1.EZH2/miR-142-3p/HMGB1 axis mediates chondrocyte pyroptosis by regulating endoplasmic reticulum stress in knee osteoarthritis.
Yang CHEN ; Shanshan DONG ; Xin ZENG ; Qing XU ; Mingwei LIANG ; Guangneng LIAO ; Lan LI ; Bin SHEN ; Yanrong LU ; Haibo SI
Chinese Medical Journal 2025;138(1):79-92
BACKGROUND:
Knee osteoarthritis (OA) is still challenging to prevent or treat. Enhanced endoplasmic reticulum (ER) stress and increased pyroptosis in chondrocytes may be responsible for cartilage degeneration. This study aims to investigate the effect of ER stress on chondrocyte pyroptosis and the upstream regulatory mechanisms, which have rarely been reported.
METHODS:
The expression of the histone methyltransferase enhancer of zeste homolog 2 (EZH2), microRNA-142-3p (miR-142-3p), and high mobility group box 1 (HMGB1) and the levels of ER stress, pyroptosis, and metabolic markers in normal and OA chondrocytes were investigated by western blotting, quantitative polymerase chain reaction, immunohistochemistry, fluorescence in situ hybridization, fluorescein amidite-tyrosine-valine-alanine-aspartic acid-fluoromethyl ketone (FAM-YVAD-FMK)/Hoechst 33342/propidium iodide (PI) staining, lactate dehydrogenase (LDH) release assays, and cell viability assessments. The effects of EZH2, miR-142-3p, and HMGB1 on ER stress and pyroptosis and the hierarchical regulatory relationship between them were analyzed by chromatin immunoprecipitation, luciferase reporters, gain/loss-of-function assays, and rescue assays in interleukin (IL)-1β-induced OA chondrocytes. The mechanistic contribution of EZH2, miR-142-3p, and HMGB1 to chondrocyte ER stress and pyroptosis and therapeutic prospects were validated radiologically, histologically, and immunohistochemically in surgically induced OA rats.
RESULTS:
Increased EZH2 and HMGB1, decreased miR-142-3p, enhanced ER stress, and activated pyroptosis in chondrocytes were associated with OA occurrence and progression. EZH2 and HMGB1 exacerbated and miR-142-3p alleviated ER stress and pyroptosis in OA chondrocytes. EZH2 transcriptionally silenced miR-142-3p via H3K27 trimethylation, and miR-142-3p posttranscriptionally silenced HMGB1 by targeting the 3'-UTR of the HMGB1 gene. Moreover, ER stress mediated the effects of EZH2, miR-142-3p, and HMGB1 on chondrocyte pyroptosis. In vivo experiments mechanistically validated the hierarchical regulatory relationship between EZH2, miR-142-3p, and HMGB1 and their effects on chondrocyte ER stress and pyroptosis.
CONCLUSIONS
A novel EZH2/miR-142-3p/HMGB1 axis mediates chondrocyte pyroptosis and cartilage degeneration by regulating ER stress in OA, contributing novel mechanistic insights into OA pathogenesis and providing potential targets for future therapeutic research.
Enhancer of Zeste Homolog 2 Protein/genetics*
;
Osteoarthritis, Knee/pathology*
;
Chondrocytes/metabolism*
;
Pyroptosis/physiology*
;
HMGB1 Protein/genetics*
;
MicroRNAs/metabolism*
;
Endoplasmic Reticulum Stress/genetics*
;
Humans
;
Animals
;
Rats
;
Male
;
Rats, Sprague-Dawley
;
Middle Aged
2.Congrong San ameliorates cognitive impairment and neuroinflammation in rat model of Alzheimer's disease by alleviating endoplasmic reticulum stress to inhibit NLRP3 inflammasome activation.
