1.Mechanism of Xiangsha Liujunzi Decoction in improving autophagy in interstitial cells of Cajal of rats with functional dyspepsia by regulation of IRE1/ASK1/JNK pathway.
Ming-Kai LYU ; Yong-Qiang DUAN ; Jin JIN ; Wen-Chao SHAO ; Qi WU ; Yong TIAN ; Min BAI ; Ying-Xia CHENG
China Journal of Chinese Materia Medica 2025;50(8):2237-2244
This study explored the mechanism of Xiangsha Liujunzi Decoction(XSLJZD) in the treatment of functional dyspepsia(FD) based on inositol-requiring enzyme 1(IRE1)/apoptosis signal-regulating kinase 1(ASK1)/c-Jun N-terminal kinase(JNK) pathway-mediated autophagy in interstitial cells of Cajal(ICC). Forty-eight SPF-grade male SD suckling rats were randomly divided into a blank group and a modeling group, and the integrated modeling method(iodoacetamide gavage + disturbance of hunger and satiety + swimming exhaustion) was used to replicate the FD rat model. After the model replications were successfully completed, the rats were divided into a model group, high-dose, medium-dose, and low-dose groups of XSLJZD(12, 6, and 3 g·kg~(-1)·d~(-1)), and a positive drug group(mosapride of 1.35 mg·kg~(-1)·d~(-1)), and the intervention lasted for 14 days. The gastric emptying rate and intestinal propulsion rate of rats in each group were measured. The histopathological changes in the gastric sinus tissue of rats in each group were observed by hematoxylin-eosin(HE) staining. The ultrastructure of ICC was observed by transmission electron microscopy. The immunofluorescence double staining technique was used to detect the protein expression of phospho-IRE1(p-IRE1), TNF receptor associated factors 2(TRAF2), phospho-ASK1(p-ASK1), phospho-JNK(p-JNK), p62, and Beclin1 in ICC of gastric sinus tissue of rats in each group. Western blot was used to detect the related protein expression of gastric sinus tissue of rats in each group. Compared with those in the blank group, the rats in the model group showed decreased body weight, gastric emptying rate, and intestinal propulsion rate, and transmission electron microscopy revealed damage to the endoplasmic reticulum structure and increased autophagosomes in ICC. Immunofluorescence staining revealed that the ICC of gastric sinus tissue showed a significant elevation of p-IRE1, TRAF2, p-ASK1, p-JNK, and Beclin1 proteins and a significant reduction of p62 protein. Western blot revealed that the expression levels of relevant proteins in gastric sinus tissue were consistent with those of proteins in ICC. Compared with the model group, the body weight of rats in the high-dose and medium-dose groups of XSLJZD was increased, and the gastric emptying rate and intestinal propulsion rate were increased. Transmission electron microscopy observed amelioration of structural damage to the endoplasmic reticulum of ICC and reduction of autophagosomes, and the p-IRE1, TRAF2, p-ASK1, p-JNK, and Beclin1 proteins in the ICC of gastric sinus tissue were significantly decreased. The p62 protein was significantly increased. Western blot revealed that the expression levels of relevant proteins in gastric sinus tissue were consistent with those of proteins in ICC. XSLJZD can effectively treat FD, and its specific mechanism may be related to the inhibition of the expression of molecules related to the endoplasmic reticulum stress IRE1/ASK1/JNK pathway in ICC and the improvement of autophagy to promote gastric motility in ICC.
Animals
;
Male
;
Drugs, Chinese Herbal/administration & dosage*
;
Autophagy/drug effects*
;
Rats
;
Rats, Sprague-Dawley
;
Interstitial Cells of Cajal/metabolism*
;
Dyspepsia/physiopathology*
;
Protein Serine-Threonine Kinases/genetics*
;
MAP Kinase Kinase Kinase 5/genetics*
;
MAP Kinase Signaling System/drug effects*
;
Humans
;
Endoribonucleases/genetics*
;
Multienzyme Complexes
2.Vitexin-4 ″-O-glucoside alleviates acetaminophen-induced acute liver injury.
Fan DONG ; Shanglei LAI ; Jiannan QIU ; Xiaobing DOU
Journal of Zhejiang University. Medical sciences 2025;54(3):307-317
OBJECTIVES:
To explore the protective effect of vitexin-4 ″-O-glucoside (VOG) against acetaminophen-induced acute liver injury in mice and its underlying mechanism.
