2009;31(6):707-711
OBJECTIVETo study the role of Ezh2 in the all-trans retinoic acid RA induced P19 neural differentiation.
METHODSThe expression of Ngn1 in the RA induced P19 cells was detected at the mRNA and protein levels using real time RT-PCR and Western blot assays. The binding of Ezh2 and H3K27me3 on the Ngn 1 promoter was analyzed using chromatin immunoprecipitation assay.
RESULTIn the RA induced P19 cells, the recruitment of Ezh2 and its methylated substrate H3K27me3 on the promoter of Ngn 1 gene elevated in the first 2 days, and then declined rapidly, followed by the initiation of neuronal differentiation.
CONCLUSIONSEzh2 produces a repressive histone mark H3K27me3 in the early stage of RA induced P12 cells. By avoiding the premature expression of Ngn1 gene, Ezh2 can ensure the normal differentiation of P19 cells.
Animals ; Basic Helix-Loop-Helix Transcription Factors ; genetics ; metabolism ; Cell Differentiation ; drug effects ; physiology ; Enhancer of Zeste Homolog 2 Protein ; Histone-Lysine N-Methyltransferase ; genetics ; metabolism ; Histones ; metabolism ; Mice ; Nerve Tissue Proteins ; genetics ; metabolism ; Neurons ; cytology ; drug effects ; metabolism ; Polycomb Repressive Complex 2 ; Tretinoin ; pharmacology ; Tumor Cells, Cultured

Result Analysis
Print
Save
E-mail