1.Mechanism of matrine against senescence in human umbilical vein endothelial cells based on network pharmacology and experimental verification.
Dian LIU ; Zi-Ping XIANG ; Ze-Sen DUAN ; Xin-Ying LIU ; Xing WANG ; Hui-Xin ZHANG ; Chao WANG
China Journal of Chinese Materia Medica 2025;50(8):2260-2269
Utilizing network pharmacology, molecular docking, and cellular experimental validation, this study delved into the therapeutic efficacy and underlying mechanisms of matrine in combating senescence. Databases were utilized to predict targets related to the anti-senescence effects of matrine, resulting in the identification of 81 intersecting targets for matrine in the treatment of senescence. A protein-protein interaction(PPI) network was constructed, and key targets were screened based on degree values. Gene Ontology(GO) function and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analyses were performed on the key targets to elucidate the critical pathways involved in the anti-senescence effects of matrine. Molecular docking was conducted between matrine and key targets. A senescence model was established using human umbilical vein endothelial cells(HUVECs) induced with hydrogen peroxide(H_2O_2). Following treatment with varying concentrations of matrine(0.5, 1, and 2 mmol·L~(-1)), cell viability was assessed by using the CCK-8. SA-β-galactosidase staining was employed to observe the positive rate of senescent cells. Flow cytometry was utilized to measure the apoptosis rate. Real-time quantitative PCR(RT-PCR) was utilized to measure the mRNA expression of apoptosis-related cysteine peptidase 3(CASP3), albumin(ALB), glycogen synthase kinase 3β(GSK3B), CD44 molecule(CD44), and tumor necrosis factor-α(TNF-α). Western blot was performed to detect the protein expression of tumor protein p53(p53), cyclin-dependent kinase inhibitor 1A(p21), cyclin-dependent kinase inhibitor 2A(p16), and retinoblastoma tumor suppressor protein(pRb) in the senescence signaling pathway, p38 protein kinase(p38), c-Jun N-terminal kinase(JNK), and extracellular regulated protein kinases(ERK) in the mitogen-activated protein kinase(MAPK) pathway, and phosphatidylinositol 3-kinase(PI3K) and protein kinase B(Akt) in the PI3K/Akt signaling pathway. The experimental results revealed that matrine significantly increased the viability of HUVECs(P<0.05), decreased the positive rate of senescent cells and the apoptosis rate(P<0.05), and reduced the mRNA expression levels of CASP3, ALB, GSK3B, CD44, and TNF-α(P<0.05). It also inhibited the protein expression of p53, p21, p16 and pRb in the senescence signaling pathway(P<0.05), upregulated the protein expression of p-PI3K/PI3K and p-Akt/Akt(P<0.05), and downregulated the protein expression of p-p38/p38, p-JNK/JNK, and p-ERK/ERK(P<0.05). Collectively, these findings suggest that matrine exerts an inhibitory effect on HUVECs senescence, and its mechanism involves the modulation of the senescence signaling pathway, MAPK pathway, and PI3K/Akt signaling pathway to suppress cell apoptosis and inflammation.
Humans
;
Matrines
;
Quinolizines/chemistry*
;
Alkaloids/chemistry*
;
Human Umbilical Vein Endothelial Cells/cytology*
;
Cellular Senescence/drug effects*
;
Network Pharmacology
;
Molecular Docking Simulation
;
Signal Transduction/drug effects*
;
Protein Interaction Maps/drug effects*
;
Cell Survival/drug effects*
;
Apoptosis/drug effects*
;
Drugs, Chinese Herbal/pharmacology*
2.Mechanism of salidroside in inhibiting expression of adhesion molecules in oxLDL-induced endothelial cells by regulating ferroptosis mediated by SIRT1/Nrf2.