METHODS:
C57BL/6 mice were randomly divided into 4 groups: normal control group, model control group, low-dose group of VOG (30 mg/kg), and high-dose group of VOG (60 mg/kg). Acute liver injury was induced by intraperitoneal injection of acetaminophen (500 mg/kg). VOG was administrated by gavage 2 h before acetaminophen treatment in VOG groups. The protective effect of VOG against acute liver injury was evaluated by detecting alanine transaminase (ALT), aspartate transaminase (AST) levels and hematoxylin and eosin staining. The malondialdehyde (MDA) content, superoxide dismutase (SOD) and catalase (CAT) activity in liver were detected to evaluate the hepatic oxidative stress. The expression levels of tumor necrosis factor (TNF)-α, Il-1β, and Il-6 in liver were detected by quantitative reverse transcription polymerase chain reaction (qRT-PCR). The expression levels of phosphorylated c-jun N-terminal kinase (JNK)/JNK, phosphorylated p38/p38, inositol-requiring enzyme 1 alpha (IRE-1α), X-box binding protein 1s (XBP1s), and glucose-regulated protein 78 (GRP78) in liver were detected by Western blotting. An endoplasmic reticulum stress model was established in AML-12 cells using tunicamycin. Cell viability was assessed using the CCK-8 assay, and the degree of cell damage was detected by lactate dehydrogenase (LDH) assay. The gene expression levels of Ire-1α, Xbp1s, and Grp78 in the cells were detected using qRT-PCR.
RESULTS:
In the animal experiments, compared with the model control group, VOG significantly improved plasma ALT and AST levels, liver MDA content, as well as SOD and CAT activities. VOG also reduced the expression levels of Tnf-α, Il-1β, and Il-6 in the liver, and improved protein phosphorylation levels of JNK and p38, as well as the protein expression levels of IRE-1α, XBP1s, and GRP78. In cell experiments, VOG pretreatment enhanced cell viability, reduced LDH release and decreased the mRNA expression of Ire-1α, Xbp1s, and Grp78.
CONCLUSIONS
VOG can suppress inflammation and oxidative stress, and alleviate acetaminophen-induced acute liver injury in mice by suppressing endoplasmic reticulum stress and modulating the MAPK signaling pathway.
Animals
;
Endoplasmic Reticulum Chaperone BiP
;
Mice
;
Acetaminophen/adverse effects*
;
Mice, Inbred C57BL
;
Chemical and Drug Induced Liver Injury/prevention & control*
;
Glucosides/therapeutic use*
;
Oxidative Stress/drug effects*
;
Male
;
Apigenin/therapeutic use*
;
Liver/drug effects*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Endoplasmic Reticulum Stress/drug effects*
;
X-Box Binding Protein 1
;
Endoribonucleases/metabolism*
;
Interleukin-1beta/metabolism*
;
Interleukin-6/metabolism*
;
Protein Serine-Threonine Kinases
3.Astragaloside IV Alleviates Podocyte Injury in Diabetic Nephropathy through Regulating IRE-1α/NF-κ B/NLRP3 Pathway.
Da-Lin SUN ; Zi-Yi GUO ; Wen-Yuan LIU ; Lin ZHANG ; Zi-Yuan ZHANG ; Ya-Ling HU ; Su-Fen LI ; Ming-Yu ZHANG ; Guang ZHANG ; Jin-Jing WANG ; Jing-Ai FANG
Chinese journal of integrative medicine 2025;31(5):422-433
OBJECTIVE:
To investigate the effects of astragaloside IV (AS-IV) on podocyte injury of diabetic nephropathy (DN) and reveal its potential mechanism.
