1.Advances of enhancers in regulating craniomaxillofacial development in mammals.
Hao LIU ; Jie Wen DAI ; Gang DING
Chinese Journal of Stomatology 2022;57(9):978-982
As a key regulatory element of gene differential expression, enhancer plays a crucial role in craniomaxillofacial development through regulating the spatiotemporal expression of target genes to promote tissue-specific differentiation. With the development of CRISPR and chromosome conformation capture technique, the function of enhancer and its regulatory mechanism has been explored in depth. This paper gave a systematic review on the mechanism of enhancer regulating target gene expression and the role of enhancer in oral craniofacial development and malformation.
Animals
;
Enhancer Elements, Genetic
;
Mammals/genetics*
2.Synonymous variants of the ATP7B gene may cause abnormal splicing of mRNA by affecting the exonic splicing enhancers.
Xiaoying ZHOU ; Bixia ZHENG ; Zhifeng LIU ; Yu JIN
Chinese Journal of Medical Genetics 2020;37(11):1236-1240
OBJECTIVE:
To explore the effect of rare synonymous variants of the ATP7B gene on the splicing of its precursor mRNA.
METHODS:
A total of 248 rare synonymous variants with allelic frequency of <0.005 were retrieved from the ExAc database. Human Splicing Finder (HSF) was used to predict their effect on the splicing of precursor mRNA. And ESE Finder 3.0 was used to predict the effect of such variants on the binding ability of SR protein family. Rare synonymous variants affecting the binding of two or more SR proteins were selected and verified with an in vitro mini gene splicing report system.
RESULTS:
HSF analysis indicated that 136 of the 248 rare synonymous variants may destroy the exonic splicing enhancer (ESE) motif. Analysis using ESE Finder 3.0 indicated that 19 of them may affect the binding of two or more SR proteins at the same time. In vitro mini gene experiment confirmed that the c.1620C>T (p.L540L) and c.3888C>T (p.A1296A) variants could lead to abnormal splicing of the corresponding exons, resulting in complete skipping of exon 4 and 25% increase in the skipping of exon 18, respectively.
CONCLUSION
Synonymous variants may affect the splicing of precursor mRNA in various ways, particularly the destruction of ESE motif. This study confirmed that the c.1620C>T (p.L540L) and c.3888C>T (p.A1296A) variants can affect the mRNA splicing of the ATP7B gene, resulting in skipping of corresponding exons, which may provide a basis for genetic diagnosis and consultation of carriers.
Alternative Splicing
;
Copper-Transporting ATPases/genetics*
;
Enhancer Elements, Genetic
;
Exons
;
Gene Frequency
;
Humans
;
RNA, Messenger/genetics*
3.Cloning and function analysis of promoter of DcCDPK8 from Dendrobium catenatum.
Yuan WANG ; Yan-Hui GAO ; Yu-Qiu ZHU ; Jin-Ping SI
China Journal of Chinese Materia Medica 2019;44(2):293-297
DcCDPK8 involved in abiotic stress such as low temperature and signal transduction of hormones ABA and MeJA,but the transcriptional regulation is still unclear. In order to study the core promoter region of DcCDPK8 gene in Dendrobium catenatum and explore its transcriptional regulation mechanism,the DcCDPK8 gene promoter sequence was cloned by PCR from D. catenatum. Promoter sequence function was studied by fusion of 5 'terminal deletion and GUS gene. The results showed that the promoter sequence of DcCDPK8 gene has a low-temperature responsive element( LTR) between~(-1) 749 bp and-614 bp,two MeJA responsive elements between~(-1) 749 bp and-230 bp,and one ABA responsive elements between-614 bp and-230 bp. Three 5'-end different deletion fragments were constructed to fuse the eukaryotic expression vectors p BI121 with GUS,which were transformed into tobacco leaves. The GUS activity under cold stress treatment was DcCDPK8-p1>DcCDPK8-p2>DcCDPK8-p3. GUS activity under exogenous ABA induction was DcCDPK8-p1>DcCDPK8-p2>DcCDPK8-p3,and GUS activity under exogenous MeJA induction was DcCDPK8-p1>DcCDPK8-p2>DcCDPK8-p3. It is speculated that the ABA response element( ARE) in the promoter sequences of DcCDPK8 is positive regulatory role in response to exogenous ABA,the MeJA cis-acting element plays a negative role in response to exogenous MeJA.
