1.Mechanism of puerarin improving myocardial contractile function in myocardial hypertrophy by inhibiting ferroptosis via Nrf2/ARE/HO-1 signaling pathway.
Yan-Dong LIU ; Wei QIAO ; Zhao-Hui PEI ; Guo-Liang SONG ; Wei JIN ; Wei-Bing ZHONG ; Qin-Qin DENG
China Journal of Chinese Materia Medica 2025;50(16):4679-4689
This study aims to explore the specific mechanism by which puerarin inhibits ferroptosis and improves the myocardial contractile function in myocardial hypertrophy through the nuclear factor erythroid 2-related factor 2(Nrf2)/antioxidant response element(ARE)/heme oxygenase-1(HO-1) signaling pathway. The hypertrophic cardiomyocyte model was established using phenylephrine, and H9c2 cells were divided into control group, model group, puerarin group, and puerarin+ML385 group. Cell viability and surface area were detected by cell counting kit-8(CCK-8) and immunofluorescence experiments. The mitochondrial membrane potential and Ca~(2+) concentration were measured. The ferroptosis-related indicators were detected by biochemical and fluorescence staining methods. The expression of proteins related to ferroptosis and the Nrf2/ARE/HO-1 signaling pathway was detected by Western blot. A myocardial hypertrophy model was established, and 40 rats were randomly divided into sham group, model group, puerarin group, and puerarin+Nrf2 inhibitor(ML385) group, with 10 rats in each group. Echocardiogram, hemodynamic parameters, and myocardial hypertrophy parameters were measured. Histopathological changes of myocardial tissues were observed by hematoxylin and eosin(HE) staining and Masson staining. Biochemical methods, enzyme-linked immunosorbent assay(ELISA), and fluorescence staining were used to detect inflammatory factors and ferroptosis-related indicators. Immunohistochemistry was used to detect the expression of proteins related to ferroptosis and the Nrf2/ARE/HO-1 signaling pathway. Cell experiments showed that puerarin intervention significantly enhanced the viability of hypertrophic cardiomyocytes, reduced their surface area, and restored mitochondrial membrane potential and Ca~(2+) homeostasis. Mechanism studies revealed that puerarin promoted Nrf2 nuclear translocation, upregulated the expression of HO-1, solute carrier family 7 member 11(SLC7A11), and glutathione peroxidase 4(GPX4), and decreased malondialdehyde(MDA), reactive oxygen species(ROS), and iron levels. These protective effects were reversed by ML385. In animal experiments, puerarin improved cardiac function in rats with myocardial hypertrophy, alleviated myocardial hypertrophy and fibrosis, inhibited inflammatory responses and ferroptosis, and promoted nuclear Nrf2 translocation and HO-1 expression. However, combined intervention with ML385 led to deterioration of hemodynamics and a rebound in ferroptosis marker levels. In conclusion, puerarin may inhibit cardiomyocyte ferroptosis through the Nrf2/ARE/HO-1 signaling pathway, thereby improving myocardial contractile function in myocardial hypertrophy.
Animals
;
NF-E2-Related Factor 2/genetics*
;
Rats
;
Ferroptosis/drug effects*
;
Signal Transduction/drug effects*
;
Isoflavones/pharmacology*
;
Male
;
Rats, Sprague-Dawley
;
Cardiomegaly/genetics*
;
Myocytes, Cardiac/metabolism*
;
Antioxidant Response Elements/drug effects*
;
Myocardial Contraction/drug effects*
;
Heme Oxygenase-1/genetics*
;
Cell Line
2.Chromatin landscape alteration uncovers multiple transcriptional circuits during memory CD8+ T-cell differentiation.
Qiao LIU ; Wei DONG ; Rong LIU ; Luming XU ; Ling RAN ; Ziying XIE ; Shun LEI ; Xingxing SU ; Zhengliang YUE ; Dan XIONG ; Lisha WANG ; Shuqiong WEN ; Yan ZHANG ; Jianjun HU ; Chenxi QIN ; Yongchang CHEN ; Bo ZHU ; Xiangyu CHEN ; Xia WU ; Lifan XU ; Qizhao HUANG ; Yingjiao CAO ; Lilin YE ; Zhonghui TANG
Protein & Cell 2025;16(7):575-601
Extensive epigenetic reprogramming involves in memory CD8+ T-cell differentiation. The elaborate epigenetic rewiring underlying the heterogeneous functional states of CD8+ T cells remains hidden. Here, we profile single-cell chromatin accessibility and map enhancer-promoter interactomes to characterize the differentiation trajectory of memory CD8+ T cells. We reveal that under distinct epigenetic regulations, the early activated CD8+ T cells divergently originated for short-lived effector and memory precursor effector cells. We also uncover a defined epigenetic rewiring leading to the conversion from effector memory to central memory cells during memory formation. Additionally, we illustrate chromatin regulatory mechanisms underlying long-lasting versus transient transcription regulation during memory differentiation. Finally, we confirm the essential roles of Sox4 and Nrf2 in developing memory precursor effector and effector memory cells, respectively, and validate cell state-specific enhancers in regulating Il7r using CRISPR-Cas9. Our data pave the way for understanding the mechanism underlying epigenetic memory formation in CD8+ T-cell differentiation.