METHODS:
In in vitro experiment, podocytes were divided into 4 groups, normal, high glucose (HG), inositol-requiring enzyme 1 (IRE-1) α activator (HG+thapsigargin 1 µmol/L), and IRE-1α inhibitor (HG+STF-083010, 20 µmol/L) groups. Additionally, podocytes were divided into 4 groups, including normal, HG, AS-IV (HG+AS-IV 20 µmol/L), and IRE-1α inhibitor (HG+STF-083010, 20 µmol/L) groups, respectively. After 24 h treatment, the morphology of podocytes and endoplasmic reticulum (ER) was observed by electron microscopy. The expressions of glucose-regulated protein 78 (GRP78) and IRE-1α were detected by cellular immunofluorescence. In in vivo experiment, DN rat model was established via a consecutive 3-day intraperitoneal streptozotocin (STZ) injections. A total of 40 rats were assigned into the normal, DN, AS-IV [AS-IV 40 mg/(kg·d)], and IRE-1α inhibitor [STF-083010, 10 mg/(kg·d)] groups (n=10), respectively. The general condition, 24-h urine volume, random blood glucose, urinary protein excretion rate (UAER), urea nitrogen (BUN), and serum creatinine (SCr) levels of rats were measured after 8 weeks of intervention. Pathological changes in the renal tissue were observed by hematoxylin and eosin (HE) staining. Quantitative reverse transcription-polymerase chain reaction (RT-PCR) and Western blot were used to detect the expressions of GRP78, IRE-1α, nuclear factor kappa Bp65 (NF-κBp65), interleukin (IL)-1β, NLR family pyrin domain containing 3 (NLRP3), caspase-1, gasdermin D-N (GSDMD-N), and nephrin at the mRNA and protein levels in vivo and in vitro, respectively.
RESULTS:
Cytoplasmic vacuolation and ER swelling were observed in the HG and IRE-1α activator groups. Podocyte morphology and ER expansion were improved in AS-IV and IRE-1α inhibitor groups compared with HG group. Cellular immunofluorescence showed that compared with the normal group, the fluorescence intensity of GRP78 and IRE-1α in the HG and IRE-1α activator groups were significantly increased whereas decreased in AS-IV and IRE-1α inhibitor groups (P<0.05). Compared with the normal group, the mRNA and protein expressions of GRP78, IRE-1α, NF-κ Bp65, IL-1β, NLRP3, caspase-1 and GSDMD-N in the HG group was increased (P<0.05). Compared with HG group, the expression of above indices was decreased in the AS-IV and IRE-1α inhibitor groups, and the expression in the IRE-1α activator group was increased (P<0.05). The expression of nephrin was decreased in the HG group, and increased in AS-IV and IRE-1α inhibitor groups (P<0.05). The in vivo experiment results revealed that compared to the normal group, the levels of blood glucose, triglyceride, total cholesterol, BUN, blood creatinine and urinary protein in the DN group were higher (P<0.05). Compared with DN group, the above indices in AS-IV and IRE-1α inhibitor groups were decreased (P<0.05). HE staining revealed glomerular hypertrophy, mesangial widening and mesangial cell proliferation in the renal tissue of the DN group. Compared with the DN group, the above pathological changes in renal tissue of AS-IV and IRE-1α inhibitor groups were alleviated. Quantitative RT-PCR and Western blot results of GRP78, IRE-1α, NF-κ Bp65, IL-1β, NLRP3, caspase-1 and GSDMD-N were consistent with immunofluorescence analysis.
CONCLUSION
AS-IV could reduce ERS and inflammation, improve podocyte pyroptosis, thus exerting a podocyte-protective effect in DN, through regulating IRE-1α/NF-κ B/NLRP3 signaling pathway.
Podocytes/metabolism*
;
Animals
;
Diabetic Nephropathies/metabolism*
;
Saponins/therapeutic use*
;
Triterpenes/therapeutic use*
;
Signal Transduction/drug effects*
;
NF-kappa B/metabolism*
;
Protein Serine-Threonine Kinases/metabolism*
;
Male
;
Rats, Sprague-Dawley
;
NLR Family, Pyrin Domain-Containing 3 Protein/metabolism*
;
Endoribonucleases/metabolism*
;
Endoplasmic Reticulum Chaperone BiP
;
Rats
;
Diabetes Mellitus, Experimental/complications*
;
Endoplasmic Reticulum/metabolism*
;
Multienzyme Complexes
4.Elevated expressions of GRP78/CHOP in lupus nephritis: their diagnostic value and association with PERK/IRE1α pathway-mediated renal cell apoptosis.
Yihan WANG ; Weiqing ZHANG ; Ting FANG ; Zhimin XIE ; Yongsheng FAN ; Xinchang WANG
Journal of Southern Medical University 2025;45(10):2055-2061
OBJECTIVES:
To examine the changes in serum levels of endoplasmic reticulum stress (ERS) proteins GRP78/CHOP in patients with lupus nephritis (LN) and analyze their diagnostic value and association with renal pathological features.