Abscisic Acid
;
Acetates
;
Cloning, Molecular
;
Cold Temperature
;
Cyclopentanes
;
Dendrobium
;
genetics
;
Gene Expression Regulation, Plant
;
Oxylipins
;
Plant Proteins
;
genetics
;
Plants, Genetically Modified
;
Promoter Regions, Genetic
;
Response Elements
;
Stress, Physiological
;
Tobacco
4.Ajoene, a Major Organosulfide Found in Crushed Garlic, Induces NAD(P)H:quinone Oxidoreductase Expression Through Nuclear Factor E2-related Factor-2 Activation in Human Breast Epithelial Cells
Seung Ju CHO ; Jae Ha RYU ; Young Joon SURH
Journal of Cancer Prevention 2019;24(2):112-122
BACKGROUND: NAD(P)H:quinone oxidoreductase-1 (NQO1) is a widely-distributed flavin adenine dinucleotide-dependent flavoprotein that promotes obligatory 2-electron reductions of quinones, quinoneimines, nitroaromatics, and azo dyes. This reduces quinone levels and thereby minimizes generation of excess reactive oxygen species (ROS) formed by redox cycling, and concurrent depletion of intracellular thiol pools. Ajoene is derived from crushed garlic. It is formed by a reaction involving two allicin molecules, and is composed of allyl sulfide and vinyl disulfide. Ajoene is present in two isomers, E- and Z-form. METHODS: Expression of antioxidant enzymes and nuclear factor E2-related factor-2 (Nrf2) was measured by Western blot analysis. NQO1 promoter activity was assessed by the luciferase reporter gene assay. ROS accumulation was monitored by using the fluorescence-generating probe 2′,7′-dichlorofluorescein diacetate. The intracellular glutathione levels were measured by using a commercially available kit. RESULTS: Z-ajoene significantly up-regulated the expression of representative antioxidant enzyme NQO1 in non-tumorigenic breast epithelial MCF-10A cells at non-toxic concentrations. Z-ajoene enhanced up-regulation and nuclear translocation of Nrf2, which plays a pivotal role in the induction of many genes encoding antioxidant enzymes and other cytoprotective proteins. Z-ajoene treatment also increased the activity of nqo1-promoter harboring antioxidant response element consensus sequences in MCF-10A cells. Silencing of Nrf2 by small interfering RNA abrogated ajoene-induced expression of NQO1. Z-ajoene activated extracellular signal-regulated kinase (ERK). Inhibition of ERK activation by U0126 abrogated ability of Z-ajoene to activate Nrf2 and to induce NQO1 expression. Intracellular ROS accumulation was observed after treatment with Z-ajoene, whereas the E-isoform was not effective. The inhibition of ROS by treatment with N-acetylcysteine, a radical scavenger, abrogated Z-ajoene-induced expression of NQO1 as well as activation of ERK and Nrf2, suggesting that Z-ajoene augments the Nrf2-dependent antioxidant defense via ROS generation and ERK activation. CONCLUSIONS: Z-ajoene induces NQO1 expression in MCF-10A cells through ROS-mediated activation of Nrf2.
Acetylcysteine
;
Adenine
;
Antioxidant Response Elements
;
Azo Compounds
;
Blotting, Western
;
Breast
;
Consensus Sequence
;
Epithelial Cells
;
Flavoproteins
;
Garlic
;
Genes, Reporter
;
Glutathione
;
Humans
;
Luciferases
;
NF-E2-Related Factor 2
;
Oxidation-Reduction
;
Phosphotransferases
;
Quinones
;
Reactive Oxygen Species
;
RNA, Small Interfering
;
Up-Regulation
5.Global Quantitative Mapping of Enhancers in Rice by STARR-seq.