Meng ZHANG ; Min XIAO ; Jing-Jing LI ; Jiang-Feng LI ; Guang-Hui FAN
China Journal of Chinese Materia Medica 2025;50(10):2787-2797
This article investigated the effect and mechanism of salidroside(SAL) on the expression of adhesion molecules in oxidized low-density lipoprotein(oxLDL)-induced mouse aortic endothelial cell(MAEC). The oxLDL-induced endothelial cell injury model was constructed, and the safe concentration and action time of SAL were screened. The cells were divided into control group, oxLDL group, low and high concentration groups of SAL, and ferrostatin-1(Fer-1) group. The cell viability was detected by CCK-8 assay; lactate dehydrogenase(LDH) leakage was measured by colorimetry; the expression of intercellular adhesion molecule 1(ICAM-1) and recombinant vascular cell adhesion molecule 1(VCAM-1) were detected by immunofluorescence; Fe~(2+),glutathione(GSH),malondialdehyde(MDA),and 4-hydroxynonenal(4-HNE) levels were detected by kit method; reactive oxygen species(ROS) was detected by DCFH-DA probe; the levels of glutathione peroxidase 4(GPX4),silent mating type information regulation 2 homolog 1(SIRT1), and nuclear factor erythroid 2-related factor 2(Nrf2) were determined by using Western blot. The inhibitors of Nrf2 and SIRT1 were used, and endothelial cell were divided into control group, oxLDL group, SAL group, ML385 group(Nrf2 inhibitor), and EX527 group(SIRT1 inhibitor). The ultrastructure of mitochondria was observed by electron microscope; mitochondrial membrane potential(MMP) was detected by flowcytometry; the expressions of SIRT1,Nrf2,solute carrier family 7 member 11(SLC7A11),GPX4,ferroportin 1(FPN1),ferritin heavy chain 1(FTH1),ICAM-1, and VCAM-1 were detected by Western blot. The results showed that similar to Fer-1,low and high concentrations of SAL could improve cell viability, inhibit LDH release and the expression of ICAM-1 and VCAM-1 in oxLDL-induced endothelial cells(P<0.05 or P<0.01). It was related to increase in GSH level, decrease in Fe~(2+),ROS,MDA, and 4-HNE level, and up-regulation of SIRT1,Nrf2, and GPX4 expression to inhibit ferroptosis(P<0.05 or P<0.01). The intervention effect of high concentration SAL was the most significant. ML385 and EX527 could partially offset the protection of SAL on mitochondrial structure and MMP and reverse the ability of SAL to up-regulate the expression of SIRT1,Nrf2,SLC7A11,GPX4,FPN1, and FTH1 and down-regulate the expression of ICAM-1 and VCAM-1(P<0.05 or P<0.01).To sum up, SAL could reduce the expression of ICAM-1 and VCAM-1 in oxLDL-induced endothelial cell, which may relate to activation of SLC7A11/GPX4 antioxidant signaling pathway mediated by SITR1/Nrf2, up-regulation of FPN1 and FTH1 expression, and inhibition of ferroptosis.
Sirtuin 1/genetics*
;
Animals
;
Ferroptosis/drug effects*
;
Lipoproteins, LDL/metabolism*
;
NF-E2-Related Factor 2/genetics*
;
Mice
;
Endothelial Cells/cytology*
;
Glucosides/pharmacology*
;
Phenols/pharmacology*
;
Cell Adhesion Molecules/genetics*
;
Reactive Oxygen Species/metabolism*
;
Intercellular Adhesion Molecule-1/genetics*
;
Vascular Cell Adhesion Molecule-1/genetics*
;
Cell Survival/drug effects*
3.Rhodiolae Crenulatae Radix et Rhizoma protects brain microvascular endothelial cells from ischemia and hypoxia injury by regulating PI3K/AKT/GSK3β pathway.