METHODS:
From a sample bank established based on a multicenter cohort study of systemic lupus erythematosus (SLE), 60 LN patients and 35 SLE patients without renal involvement were randomly selected. ELISA was used to detect serum levels of GRP78 and CHOP in the patients to analyze their correlation with clinical features and their diagnostic ability for LN and active LN. MRL/lpr mice were used as an animal model of LN to examine their serum levels of GRP78 and CHOP expression and renal expressions of endoplasmic reticulum apoptosis-related proteins.
RESULTS:
Serum GRP78 and CHOP levels were significantly higher in LN patients than in SLE patients without renal involvement (P<0.05), and were also higher in active LN patients than in patients in the stable phase (P<0.05). Correlation analysis indicated that serum GRP78 and CHOP levels were positively correlated with SLEDAI scores and 24-h urinary protein. ROC analysis showed that CHOP had a high diagnostic ability for LN (AUC=0.762) and active LN (AUC=0.933). Consistent with the clinical findings, serum GRP78 and CHOP levels were elevated in LN mice, and the expressions of PERK and IRE1α pathway proteins were also increased in the kidneys of the mice. TUNEL staining showed increased renal cell apoptosis and elevated renal expressions of apoptosis-related proteins in LN mice.
CONCLUSIONS
Serum levels of GRP78/CHOP are increased in LN patients possibly in association with ERS-induced apoptosis mediated by the PERK/IRE1α dual pathway.
Endoplasmic Reticulum Chaperone BiP
;
Lupus Nephritis/blood*
;
Transcription Factor CHOP/blood*
;
Heat-Shock Proteins/blood*
;
Animals
;
Apoptosis
;
Humans
;
Mice
;
Mice, Inbred MRL lpr
;
Female
;
Adult
;
Endoribonucleases/metabolism*
;
Male
;
eIF-2 Kinase/metabolism*
;
Protein Serine-Threonine Kinases/metabolism*
;
Young Adult
;
Endoplasmic Reticulum Stress
;
Kidney/metabolism*
;
Middle Aged
;
Signal Transduction
5.Role of AMPKα2 in regulating the IRE1α-JNK pathway in metabolic dysfunction-associated fatty liver disease.
Shujie ZHAO ; Weilun FANG ; Yu WEI ; Jiahui MENG ; Qiao JIN ; Weijin FANG
Journal of Central South University(Medical Sciences) 2024;49(12):1891-1901
OBJECTIVES:
Over 25% of the global population is affected by metabolic dysfunction-associated fatty liver disease (MAFLD), yet its pathogenesis remains unclear. Endoplasmic reticulum stress (ERS) may be involved in the onset and progression of MAFLD. Adenosine 5'-monophosphate-activated protein kinase α2 (AMPKα2), a key regulator of hepatic energy metabolism, may influence MAFLD development via ERS modulation. This study aims to investigate the role of AMPKα2 in a high-fat diet-induced MAFLD mouse model and its regulatory effect on the inositol-requiring enzyme 1 alpha (IRE1α)-c-Jun N-terminal kinase (JNK) signaling pathway.
METHODS:
Liver-specific AMPKα2 knockout mice on a C57BL/6 background were generated and subjected to MAFLD induction. Mice were divided into four groups: wild-type control (WT+Chow, basic diet for 12 weeks), wild-type high-fat diet (WT+HFD, high-fat diet for 12 weeks), AMPKα2 knockout control (AMPKα2 KO+Chow), and AMPKα2 knockout high-fat diet (AMPKα2 KO+HFD). Blood glucose, lipid levels, and liver function were assessed post-treatment. Liver histology was analyzed using Oil Red O, hematoxylin-eosin, Masson, and Sirius Red staining. Western blotting was used to evaluate the expression of AMPKα2, ERS markers, autophagy, apoptosis, and ferroptosis-related proteins.