Jialei SUN ; Na HE ; Longjian NIU ; Yingzhang HUANG ; Wei SHEN ; Yuedong ZHANG ; Li LI ; Chunhui HOU
Genomics, Proteomics & Bioinformatics 2019;17(2):140-153
Enhancers activate transcription in a distance-, orientation-, and position-independent manner, which makes them difficult to be identified. Self-transcribing active regulatory region sequencing (STARR-seq) measures the enhancer activity of millions of DNA fragments in parallel. Here we used STARR-seq to generate a quantitative global map of rice enhancers. Most enhancers were mapped within genes, especially at the 5' untranslated regions (5'UTR) and in coding sequences. Enhancers were also frequently mapped proximal to silent and lowly-expressed genes in transposable element (TE)-rich regions. Analysis of the epigenetic features of enhancers at their endogenous loci revealed that most enhancers do not co-localize with DNase I hypersensitive sites (DHSs) and lack the enhancer mark of histone modification H3K4me1. Clustering analysis of enhancers according to their epigenetic marks revealed that about 40% of identified enhancers carried one or more epigenetic marks. Repressive H3K27me3 was frequently enriched with positive marks, H3K4me3 and/or H3K27ac, which together label enhancers. Intergenic enhancers were also predicted based on the location of DHS regions relative to genes, which overlap poorly with STARR-seq enhancers. In summary, we quantitatively identified enhancers by functional analysis in the genome of rice, an important model plant. This work provides a valuable resource for further mechanistic studies in different biological contexts.
Acetylation
;
Base Sequence
;
Deoxyribonuclease I
;
metabolism
;
Enhancer Elements, Genetic
;
Epigenesis, Genetic
;
Genes, Plant
;
Genomics
;
methods
;
Histone Code
;
genetics
;
Histones
;
metabolism
;
Models, Genetic
;
Oryza
;
genetics
;
Promoter Regions, Genetic
;
genetics
;
Repetitive Sequences, Nucleic Acid
;
genetics
;
Sequence Analysis, DNA
;
Transcription, Genetic
6.4′-O-β-D-Glucosyl-5-O-Methylvisamminol Attenuates Pro-Inflammatory Responses and Protects against Oxidative Damages
Biomolecules & Therapeutics 2019;27(4):381-385
We attempted to examine anti-inflammatory and anti-oxidant effects of 4′-O-β-D-glucosyl-5-O-methylvisamminol (GOMV), the first epigenetic inhibitor of histone phosphorylation at Ser10. While GOMV did not affect the viability of murine macrophage RAW 264.7 cells, it significantly suppressed lipopolysaccharide (LPS)-induced generation of prostaglandin E₂ (PGE₂) and nitric oxide (NO) through transcriptional inhibition of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS). GOMV also scavenged free radicals in vitro, increased NF-E2-related factor 2 (NRF2), and activated antioxidant response element (ARE), thereby resulting in the induction of phase II cytoprotective enzymes in human keratinocyte HaCaT cells. Finally, GOMV significantly protected HaCaT cells against 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced oxidative intracellular damages. Together, our results illustrate that GOMV possesses anti-inflammatory and anti-oxidant activity.