Li TANG ; Qiu-Yue YANG ; Hong-Fa CHENG ; Ya-Hui XIE ; Qiu-Xia ZHANG
China Journal of Chinese Materia Medica 2025;50(11):3127-3136
This study elucidates the mechanism of Rhodiolae Crenulatae Radix et Rhizoma(RCRR) in protecting brain microvascular endothelial cells from oxygen-glucose deprivation(OGD) injury and reveals the modern pharmacological mechanism of RCRR's traditional use in nourishing Qi and promoting blood circulation to protect endothelial cells. The scratch assay was employed to assess the migratory capacity of endothelial cells. Immunofluorescence and Western blot techniques were employed to assess the protein expression of tight junction proteins zonula occludens-1(ZO-1), occludin, claudin-5, and proteins of the phosphoinositide 3-kinase(PI3K)/protein kinase B(AKT)/glycogen synthase kinase-3beta(GSK3β) pathway. The results demonstrated that 63 bioactive components and 125 potential core targets of RCRR were identified from the ETCM, TCMBank, and SwissTargetPrediction databases, as well as from the literature. A total of 1 708 brain microvascular endothelial cell-related targets were identified from the GeneCards and OMIM databases, and 52 targets were obtained by intersecting drug components with cell targets. The protein-protein interaction(PPI) network analysis revealed that AKT1, epidermal growth factor receptor(EGFR), matrix metalloproteinase 9(MMP9), estrogen receptor 1(ESR1), proto-oncogene tyrosine-protein kinase(SRC), peroxisome proliferator-activated receptor gamma(PPARG), GSK3β, and matrix metalloproteinase 2(MMP2) were considered hub genes. The KEGG enrichment analysis identified the PI3K/AKT pathway as the primary signaling pathway. Cell experiments demonstrated that RCRR-containing serum could enhance the migratory capacity of brain microvascular endothelial cells and the expression of tight junction proteins following OGD injury, which may be associated with the downregulation of the PI3K/AKT/GSK3β pathway. This study elucidates the pharmacological mechanism of RCRR in protecting brain microvascular endothelial cells through network pharmacology, characterized by multiple components and targets. These findings were validated through in vitro experiments and provide important ideas and references for further research into the molecular mechanisms of RCRR in protecting brain microvascular endothelial cells.
Endothelial Cells/cytology*
;
Glycogen Synthase Kinase 3 beta/genetics*
;
Proto-Oncogene Proteins c-akt/genetics*
;
Drugs, Chinese Herbal/pharmacology*
;
Phosphatidylinositol 3-Kinases/genetics*
;
Signal Transduction/drug effects*
;
Brain/metabolism*
;
Humans
;
Animals
;
Rhizome/chemistry*
;
Microvessels/metabolism*
;
Brain Ischemia/drug therapy*
4.Role of antibiotic delivery system targeting bacterial biofilm based on ε-poly- L-lysine and cyclodextrin in treatment of bone and joint infections.
Tiexin LIU ; Junqing LIN ; Xianyou ZHENG
Chinese Journal of Reparative and Reconstructive Surgery 2025;39(3):362-369
OBJECTIVE:
To explore the mechanism of antibiotic delivery system targeting bacterial biofilm with linezolid (LZD) based on ε-poly- L-lysine (ε-PLL) and cyclodextrin (CD) (ε-PLL-CD-LZD), aiming to enhance antibiotic bioavailability, effectively penetrate and disrupt biofilm structures, and thereby improve the treatment of bone and joint infections.
METHODS:
ε-PLL-CD-LZD was synthesized via chemical methods. The grafting rate of CD was characterized using nuclear magnetic resonance. In vitro biocompatibility was evaluated through live/dead cell staining after co-culturing with mouse embryonic osteoblast precursor cells (MC3T3-E1), human umbilical vein endothelial cells, and mouse embryonic fibroblast cells (3T3-L1). The biofilm-enrichment capacity of ε-PLL-CD-LZD was assessed using Staphylococcus aureus biofilms through enrichment studies. Its biofilm eradication efficacy was investigated via minimum inhibitory concentration (MIC) determination, scanning electron microscopy, and live/dead bacterial staining. A bone and joint infection model in male Sprague-Dawley rats was established to validate the antibacterial effects of ε-PLL-CD-LZD.
RESULTS:
In ε-PLL-CD-LZD, the average grafting rate of CD reached 9.88%. The cell viability exceeded 90% after co-culturing with three types cells. The strong biofilm enrichment capability was observed with a MIC of 2 mg/L. Scanning electron microscopy observations revealed the effective disruption of biofilm structure, indicating potent biofilm eradication capacity. In vivo rat experiments demonstrated that ε-PLL-CD-LZD significantly reduced bacterial load and infection positivity rate at the lesion site ( P<0.05).