RESULTS:
Compared with the WT+Chow group, the WT+HFD group showed significantly elevated blood glucose, alanine aminotransferase (ALT), and aspartate aminotransferase (AST) levels (all P<0.01); histological analyses revealed hepatic steatosis, vacuolization, and fibrosis, with a significantly increased non-alcoholic steatohepatitis activity score (NAS) (P<0.001). Phosphorylated IRE1α and the autophagy marker microtubule-associated protein light chain (LC) 3II/LC3I were markedly upregulated, while apoptotic proteins (Cleaved-Caspase 3, BAX, Bcl-2) and ferroptosis markers (SLC7A11, GPX4) showed no significant change (P>0.05). In the AMPKα2 KO+HFD group, blood glucose, ALT, and AST levels were significantly reduced compared to the WT+HFD group. Histological improvements were observed with reduced vacuolization and lipid accumulation. Expression of p-IRE1α, JNK, and LC3II/LC3I was significantly decreased (P<0.05).
CONCLUSIONS
Hepatic AMPKα2 knockout alleviates high-fat induced MAFLD, potentially by inhibiting the IRE1α-JNK pathway and reducing autophagy.
Animals
;
AMP-Activated Protein Kinases/physiology*
;
Protein Serine-Threonine Kinases/metabolism*
;
Mice, Knockout
;
Diet, High-Fat/adverse effects*
;
Mice, Inbred C57BL
;
Mice
;
Endoplasmic Reticulum Stress
;
Endoribonucleases/metabolism*
;
Male
;
Liver/pathology*
;
Non-alcoholic Fatty Liver Disease/metabolism*
;
MAP Kinase Signaling System/physiology*
;
Fatty Liver/metabolism*
;
Signal Transduction
6.IRE1α deficiency impairs autophagy in chondrocytes by upregulating calcium homeostasis endoplasmic reticulum protein.
Xing Yue LI ; Dan Yang YIN ; Meng Tian FAN ; Yu You YANG ; Li LIANG ; Nai Bo FENG ; Xiao Li LI ; Feng Jin GUO
Journal of Southern Medical University 2022;42(6):785-793
OBJECTIVE:
To explore the mechanism by which inositol-requiring enzyme-1α (IRE1α) regulates autophagy function of chondrocytes through calcium homeostasis endoplasmic reticulum protein (CHERP).
METHODS:
Cultured human chondrocytes (C28/I2 cells) were treated with tunicamycin, 4μ8c, rapamycin, or both 4μ8c and rapamycin, and the expressions of endoplasmic reticulum (ER) stress- and autophagy-related proteins were detected with Western blotting. Primary chondrocytes from ERN1 knockout (ERN1 CKO) mice and wild-type mice were examined for ATG5 and ATG7 mRNA expressions, IRE1α and p-IRE1α protein expressions, and intracellular calcium ion content using qPCR, Western blotting and flow cytometry. The effect of bafilomycin A1 treatment on LC3 Ⅱ/LC3 Ⅰ ratio in the isolated chondrocytes was assessed with Western blotting. Changes in autophagic flux of the chondrocytes in response to rapamycin treatment were detected using autophagy dual fluorescent virus. The changes in autophagy level in C28/I2 cells overexpressing CHERP and IRE1α were detected using immunofluorescence assay.
RESULTS:
Tunicamycin treatment significantly up-regulated ER stress-related proteins and LC3 Ⅱ/LC3 Ⅰ ratio and down-regulated the expression of p62 in C28/I2 cells (P < 0.05). Rapamycin obviously up-regulated LC3 Ⅱ/LC3 Ⅰ ratio (P < 0.001) in C28/I2 cells, but this effect was significantly attenuated by co-treatment with 4μ8c (P < 0.05). Compared with the cells from the wild-type mice, the primary chondrocytes from ERN1 knockout mice showed significantly down-regulated mRNA levels of ERN1 (P < 0.01), ATG5 (P < 0.001) and ATG7 (P < 0.001), lowered or even lost expressions of IRE1α and p-IRE1α proteins (PP < 0.01), and increased expression of CHERP (P < 0.05) and intracellular calcium ion content (P < 0.001). Bafilomycin A1 treatment obviously increased LC3 Ⅱ/ LC3 Ⅰ ratio in the chondrocytes from both wild-type and ERN1 knockout mice (P < 0.01 or 0.05), but the increment was more obvious in the wild-type chondrocytes (P < 0.05). Treatment with autophagy dual-fluorescence virus resulted in a significantly greater fluorescence intensity of LC3-GFP in rapamycin-treated ERN1 CKO chondrocytes than in wild-type chondrocytes (P < 0.05). In C28/I2 cells, overexpression of CHERP obviously decreased the fluorescence intensity of LC3, and overexpression of IRE1α enhanced the fluorescence intensity and partially rescued the fluorescence reduction of LC3 caused by CHERP.