Antioxidant Response Elements
;
Antioxidants
;
Cyclooxygenase 2
;
Epigenomics
;
Free Radicals
;
Histones
;
Humans
;
In Vitro Techniques
;
Keratinocytes
;
Macrophages
;
NF-E2-Related Factor 2
;
Nitric Oxide
;
Nitric Oxide Synthase Type II
;
Phosphorylation
;
RAW 264.7 Cells
7.TGF-β induces Smad2 Phosphorylation, ARE Induction, and Trophoblast Differentiation
Renee E ALBERS ; Kaisa SELESNIEMI ; David R C NATALE ; Thomas L BROWN
International Journal of Stem Cells 2018;11(1):111-120
BACKGROUND: Transforming growth factor beta (TGF-β) signaling has been shown to control a large number of critical cellular actions such as cell death, differentiation, and development and has been implicated as a major regulator of placental function. SM10 cells are a mouse placental progenitor cell line, which has been previously shown to differentiate into nutrient transporting, labyrinthine-like cells upon treatment with TGF-β. However, the signal transduction pathway activated by TGF-β to induce SM10 progenitor differentiation has yet to be fully investigated. MATERIALS AND METHODS: In this study the SM10 labyrinthine progenitor cell line was used to investigate TGF-β induced differentiation. Activation of the TGF-β pathway and the ability of TGF-β to induce differentiation were investigated by light microscopy, luciferase assays, and Western blot analysis. RESULTS AND CONCLUSIONS: In this report, we show that three isoforms of TGF-β have the ability to terminally differentiate SM10 cells, whereas other predominant members of the TGF-β superfamily, Nodal and Activin A, do not. Additionally, we have determined that TGF-β induced Smad2 phosphorylation can be mediated via the ALK-5 receptor with subsequent transactivation of the Activin response element. Our studies identify an important regulatory signaling pathway in SM10 progenitor cells that is involved in labyrinthine trophoblast differentiation.
Activins
;
Animals
;
Blotting, Western
;
Cell Death
;
Luciferases
;
Mice
;
Microscopy
;
Phosphorylation
;
Placenta
;
Protein Isoforms
;
Response Elements
;
Signal Transduction
;
Stem Cells
;
Transcriptional Activation
;
Transforming Growth Factor beta
;
Trophoblasts
8.The Regulatory Effects of Trans-chalcone on Adipogenesis
International Journal of Oral Biology 2018;43(1):29-35
It is noted that chalcone derivatives have characteristic diverse pharmacological properties, and that precise evidence has been growing that they could regulate a tumor necrosis factor-α (TNF-α) induced insulin resistance. The purpose of the present investigation is to elucidate the effects of the identified chalcone derivatives on adipogenesis, and to find the underlying mechanism of action in that case. Consequently, we first investigated whether the chalcone derivatives could affect the identified PPARγ-induced transcriptional activity on the proliferator-activated receptor response elements (PPRE) at target promoters, and find that trans-chalcone most significantly increased the PPARγ-induced transcriptional activity. Additionally, we confirmed that there were up-regulatory effects of trans-chalcone during the adipogenesis and lipid accumulation, and on the mRNA of adipogenic factors in 3T3-L1 cells. Next, we examined the effect of trans-chalcone on the inhibition induced by TNF-α on adipogenesis. To that end, we noted that the treatment with trans-chalcone attenuated the effect of TNF-α mediated secretion of various adipokines that are involved in insulin sensitivity. For this reason, we noted that this study clearly demonstrates that trans-chalcone enhanced adipogenesis, in part, by its potent effect on PPARγ activation and by its reverse effect on TNF-α.
3T3-L1 Cells
;
Adipogenesis
;
Adipokines
;
Chalcone
;
Insulin Resistance
;
Necrosis
;
Response Elements
;
RNA, Messenger
9.The Memory-Enhancing Effects of Liquiritigenin by Activation of NMDA Receptors and the CREB Signaling Pathway in Mice.