CONCLUSION
The ε-PLL-CD antibiotic delivery system provides a treatment strategy for bone and joint infections with high clinical translational significance. By effectively enhancing antibiotic bioavailability, penetrating, and disrupting biofilms, it demonstrated significant anti-infection effects in animal models.
Biofilms/drug effects*
;
Animals
;
Anti-Bacterial Agents/pharmacology*
;
Polylysine/chemistry*
;
Cyclodextrins/administration & dosage*
;
Humans
;
Linezolid/pharmacology*
;
Staphylococcus aureus/physiology*
;
Rats, Sprague-Dawley
;
Mice
;
Rats
;
Male
;
Drug Delivery Systems
;
Staphylococcal Infections/drug therapy*
;
Microbial Sensitivity Tests
;
Human Umbilical Vein Endothelial Cells
;
Osteoblasts/cytology*
5.Experimental study on promotion of skin radiation damage repair by icarin via HIF-2α/VEGF/Notch pathway to enhance the paracrine function of adipose-derived stem cells.
Yuer ZUO ; Shuangyi LI ; Siyu TAN ; Xiaohao HU ; Zhou LI ; Haoxi LI
Chinese Journal of Reparative and Reconstructive Surgery 2025;39(7):881-890
OBJECTIVE:
To investigate the effectiveness and preliminary mechanisms of icariin (ICA) in enhancing the reparative effects of adipose-derived stem cells (ADSCs) on skin radiation damagies in rats.
METHODS:
Twelve SPF-grade Sprague Dawley rats [body weight (220±10) g] were subjected to a single dose of 10 Gy X-ray irradiation on a 1.5 cm×1.5 cm area of their dorsal skin, with a dose rate of 200 cGy/min to make skin radiation damage model. After successful modelling, the rats were randomly divided into 4 groups ( n=3), and on day 2, the corresponding cells were injected subcutaneously into the irradiated wounds: group A received 0.1 mL of rat ADSCs (1×10 7cells/mL), group B received 0.1 mL of rat ADSCs (1×10 7cells/mL)+1 μmol/L ICA (0.1 mL), group C received 0.1 mL of rat ADSCs (1×10 7cells/mL) pretreated with a hypoxia-inducible factor 2α (HIF-2α) inhibitor+1 μmol/L ICA (0.1 mL), and group D received 0.1 mL of rat ADSCs (1×10 7cells/mL) pretreated with a Notch1 inhibitor+1 μmol/L ICA (0.1 mL). All treatments were administered as single doses. The skin injury in the irradiated areas of the rats was observed continuously from day 1 to day 7 after modelling. On day 28, the rats were sacrificed, and skin tissues from the irradiated areas were harvested for histological examination (HE staining and Masson staining) to assess the repair status and for quantitative collagen content detection. Immunohistochemical staining was performed to detect CD31 expression, while Western blot and real-time fluorescence quantitative PCR (qRT-PCR) were used to measure the protein and mRNA relative expression levels of vascular endothelial growth factor (VEGF), platelet-derived growth factor BB (PDGF-BB), fibroblast growth factor 2 (FGF-2), interleukin 10 (IL-10), transforming growth factor β (TGF-β), HIF-2α, and Notch1, 2, and 3.
RESULTS:
All groups exhibited skin ulcers and redness after irradiation. On day 3, exudation of tissue fluid was observed in all groups. On day 7, group B showed significantly smaller skin injury areas compared to the other 3 groups. On day 28, histological examination revealed that the epidermis was thickened and the dermal fibers were slightly disordered with occasional inflammatory cell aggregation in group A. In group B, the epidermis appeared more normal, the dermal fibers were more orderly, and there was an increase in new blood vessels without significant inflammatory cell aggregation. In contrast, groups C and D showed significantly increased epidermal thickness, disordered and disrupted dermal fibers. Group B had higher collagen fiber content than the other 3 groups, and group D had lower content than group A, with significant differences ( P<0.05). Immunohistochemical staining showed that group B had significantly higher CD31 expression than the other 3 groups, while groups C and D had lower expression than group A, with significant differences ( P<0.05). Western blot and qRT-PCR results indicated that group B had significantly higher relative expression levels of VEGF, PDGF-BB, FGF-2, IL-10, TGF-β, HIF-2α, and Notch1, 2, and 3 proteins and mRNAs compared to the other 3 groups ( P<0.05).