CONCLUSION
IRE1α deficiency impairs autophagy in chondrocytes by upregulating CHERP and increasing intracellular calcium ion content.
Animals
;
Autophagy
;
Calcium/metabolism*
;
Chondrocytes
;
Endoplasmic Reticulum/metabolism*
;
Endoribonucleases/pharmacology*
;
Homeostasis
;
Inositol
;
Mice
;
Mice, Knockout
;
Protein Serine-Threonine Kinases
;
RNA, Messenger/metabolism*
;
Sirolimus/pharmacology*
;
Tunicamycin/pharmacology*
7.Xenon post-conditioning protects against spinal cord ischemia-reperfusion injury in rats by downregulating mTOR pathway and inhibiting endoplasmic reticulum stress-induced neuronal apoptosis.
Lan LUO ; Jia Qi TONG ; Lu LI ; Mu JIN
Journal of Southern Medical University 2022;42(8):1256-1262
OBJECTIVE:
The purpose of this study was to determine whether xenon post-conditioning affects mTOR signaling as well as endoplasmic reticulum stress (ERS)-apoptosis pathway in rats with spinal cord ischemia/reperfusion injury.
METHODS:
Fifty male rats were randomized equally into sham-operated group (Sham group), I/R model group (I/R group), I/R model+ xenon post-conditioning group (Xe group), I/R model+rapamycin (a mTOR signaling pathway inhibitor) treatment group (I/R+ Rapa group), and I/R model + xenon post- conditioning with rapamycin treatment group (Xe + Rapa group).. In the latter 4 groups, SCIRI was induced by clamping the abdominal aorta for 85 min followed by reperfusion for 4 h. Rapamycin (or vehicle) was administered by daily intraperitoneal injection (4 mg/kg) for 3 days before SCIRI, and xenon post-conditioning by inhalation of 1∶1 mixture of xenon and oxygen for 1 h at 1 h after initiation of reperfusion; the rats without xenon post-conditioning were given inhalation of nitrogen and oxygen (1∶ 1). After the reperfusion, motor function and histopathologic changes in the rats were examined. Western blotting and real-time PCR were used to detect the protein and mRNA expressions of GRP78, ATF6, IRE1α, PERK, mTOR, p-mTOR, Bax, Bcl-2 and caspase-3 in the spinal cord.
RESULTS:
The rats showed significantly lowered hind limb motor function following SCIRI (P < 0.01) with a decreased count of normal neurons, increased mRNA and protein expressions of GRP78, ATF6, IRE1α, PERK, and caspase-3, and elevated p-mTOR/mTOR ratio and Bax/Bcl-2 ratio (P < 0.01). Xenon post-conditioning significantly decreased the mRNA and protein levels of GRP78, ATF6, IRE1α, PERK and caspase-3 (P < 0.05 or 0.01) and reduced p-mTOR/mTOR and Bax/Bcl-2 ratios (P < 0.01) in rats with SCIRI; the mRNA contents and protein levels of GRP78 and ATF6 were significantly decreased in I/R+Rapa group (P < 0.01). Compared with those in Xe group, the rats in I/R+Rapa group and Xe+Rapa had significantly lowered BBB and Tarlov scores of the hind legs (P < 0.01), and caspase-3 protein level and Bax/Bcl-2 ratio were significantly lowered in Xe+Rapa group (P < 0.05 or 0.01).
CONCLUSION
By inhibiting ERS and neuronal apoptosis, xenon post- conditioning may have protective effects against SCIRI in rats. The mTOR signaling pathway is partially involved in this process.