Yong Hyun KO ; Seung Hwan KWON ; Ji Young HWANG ; Kyung In KIM ; Jee Yeon SEO ; Thi Lien NGUYEN ; Seok Yong LEE ; Hyoung Chun KIM ; Choon Gon JANG
Biomolecules & Therapeutics 2018;26(2):109-114
Liquiritigenin (LQ) is a flavonoid that can be isolated from Glycyrrhiza radix. It is frequently used as a tranditional oriental medicine herbal treatment for swelling and injury and for detoxification. However, the effects of LQ on cognitive function have not been fully explored. In this study, we evaluated the memory-enhancing effects of LQ and the underlying mechanisms with a focus on the N-methyl-D-aspartic acid receptor (NMDAR) in mice. Learning and memory ability were evaluated with the Y-maze and passive avoidance tests following administration of LQ. In addition, the expression of NMDAR subunits 1, 2A, and 2B; postsynaptic density-95 (PSD-95); phosphorylation of Ca2+/calmodulin-dependent protein kinase II (CaMKII); phosphorylation of extracellular signal-regulated kinase 1/2 (ERK 1/2); and phosphorylation of cAMP response element binding (CREB) proteins were examined by Western blot. In vivo, we found that treatment with LQ significantly improved memory performance in both behavioral tests. In vitro, LQ significantly increased NMDARs in the hippocampus. Furthermore, LQ significantly increased PSD-95 expression as well as CaMKII, ERK, and CREB phosphorylation in the hippocampus. Taken together, our results suggest that LQ has cognition enhancing activities and that these effects are mediated, in part, by activation of the NMDAR and CREB signaling pathways.
Animals
;
Behavior Rating Scale
;
Blotting, Western
;
Calcium-Calmodulin-Dependent Protein Kinase Type 2
;
Cognition
;
Glycyrrhiza
;
Hippocampus
;
In Vitro Techniques
;
Learning
;
Medicine, East Asian Traditional
;
Memory
;
Mice*
;
N-Methylaspartate*
;
Phosphorylation
;
Phosphotransferases
;
Protein Kinases
;
Receptors, N-Methyl-D-Aspartate*
;
Response Elements
10.A Study on Vitamin D and Cathelicidin Status in Patients with Rosacea: Serum Level and Tissue Expression.
Bok Won PARK ; Ji Min HA ; Eun Byul CHO ; Jae Kwang JIN ; Eun Joo PARK ; Hye Rim PARK ; Hee Jung KANG ; Sung Hoon KO ; Kwang Ho KIM ; Kwang Joong KIM
Annals of Dermatology 2018;30(2):136-142
BACKGROUND: Rosacea is a chronic inflammatory disease characterized by centrofacial erythema. Excess cathelicidin is suggested to be important to the pathophysiology of the disease. Recently, presence of a vitamin D response element was revealed in the cathelicidin gene promoter. OBJECTIVE: The aim of this study was to determine whether vitamin D and cathelicidin are associated with rosacea, both serologically and histopathologically. METHODS: Subjects with rosacea and without chronic skin disorders were enrolled in the patient and control groups, respectively. Serum 25-hydroxy-vitamin D and cathelicidin levels were measured. Tissue expression of cathelicidin and vitamin D receptor were measured with immunostaining-intensity-distribution index. RESULTS: The mean serum 25-hydroxyvitamin D level of patients with rosacea was 12.18±5.65 ng/ml, which is lower than that of the controls (17.41±6.75 ng/ml). Mean serum cathelicidin levels in patients with rosacea and the controls were 85.0±26.1 ng/ml and 55.0±23.3 ng/ml, respectively. Cathelicidin expression in rosacea tissue was significantly higher than that in control tissue (5.21 vs. 4.03). No significant difference was observed in vitamin D receptor expression. CONCLUSION: Higher cathelicidin expression in rosacea supports the hypothesis that an abnormal inflammatory response of the innate immune system is important in pathogenesis of rosacea, but the role of high cathelicidin serum levels is complicated. Serum vitamin D was lower in patients with rosacea, although serum cathelicidin was higher than that of the controls. This suggests that the role of vitamin D level in the pathogenesis of rosacea merits further investigation.
Erythema
;
Humans
;
Immune System
;
Receptors, Calcitriol
;
Rosacea*
;
Skin
;
Vitamin D Response Element
;
Vitamin D*
;
Vitamins*

Result Analysis
Print
Save
E-mail