CD8-Positive T-Lymphocytes/metabolism*
;
Cell Differentiation
;
Chromatin/immunology*
;
Animals
;
Mice
;
Immunologic Memory
;
Epigenesis, Genetic
;
SOXC Transcription Factors/immunology*
;
NF-E2-Related Factor 2/immunology*
;
Mice, Inbred C57BL
;
Gene Regulatory Networks
;
Enhancer Elements, Genetic
3.Hydrogen Sulfide Alleviates Lipid Peroxidation-Mediated Carbonyl Stress in Uranium-Intoxicated Kidney Cells via Nrf2/ARE Signaling.
Jia Lin LIU ; Min WANG ; Rui ZHANG ; Ji Fang ZHENG ; Xi Xiu JIANG ; Qiao Ni HU
Biomedical and Environmental Sciences 2025;38(4):484-500
OBJECTIVE:
To explore the protective effects and underlying mechanisms of H 2S against lipid peroxidation-mediated carbonyl stress in the uranium-treated NRK-52E cells.
METHODS:
Cell viability was evaluated using CCK-8 assay. Apoptosis was measured using flow cytometry. Reagent kits were used to detect carbonyl stress markers malondialdehyde, 4-hydroxynonenal, thiobarbituric acid reactive substances, and protein carbonylation. Aldehyde-protein adduct formation and alcohol dehydrogenase, aldehyde dehydrogenase 2, aldo-keto reductase, nuclear factor E2-related factor 2 (Nrf2), and cystathionine β-synthase (CBS) expression were determined using western blotting or real-time PCR. Sulforaphane (SFP) was used to activate Nrf2. RNA interference was used to inhibit CBS expression.
RESULTS:
GYY4137 (an H 2S donor) pretreatment significantly reversed the uranium-induced increase in carbonyl stress markers and aldehyde-protein adducts. GYY4137 effectively restored the uranium-decreased Nrf2 expression, nuclear translocation, and ratio of nuclear to cytoplasmic Nrf2, accompanied by a reversal of the uranium-decreased expression of CBS and aldehyde-metabolizing enzymes. The application of CBS siRNA efficiently abrogated the SFP-enhanced effects on the expression of CBS, Nrf2 activation, nuclear translocation, and ratio of nuclear to cytoplasmic Nrf2 and concomitantly reversed the SFP-enhanced effects of the uranium-induced mRNA expression of aldehyde-metabolizing enzymes. Simultaneously, CBS siRNA reversed the SFP-mediated alleviation of the uranium-induced increase in reactive aldehyde levels, apoptosis rates, and uranium-induced cell viability.
CONCLUSION
H 2S induces Nrf2 activation and nuclear translocation, which modulates the expression of aldehyde-metabolizing enzymes and the CBS/H 2S axis. Simultaneously, the Nrf2-controlled CBS/H 2S axis may at least partially promote Nrf2 activation and nuclear translocation. These events form a cycle-regulating mode through which H 2S attenuates the carbonyl stress-mediated NRK-52E cytotoxicity triggered by uranium.
NF-E2-Related Factor 2/genetics*
;
Animals
;
Hydrogen Sulfide/pharmacology*
;
Rats
;
Signal Transduction/drug effects*
;
Lipid Peroxidation/drug effects*
;
Cell Line
;
Uranium/toxicity*
;
Antioxidant Response Elements
;
Kidney/metabolism*
;
Oxidative Stress/drug effects*
;
Cell Survival/drug effects*
;
Apoptosis/drug effects*
4.Advances of enhancers in regulating craniomaxillofacial development in mammals.
Hao LIU ; Jie Wen DAI ; Gang DING
Chinese Journal of Stomatology 2022;57(9):978-982
As a key regulatory element of gene differential expression, enhancer plays a crucial role in craniomaxillofacial development through regulating the spatiotemporal expression of target genes to promote tissue-specific differentiation. With the development of CRISPR and chromosome conformation capture technique, the function of enhancer and its regulatory mechanism has been explored in depth. This paper gave a systematic review on the mechanism of enhancer regulating target gene expression and the role of enhancer in oral craniofacial development and malformation.