CONCLUSION
ICA may enhance the reparative effects of ADSCs on rat skin radiation damage by promoting angiogenesis and reducing inflammatory responses through the HIF-2α-VEGF-Notch signaling pathway.
Animals
;
Rats, Sprague-Dawley
;
Skin/pathology*
;
Rats
;
Vascular Endothelial Growth Factor A/genetics*
;
Basic Helix-Loop-Helix Transcription Factors/genetics*
;
Signal Transduction
;
Flavonoids/pharmacology*
;
Adipose Tissue/cytology*
;
Stem Cells/cytology*
;
Receptors, Notch/metabolism*
;
Radiation Injuries, Experimental/metabolism*
;
Wound Healing/drug effects*
;
Male
6.Effects of ROCK-siRNA transfection on Ang II-induced endothelial cell senescence and endothelial microparticles.
Kai WANG ; Yan WANG ; Tianqi CHEN ; Fang PENG ; Hui ZHOU ; Qin SHI
Chinese Journal of Cellular and Molecular Immunology 2025;41(9):778-783
Objective To investigate the effects of ROCK-siRNA transfection on endothelial cell senescence and endothelial microparticles (EMPs) induced by angiotensin II (Ang II). Methods Human umbilical vein endothelial cells (HUVECs) were treated with Ang II (1.0 μmo/L) to induce cellular senescence models, followed by transfection with ROCK-siRNA. The cells were divided into four groups: control group, model group, negative transfection control group (Ang II combined with NC-siRNA), and ROCK-siRNA transfection group (Ang II combined with ROCK-siRNA). Cellular senescence was assessed by SA-β-Gal staining. EMP levels in cell supernatants and intracellular reactive oxygen species (ROS) levels were assessed using flow cytometry. The expression levels of silenced information regulator 1(SIRT1) and p53 protein in each group were analyzed by Western blotting. Results Following ROCK-siRNA transfection, the number of senescent cells induced by Ang II was significantly reduced, accompanied by decreased CD31+ EMP levels and suppressed intracellular ROS levels. Meanwhile, the expression levels of SIRT1 were up-regulated, while the expression levels of p53 were down-regulated. Conclusion Silencing ROCK expression suppresses EMP release, reduces ROS generation, regulates the expression of SIRT1 and p53, and ultimately attenuates Ang II-induced endothelial cell senescence.
Humans
;
Angiotensin II/pharmacology*
;
Cellular Senescence/genetics*
;
Human Umbilical Vein Endothelial Cells/cytology*
;
RNA, Small Interfering/metabolism*
;
Reactive Oxygen Species/metabolism*
;
Sirtuin 1/genetics*
;
Transfection
;
Tumor Suppressor Protein p53/genetics*
;
Cell-Derived Microparticles/drug effects*
;
rho-Associated Kinases/metabolism*
;
Endothelial Cells/metabolism*
;
Cells, Cultured
7.Pig meniscus single-cell sequencing reveals highly active red zone chondrocyte populations involved in stemness maintenance and vascularization development.
Monika MANKOWSKA ; Monika STEFANSKA ; Anna Maria MLECZKO ; Katarzyna SARAD ; Witold KOT ; Lukasz KRYCH ; Julia Anna SEMBA ; Eric Lars-Helge LINDBERG ; Jakub Dalibor RYBKA
Journal of Zhejiang University. Science. B 2025;26(7):675-693
Meniscus injuries are widespread and the available treatments do not offer enough healing potential. Here, we provide critical support for using pigs as a biological model for meniscal degeneration and the development of cutting-edge therapies in orthopedics. We present a single-cell transcriptome atlas of the meniscus, consisting of cell clusters corresponding to four major cell types: chondrocytes, endothelial cells, smooth muscle cells, and immune cells. Five distinct chondrocyte subclusters (CH0‒CH4) were annotated, of which only one was widespread in both the red and white zones, indicating a major difference in the cellular makeup of the zones. Subclusters distinct to the white zone appear responsible for cartilage-specific matrix deposition and protection against adverse microenvironmental factors, while those in the red zone exhibit characteristics of mesenchymal stem cells and are more likely to proliferate and migrate. Additionally, they induce remodeling actions in other chondrocyte subclusters and promote the proliferation and maturation of endothelial cells, inducing healing and vascularization processes. Considering that they have substantial remodeling capabilities, these subclusters should be of great interest for tissue engineering studies. We also show that the cellular makeup of the pig meniscus is comparable to that of humans, which supports the use of pigs as a model in orthopedic therapy development.