Animals
;
Apoptosis
;
Caspase 3/metabolism*
;
Endoplasmic Reticulum Stress
;
Endoribonucleases/pharmacology*
;
Injections, Intraperitoneal
;
Male
;
Neurons/pathology*
;
Nitrogen/metabolism*
;
Oxygen/metabolism*
;
Protein Serine-Threonine Kinases
;
Proto-Oncogene Proteins c-bcl-2/metabolism*
;
RNA, Messenger/metabolism*
;
Random Allocation
;
Rats
;
Rats, Sprague-Dawley
;
Reperfusion Injury/metabolism*
;
Sirolimus/pharmacology*
;
Spinal Cord Ischemia/pathology*
;
TOR Serine-Threonine Kinases/metabolism*
;
Xenon/therapeutic use*
;
bcl-2-Associated X Protein/metabolism*
8.Estradiol inhibits differentiation of mouse macrophage into a pro-inflammatory phenotype by upregulating the IRE1α-XBP1 signaling axis.
Ling Jian ZHUO ; Shuo Chen WANG ; Xing LIU ; Bao An CHEN ; Xiang LI
Journal of Southern Medical University 2022;42(3):432-437
OBJECTIVE:
To explore the mechanism by which estradiol modulates the immunophenotype of macrophages through the endoplasmic reticulum stress pathway.
METHODS:
Peritoneal macrophages isolated from C57 mice were cultured in the presence of 60 ng/mL interferon-γ (IFN-γ) followed by treatment with estradiol (1.0 nmol/L) alone, estradiol with estrogen receptor antagonist (Acolbifene, 4 nmol/L), estradiol with IRE1α inhibitor (4 μ 8 C), or estradiol with IRE1α agonist. After the treatments, the expression levels of MHC-Ⅱ, iNOS and endoplasmic reticulum stress marker proteins IRE1α, eIF2α and ATF6 in the macrophages were detected with Western blotting, and the mRNA levels of TGF-β, IL-6, IL-10 and TNF-α were detected with RT-PCR.
RESULTS:
Estrogen treatment of the macrophages significantly decreased the expressions of M1-related proteins MHC-Ⅱ (P=0.021) and iNOS (P < 0.001) and the mRNA expressions of TNF-α (P=0.003) and IL-6 (P=0.004), increased the mRNA expression of TGF-β (P=0.002) and IL-10 (P=0.008), and up-regulated the protein expressions of IRE1α (P < 0.001) and its downstream transcription factor XBP-1 (P < 0.001). Addition of the estrogen inhibitor obviously blocked the effect of estrogen. Compared with estrogen treatment alone, combined treatment of the macrophages with estrogen and the IRE1α inhibitor 4 μ 8 C significantly up-regulated the protein expressions of MHC-Ⅱ (P=0.002) and iNOS (P=0.003) and the mRNA expressions of TNF-α (P=0.003) and IL-6 (P=0.024), and obviously down-regulated the mRNA expression of TGF-β (P < 0.001) and IL-10 (P < 0.001); these changes were not observed in cells treated with estrogen and the IRE1α agonist.
CONCLUSION
Estrogen can inhibit the differentiation of murine macrophages into a pro-inflammatory phenotype by up-regulating the IRE1α-XBP-1 signaling axis, thereby producing an inhibitory effect on inflammatory response.
Animals
;
Cell Differentiation/drug effects*
;
Endoribonucleases/metabolism*
;
Estradiol/pharmacology*
;
Estrogens/metabolism*
;
Interleukin-10
;
Interleukin-6/metabolism*
;
Macrophages, Peritoneal/metabolism*
;
Mice
;
Phenotype
;
Protein Serine-Threonine Kinases/metabolism*
;
RNA, Messenger/metabolism*
;
Signal Transduction/drug effects*
;
Transforming Growth Factor beta/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Up-Regulation/drug effects*
;
X-Box Binding Protein 1/metabolism*
9.S100 calcium binding protein A16 promotes fat synthesis through endoplasmic reticulum stress in HepG2 cells.