Animals
;
Enhancer Elements, Genetic
;
Mammals/genetics*
5.Synonymous variants of the ATP7B gene may cause abnormal splicing of mRNA by affecting the exonic splicing enhancers.
Xiaoying ZHOU ; Bixia ZHENG ; Zhifeng LIU ; Yu JIN
Chinese Journal of Medical Genetics 2020;37(11):1236-1240
OBJECTIVE:
To explore the effect of rare synonymous variants of the ATP7B gene on the splicing of its precursor mRNA.
METHODS:
A total of 248 rare synonymous variants with allelic frequency of <0.005 were retrieved from the ExAc database. Human Splicing Finder (HSF) was used to predict their effect on the splicing of precursor mRNA. And ESE Finder 3.0 was used to predict the effect of such variants on the binding ability of SR protein family. Rare synonymous variants affecting the binding of two or more SR proteins were selected and verified with an in vitro mini gene splicing report system.
RESULTS:
HSF analysis indicated that 136 of the 248 rare synonymous variants may destroy the exonic splicing enhancer (ESE) motif. Analysis using ESE Finder 3.0 indicated that 19 of them may affect the binding of two or more SR proteins at the same time. In vitro mini gene experiment confirmed that the c.1620C>T (p.L540L) and c.3888C>T (p.A1296A) variants could lead to abnormal splicing of the corresponding exons, resulting in complete skipping of exon 4 and 25% increase in the skipping of exon 18, respectively.
CONCLUSION
Synonymous variants may affect the splicing of precursor mRNA in various ways, particularly the destruction of ESE motif. This study confirmed that the c.1620C>T (p.L540L) and c.3888C>T (p.A1296A) variants can affect the mRNA splicing of the ATP7B gene, resulting in skipping of corresponding exons, which may provide a basis for genetic diagnosis and consultation of carriers.
Alternative Splicing
;
Copper-Transporting ATPases/genetics*
;
Enhancer Elements, Genetic
;
Exons
;
Gene Frequency
;
Humans
;
RNA, Messenger/genetics*
6.Global Quantitative Mapping of Enhancers in Rice by STARR-seq.
Jialei SUN ; Na HE ; Longjian NIU ; Yingzhang HUANG ; Wei SHEN ; Yuedong ZHANG ; Li LI ; Chunhui HOU
Genomics, Proteomics & Bioinformatics 2019;17(2):140-153
Enhancers activate transcription in a distance-, orientation-, and position-independent manner, which makes them difficult to be identified. Self-transcribing active regulatory region sequencing (STARR-seq) measures the enhancer activity of millions of DNA fragments in parallel. Here we used STARR-seq to generate a quantitative global map of rice enhancers. Most enhancers were mapped within genes, especially at the 5' untranslated regions (5'UTR) and in coding sequences. Enhancers were also frequently mapped proximal to silent and lowly-expressed genes in transposable element (TE)-rich regions. Analysis of the epigenetic features of enhancers at their endogenous loci revealed that most enhancers do not co-localize with DNase I hypersensitive sites (DHSs) and lack the enhancer mark of histone modification H3K4me1. Clustering analysis of enhancers according to their epigenetic marks revealed that about 40% of identified enhancers carried one or more epigenetic marks. Repressive H3K27me3 was frequently enriched with positive marks, H3K4me3 and/or H3K27ac, which together label enhancers. Intergenic enhancers were also predicted based on the location of DHS regions relative to genes, which overlap poorly with STARR-seq enhancers. In summary, we quantitatively identified enhancers by functional analysis in the genome of rice, an important model plant. This work provides a valuable resource for further mechanistic studies in different biological contexts.