Animals
;
Swine
;
Chondrocytes/physiology*
;
Single-Cell Analysis
;
Meniscus/blood supply*
;
Endothelial Cells/cytology*
;
Transcriptome
;
Mesenchymal Stem Cells/cytology*
;
Neovascularization, Physiologic
;
Cell Proliferation
8.Didang Decoction-medicated serum enhances autophagy in high glucose-induced rat glomerular endothelial cells via the PI3K/Akt/mTOR signaling pathway.
Yanyan DONG ; Kejing ZHANG ; Jun CHU ; Quangen CHU
Journal of Southern Medical University 2025;45(3):461-469
OBJECTIVES:
To investigate the effect of Didang Decoction-medicated serum on autophagy in high glucose (HG)-induced rat glomerular endothelial cells (RGECs) and explore the pathway that mediates its effect.
METHODS:
Primary RGECs were isolated and cultured using sequential sieving combined with collagenase digestion, followed by identification using immunofluorescence assay for factor VIII. High glucose medium was used to induce RGECs to simulate a diabetic environment, and the effects of Didang Decoction-medicated serum and 3-MA (an autophagy inhibitor), either alone or in combination, on autophagy of HG-exposed cells were evaluated by observing autophagic vacuoles using monodansylcadaverine (MDC) staining. RT-qPCR and Western blotting were employed to measure mRNA and protein expression levels of Beclin-1, p62, LC3B, p-PI3K, p-Akt, and p-mTOR.
RESULTS:
Compared with the control cells, the HG-exposed RGECs showed significantly reduced autophagic fluorescence intensity, decreased Beclin-1 mRNA expression, increased p62 mRNA expression, downregulated Beclin-1 protein and LC3-II/I ratio, and upregulated p62, p-PI3K, p-Akt, and p-mTOR protein levels. Didang Decoction-medicated serum significantly enhanced autophagic fluorescence intensity in HG-exposed cells, increased Beclin-1 mRNA expression, decreased p62 mRNA expression, upregulated Beclin-1 protein, and downregulated p62, p-PI3K, p-Akt, and p-mTOR protein levels.
CONCLUSIONS
Didang Decoction-medicated serum enhances autophagy in HG-exposed RGECs by regulating the PI3K/Akt/mTOR signaling pathway, which sheds light on a new therapeutic strategy for diabetic nephropathy.
Animals
;
Autophagy/drug effects*
;
Signal Transduction/drug effects*
;
Rats
;
TOR Serine-Threonine Kinases/metabolism*
;
Drugs, Chinese Herbal/pharmacology*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Endothelial Cells/metabolism*
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Glucose
;
Cells, Cultured
;
Kidney Glomerulus/cytology*
;
Rats, Sprague-Dawley
9.S1PR5 activation or overexpression enhances barrier function of mouse brain microvascular endothelial cells against OGD/R injury by modulating oxidative stress.
Jingxian WANG ; Zijing REN ; Peiyang ZHOU
Journal of Southern Medical University 2025;45(7):1451-1459
OBJECTIVES:
To investigate the role of sphingosine-1-phosphate receptor 5 (S1PR5) in modulating barrier function of mouse brain microvascular endothelial cells with oxygen-glucose deprivation and reoxygenation (OGD/R).
METHODS:
Mouse brain microvascular endothelial cells (bEnd.3) were exposed to OGD/R to induce barrier dysfunction following treatment with S1PR5-specific agonist A971432 or lentivirus-mediated transfection with a S1PR5-specific siRNA, a S1PR5-overexpressing plasmid, or their respective negative control sequences. The changes in viability and endothelial barrier permeability of the treated cells were evaluated with CCK-8 assay and FITC-dextran permeability assay; the levels of intracellular reactive oxygen species (ROS) and localization and expression levels of the proteins related with barrier function and oxidative stress were detected using immunofluorescence staining, DCFH-DA probe and Western blotting.