Jing-Bao KAN ; Ge-Qian SHEN ; Jie YANG ; Pei TONG ; Ri-Hua ZHANG ; Xiu-Bin LIANG ; Dong-Ming SU ; Dong LI ; Yun LIU
Acta Physiologica Sinica 2019;71(2):279-286
The aim of this study was to investigate the role of S100 calcium binding protein A16 (S100A16) in lipid metabolism in hepatocytes and its possible biological mechanism. HepG2 cells (human hepatoma cell line) were cultured with fatty acid to establish fatty acid culture model. The control model was cultured without fatty acid. Each model was divided into three groups and transfected with S100a16 over-expression, shRNA and vector plasmids, respectively. The concentration of triglyceride (TG) in the cells was measured by kit, and the lipid droplets was observed by oil red O staining. Immunoprecipitation and mass spectrometry were used to find the interesting proteins interacting with S100A16, and the interaction was verified by immunoprecipitation. The further mechanism was studied by Western blot and qRT-PCR. The results showed that the intracellular lipid droplet and TG concentrations in the fatty acid culture model were significantly higher than those in the control model. The accumulation of intracellular fat in the S100a16 over-expression group was significantly higher than that in the vector plasmid transfection group. There was an interaction between heat shock protein A5 (HSPA5) and S100A16. Over-expression of S100A16 up-regulated protein expression levels of HSPA5, inositol-requiring enzyme 1α (IRE1α) and pIREα1, which belong to endoplasmic reticulum stress HSPA5/IRE1α-XBP1 pathway. Meanwhile, over-expression of S100A16 up-regulated the mRNA expression levels of adipose synthesis-related gene Srebp1c, Acc and Fas. In the S100a16 shRNA plasmid transfection group, the above-mentioned protein and mRNA levels were lower than those of vector plasmid transfection group. These results suggest that S100A16 may promote lipid synthesis in HepG2 cells through endoplasmic reticulum stress HSPA5/IRE1α-XBP1 pathway.
Endoplasmic Reticulum Stress
;
Endoribonucleases
;
physiology
;
Heat-Shock Proteins
;
physiology
;
Hep G2 Cells
;
Humans
;
Lipid Metabolism
;
Protein-Serine-Threonine Kinases
;
physiology
;
S100 Proteins
;
physiology
;
Triglycerides
;
biosynthesis
;
X-Box Binding Protein 1
;
physiology
10.Coxsackievirus B3 Infection Triggers Autophagy through 3 Pathways of Endoplasmic Reticulum Stress.
Xiao Nuan LUO ; Hai Lan YAO ; Juan SONG ; Qin Qin SONG ; Bing Tian SHI ; Dong XIA ; Jun HAN
Biomedical and Environmental Sciences 2018;31(12):867-875
OBJECTIVE:
Autophagy is a highly conserved intracellular degradation pathway. Many picornaviruses induce autophagy to benefit viral replication, but an understanding of how autophagy occurs remains incomplete. In this study, we explored whether coxsackievirus B3 (CVB3) infection induced autophagy through endoplasmic reticulum (ER) stress.
METHODS:
In CVB3-infected HeLa cells, the specific molecules of ER stress and autophagy were detected using Western blotting, reverse transcription polymerase chain reaction (RT-PCR), and confocal microscopy. Then PKR-like ER protein kinase (PERK) inhibitor, inositol-requiring protein-1 (IRE1) inhibitor, or activating transcription factor-6 (ATF6) inhibitor worked on CVB3-infected cells, their effect on autophagy was assessed by Western blotting for detecting microtubule-associated protein light chain 3 (LC3).
RESULTS:
CVB3 infection induced ER stress, and ER stress sensors PERK/eIF2α, IRE1/XBP1, and ATF6 were activated. CVB3 infection increased the accumulation of green fluorescent protein (GFP)-LC3 punctuation and induced the conversion from LC3-I to phosphatidylethanolamine-conjugated LC3-1 (LC3-II). CVB3 infection still decreased the expression of mammalian target of rapamycin (mTOR) and p-mTOR. Inhibition of PERK, IRE1, or ATF6 significantly decreased the ratio of LC3-II to LC3-I in CVB3-infected HeLa cells.
CONCLUSION
CVB3 infection induced autophagy through ER stress in HeLa cells, and PERK, IRE1, and ATF6a pathways participated in the regulation of autophagy. Our data suggested that ER stress may inhibit mTOR signaling pathway to induce autophagy during CVB3 infection.
Activating Transcription Factor 6
;
metabolism
;
Autophagy
;
Coxsackievirus Infections
;
metabolism
;
Endoplasmic Reticulum Stress
;
Endoribonucleases
;
metabolism
;
Enterovirus B, Human
;
HeLa Cells
;
Humans
;
Protein-Serine-Threonine Kinases
;
metabolism
;
Signal Transduction
;
eIF-2 Kinase
;
metabolism

Result Analysis
Print
Save
E-mail