Acetylation
;
Base Sequence
;
Deoxyribonuclease I
;
metabolism
;
Enhancer Elements, Genetic
;
Epigenesis, Genetic
;
Genes, Plant
;
Genomics
;
methods
;
Histone Code
;
genetics
;
Histones
;
metabolism
;
Models, Genetic
;
Oryza
;
genetics
;
Promoter Regions, Genetic
;
genetics
;
Repetitive Sequences, Nucleic Acid
;
genetics
;
Sequence Analysis, DNA
;
Transcription, Genetic
7.Ajoene, a Major Organosulfide Found in Crushed Garlic, Induces NAD(P)H:quinone Oxidoreductase Expression Through Nuclear Factor E2-related Factor-2 Activation in Human Breast Epithelial Cells
Seung Ju CHO ; Jae Ha RYU ; Young Joon SURH
Journal of Cancer Prevention 2019;24(2):112-122
BACKGROUND: NAD(P)H:quinone oxidoreductase-1 (NQO1) is a widely-distributed flavin adenine dinucleotide-dependent flavoprotein that promotes obligatory 2-electron reductions of quinones, quinoneimines, nitroaromatics, and azo dyes. This reduces quinone levels and thereby minimizes generation of excess reactive oxygen species (ROS) formed by redox cycling, and concurrent depletion of intracellular thiol pools. Ajoene is derived from crushed garlic. It is formed by a reaction involving two allicin molecules, and is composed of allyl sulfide and vinyl disulfide. Ajoene is present in two isomers, E- and Z-form. METHODS: Expression of antioxidant enzymes and nuclear factor E2-related factor-2 (Nrf2) was measured by Western blot analysis. NQO1 promoter activity was assessed by the luciferase reporter gene assay. ROS accumulation was monitored by using the fluorescence-generating probe 2′,7′-dichlorofluorescein diacetate. The intracellular glutathione levels were measured by using a commercially available kit. RESULTS: Z-ajoene significantly up-regulated the expression of representative antioxidant enzyme NQO1 in non-tumorigenic breast epithelial MCF-10A cells at non-toxic concentrations. Z-ajoene enhanced up-regulation and nuclear translocation of Nrf2, which plays a pivotal role in the induction of many genes encoding antioxidant enzymes and other cytoprotective proteins. Z-ajoene treatment also increased the activity of nqo1-promoter harboring antioxidant response element consensus sequences in MCF-10A cells. Silencing of Nrf2 by small interfering RNA abrogated ajoene-induced expression of NQO1. Z-ajoene activated extracellular signal-regulated kinase (ERK). Inhibition of ERK activation by U0126 abrogated ability of Z-ajoene to activate Nrf2 and to induce NQO1 expression. Intracellular ROS accumulation was observed after treatment with Z-ajoene, whereas the E-isoform was not effective. The inhibition of ROS by treatment with N-acetylcysteine, a radical scavenger, abrogated Z-ajoene-induced expression of NQO1 as well as activation of ERK and Nrf2, suggesting that Z-ajoene augments the Nrf2-dependent antioxidant defense via ROS generation and ERK activation. CONCLUSIONS: Z-ajoene induces NQO1 expression in MCF-10A cells through ROS-mediated activation of Nrf2.
Acetylcysteine
;
Adenine
;
Antioxidant Response Elements
;
Azo Compounds
;
Blotting, Western
;
Breast
;
Consensus Sequence
;
Epithelial Cells
;
Flavoproteins
;
Garlic
;
Genes, Reporter
;
Glutathione
;
Humans
;
Luciferases
;
NF-E2-Related Factor 2
;
Oxidation-Reduction
;
Phosphotransferases
;
Quinones
;
Reactive Oxygen Species
;
RNA, Small Interfering
;
Up-Regulation
8.Cloning and function analysis of promoter of DcCDPK8 from Dendrobium catenatum.
Yuan WANG ; Yan-Hui GAO ; Yu-Qiu ZHU ; Jin-Ping SI
China Journal of Chinese Materia Medica 2019;44(2):293-297
DcCDPK8 involved in abiotic stress such as low temperature and signal transduction of hormones ABA and MeJA,but the transcriptional regulation is still unclear. In order to study the core promoter region of DcCDPK8 gene in Dendrobium catenatum and explore its transcriptional regulation mechanism,the DcCDPK8 gene promoter sequence was cloned by PCR from D. catenatum. Promoter sequence function was studied by fusion of 5 'terminal deletion and GUS gene. The results showed that the promoter sequence of DcCDPK8 gene has a low-temperature responsive element( LTR) between~(-1) 749 bp and-614 bp,two MeJA responsive elements between~(-1) 749 bp and-230 bp,and one ABA responsive elements between-614 bp and-230 bp. Three 5'-end different deletion fragments were constructed to fuse the eukaryotic expression vectors p BI121 with GUS,which were transformed into tobacco leaves. The GUS activity under cold stress treatment was DcCDPK8-p1>DcCDPK8-p2>DcCDPK8-p3. GUS activity under exogenous ABA induction was DcCDPK8-p1>DcCDPK8-p2>DcCDPK8-p3,and GUS activity under exogenous MeJA induction was DcCDPK8-p1>DcCDPK8-p2>DcCDPK8-p3. It is speculated that the ABA response element( ARE) in the promoter sequences of DcCDPK8 is positive regulatory role in response to exogenous ABA,the MeJA cis-acting element plays a negative role in response to exogenous MeJA.