RESULTS:
S1PR5 activation obviously enhanced viability of bEnd.3 cells exposed to OGD/R (P<0.0001). Both activation and overexpression of S1PR5 reduced FITC-dextran leakage, while S1PR5 knockdown significantly increased FITC-dextran leakage in the exposed bEnd.3 cells. Activation and overexpression of S1PR5 both increased the cellular expressions of the barrier proteins ZO-1 and occludin, while S1PR5 knockdown produced the opposite effect. In cells exposed to OGD/R, ROS production was significantly reduced by S1PR5 activation and overexpression but increased following S1PR5 knockdown. Overexpression of S1PR5 obviously increased the expressions of the antioxidant proteins Nrf2, HO-1 and SOD2 in the exposed cells.
CONCLUSIONS
S1PR5 activation and overexpression significantly improve cell viability and reduce permeability of a mouse brain microvascular endothelial cell model of OGD/R, the mechanism of which may involve the reduction in ROS production and upregulation of the antioxidant proteins.
Animals
;
Mice
;
Oxidative Stress
;
Endothelial Cells/cytology*
;
Brain/blood supply*
;
Reactive Oxygen Species/metabolism*
;
Receptors, Lysosphingolipid/metabolism*
;
Sphingosine-1-Phosphate Receptors
;
Blood-Brain Barrier/metabolism*
;
Glucose
;
Cell Line
;
Oxygen/metabolism*
;
NF-E2-Related Factor 2/metabolism*
10.Chitosan hydrogel loaded with human umbilical cord mesenchymal stem cell-derived exosomes promotes healing of chronic diabetic wounds in rats.
Xiaohui QIU ; Meng WANG ; Jiangjie TANG ; Jianda ZHOU ; Chen JIN
Journal of Southern Medical University 2025;45(10):2082-2091
OBJECTIVES:
To investigate the mechanism by which chitosan (CS) hydrogel loaded with human umbilical cord mesenchymal stem cell (HUVECs)-derived exosomes (hUCMSC-exos) (Exos@CS-Gel) improves diabetic wound healing.
METHODS:
hUCMSC-exos were extracted and Exos@CS-Gel was prepared. The effect of Exos@CS-Gel on proliferation and migration of HUVECs were evaluated using scratch wound assay and CCK-8 assay. Diabetic rat models with full-thickness skin wounds established by streptozotocin induction were randomized divided into 4 groups for treatment with Exos@CS-Gel (100 µg hUCMSC-exos dissolved in 100 µL 24% CS hydrogel), hUCMSC-exos (100 µg hUCMSC-exos dissolved in 100 µL PBS), CS hydrogel (100 µL 24% CS hydrogel), or PBS (control group). Wound healing and the therapeutic mechanisms were assessed using immunohistochemistry, HE staining, immunofluorescence, and qRT-PCR.
RESULTS:
In cultured HUVECs, Exos@CS-Gel treatment significantly promoted cell proliferation and migration. In the rat models of chronic diabetic wounds, the wound healing rate in Exos@CS-Gel group reached 92.7% on day 14, significantly higher than those in hUCMSC-exos group (9.12%), CS hydrogel group (16.28%), and control group (25.98%). Microvessel density and the expression levels of vascular endothelial growth factor and transforming growth factor β-1 were significantly increased in the Exos@CS-Gel group.
CONCLUSIONS
Exos@CS-Gel promotes survival capacity of hUCMSC-exos in vitro and accelerates diabetic wound healing in rats by promoting angiogenesis and cell proliferation.
Animals
;
Wound Healing
;
Humans
;
Chitosan
;
Exosomes
;
Mesenchymal Stem Cells/cytology*
;
Diabetes Mellitus, Experimental
;
Rats
;
Umbilical Cord/cytology*
;
Hydrogels
;
Human Umbilical Vein Endothelial Cells
;
Cell Proliferation
;
Rats, Sprague-Dawley
;
Male

Result Analysis
Print
Save
E-mail