Abscisic Acid
;
Acetates
;
Cloning, Molecular
;
Cold Temperature
;
Cyclopentanes
;
Dendrobium
;
genetics
;
Gene Expression Regulation, Plant
;
Oxylipins
;
Plant Proteins
;
genetics
;
Plants, Genetically Modified
;
Promoter Regions, Genetic
;
Response Elements
;
Stress, Physiological
;
Tobacco
9.4′-O-β-D-Glucosyl-5-O-Methylvisamminol Attenuates Pro-Inflammatory Responses and Protects against Oxidative Damages
Biomolecules & Therapeutics 2019;27(4):381-385
We attempted to examine anti-inflammatory and anti-oxidant effects of 4′-O-β-D-glucosyl-5-O-methylvisamminol (GOMV), the first epigenetic inhibitor of histone phosphorylation at Ser10. While GOMV did not affect the viability of murine macrophage RAW 264.7 cells, it significantly suppressed lipopolysaccharide (LPS)-induced generation of prostaglandin E₂ (PGE₂) and nitric oxide (NO) through transcriptional inhibition of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS). GOMV also scavenged free radicals in vitro, increased NF-E2-related factor 2 (NRF2), and activated antioxidant response element (ARE), thereby resulting in the induction of phase II cytoprotective enzymes in human keratinocyte HaCaT cells. Finally, GOMV significantly protected HaCaT cells against 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced oxidative intracellular damages. Together, our results illustrate that GOMV possesses anti-inflammatory and anti-oxidant activity.
Antioxidant Response Elements
;
Antioxidants
;
Cyclooxygenase 2
;
Epigenomics
;
Free Radicals
;
Histones
;
Humans
;
In Vitro Techniques
;
Keratinocytes
;
Macrophages
;
NF-E2-Related Factor 2
;
Nitric Oxide
;
Nitric Oxide Synthase Type II
;
Phosphorylation
;
RAW 264.7 Cells
10.Histone deacetylase inhibition attenuates hepatic steatosis in rats with experimental Cushing's syndrome.
Mina KIM ; Hae Ahm LEE ; Hyun Min CHO ; Seol Hee KANG ; Eunjo LEE ; In Kyeom KIM
The Korean Journal of Physiology and Pharmacology 2018;22(1):23-33
Cushing's syndrome (CS) is a collection of symptoms caused by prolonged exposure to excess cortisol. Chronically elevated glucocorticoid (GC) levels contribute to hepatic steatosis. We hypothesized that histone deacetylase inhibitors (HDACi) could attenuate hepatic steatosis through glucocorticoid receptor (GR) acetylation in experimental CS. To induce CS, we administered adrenocorticotropic hormone (ACTH; 40 ng/kg/day) to Sprague-Dawley rats by subcutaneous infusion with osmotic mini-pumps. We administered the HDACi, sodium valproate (VPA; 0.71% w/v), in the drinking water. Treatment with the HDACi decreased steatosis and the expression of lipogenic genes in the livers of CS rats. The enrichment of GR at the promoters of the lipogenic genes, such as acetyl-CoA carboxylase (Acc), fatty acid synthase (Fasn), and sterol regulatory element binding protein 1c (Srebp1c), was markedly decreased by VPA. Pan-HDACi and an HDAC class I-specific inhibitor, but not an HDAC class II a-specific inhibitor, attenuated dexamethasone (DEX)-induced lipogenesis in HepG2 cells. The transcriptional activity of Fasn was decreased by pretreatment with VPA. In addition, pretreatment with VPA decreased DEX-induced binding of GR to the glucocorticoid response element (GRE). Treatment with VPA increased the acetylation of GR in ACTH-infused rats and DEX-induced HepG2 cells. Taken together, these results indicate that HDAC inhibition attenuates hepatic steatosis hrough GR acetylation in experimental CS.
Acetyl-CoA Carboxylase
;
Acetylation
;
Adrenocorticotropic Hormone
;
Animals
;
Cushing Syndrome*
;
Dexamethasone
;
Drinking Water
;
Hep G2 Cells
;
Histone Deacetylase Inhibitors
;
Histone Deacetylases*
;
Histones*
;
Hydrocortisone
;
Infusions, Subcutaneous
;
Lipogenesis
;
Liver
;
Rats*
;
Rats, Sprague-Dawley
;
Receptors, Glucocorticoid
;
Response Elements
;
Sterol Regulatory Element Binding Protein 1
;
Valproic Acid

Result Analysis
Print
Save
E-mail