Yuan-Qin CAI ; Yang XIANG ; Qing-Hua LONG ; Xi WANG ; Chu-Hua ZENG
China Journal of Chinese Materia Medica 2025;50(7):1881-1888
This study aims to investigate the effect of Congrong San(CRS) on endoplasmic reticulum stress-induced neuroinflammation in the rat model of Aβ_(1-42)-induced Alzheimer's disease(AD). Sixty male Sprague-Dawley rats(2 months old) were randomized into blank(CON), model(MOD), low-dose Congrong San(L-CRS), medium-dose Congrong San(M-CRS), high-dose Congrong San(H-CRS), and memantine hydrochloride(MJG) groups. The Morris water maze test was carried out to examine the learning and memory abilities of rats in each group. Hematoxylin-eosin staining and Nissl staining were employed to observe the morphology and number of CA1 neurons in the hippocampus of rats in each group. The morphology and structure of the endoplasmic reticulum in the hippocampus were observed by transmission electron microscopy. The immunofluorescence assay was employed to detect the expression of 78 kDa glucose-regulated protein(GRP78) in the hippocampus. Western blot was employed to determine the expression of apoptosis-associated speck-like protein containing a CARD(ASC), cysteinyl aspartate-specific proteinase(caspase-1), interleukin-18(IL-18), interleukin-1β(IL-1β), GRP78, and pathway proteins including protein kinase RNA-like endoplasmic reticulum kinase(PERK), phosphorylated PERK(p-PERK), C/EBP homologous protein(CHOP), and NOD-like receptor pyrin domain-containing protein 3(NLRP3) in the rat hippocampus. Compared with the MOD group, the M-CRS and H-CRS groups showed improved learning and memory abilities, reduced neuron losses in the hippocampus, alleviated endoplasmic reticulum stress, inhibited PERK-CHOP-NLRP3 pathway, and lowered levels of IL-1β, IL-6, and tumor necrosis factor-alpha(TNF-α). The results suggest that CRS can alleviate cognitive impairment and hippocampal neuron damage and reduce neuroinflammation in AD rats by alleviating endoplasmic reticulum stress to inhibit the activation of NLRP3 inflammasomes.
Animals
;
Endoplasmic Reticulum Stress/drug effects*
;
Male
;
Alzheimer Disease/psychology*
;
NLR Family, Pyrin Domain-Containing 3 Protein/metabolism*
;
Rats, Sprague-Dawley
;
Rats
;
Inflammasomes/genetics*
;
Drugs, Chinese Herbal/administration & dosage*
;
Cognitive Dysfunction/metabolism*
;
Disease Models, Animal
;
Hippocampus/drug effects*
;
Humans
;
Neuroinflammatory Diseases/drug therapy*
3.Mechanism of Yishen Jiangtang Decoction in regulating endoplasmic reticulum stress-mediated NLRP3 inflammasome to improve renal damage in diabetic nephropathy db/db mice.
Yun-Jie YANG ; Bin-Hua YE ; Chen QIU ; Han-Qing WU ; Bo-Wei HUANG ; Tong WANG ; Shi-Wei RUAN ; Fang GUO ; Jian-Ting WANG ; Ming-Qian JIANG
China Journal of Chinese Materia Medica 2025;50(10):2740-2749
This study aims to explore the mechanism through which Yishen Jiangtang Decoction(YSJTD) regulates endoplasmic reticulum stress(ERS)-mediated NOD-like receptor thermal protein domain associated protein 3(NLRP3) inflammasome to improve diabetic nephropathy(DN) in db/db mice. Thirty db/db mice were randomly divided into the model group, YSJTD group, ERS inhibitor 4-phenylbutyric acid(4-PBA) group, with 10 mice in each group. Additionally, 10 db/m mice were selected as the control group. The YSJTD group was orally administered YSJTD at a dose of 0.01 mL·g~(-1), the 4-PBA group was orally administered 4-PBA at a dose of 0.5 mg·g~(-1), and the control and model groups were given an equal volume of carboxylmethyl cellulose sodium. The treatments were administered once daily for 8 weeks. Food intake, water consumption, and body weight were recorded every 2 weeks. After the intervention, fasting blood glucose(FBG), glycosylated hemoglobin(HbA1c), urine microalbumin(U-mALB), 24-hour urine volume, serum creatinine(Scr), and blood urea nitrogen(BUN) were measured. Inflammatory markers interleukin-1β(IL-1β) and interleukin-18(IL-18) were detected using the enzyme-linked immunosorbent assay(ELISA). Renal pathology was assessed through hematoxylin-eosin(HE), periodic acid-Schiff(PAS), and Masson staining, and transmission electron microscopy(TEM). Western blot was used to detect the expression levels of glucose-regulated protein 78(GRP78), C/EBP homologous protein(CHOP), NLRP3, apoptosis-associated speck-like protein containing CARD(ASC), cysteinyl aspartate-specific proteinase(caspase-1), and gasdermin D(GSDMD) in kidney tissues. The results showed that compared to the control group, the model group exhibited poor general condition, increased weight and food and water intake, and significantly higher levels of FBG, HbA1c, U-mALB, kidney index, 24-hour urine volume, IL-1β, and IL-18. Compared to the model group, the YSJTD and 4-PBA groups showed improved general condition, increased body weight, decreased food intake, and lower levels of FBG, U-mALB, kidney index, 24-hour urine volume, and IL-1β. Specifically, the YSJTD group showed a significant reduction in IL-18 levels compared to the model group, while the 4-PBA group exhibited decreased water intake and HbA1c levels compared to the model group. Although there was a decreasing trend in water intake and HbA1c in the YSJTD group, the differences were not statistically significant. No significant differences were observed in BUN, Scr, and kidney weight among the groups. Renal pathology revealed that the model group exhibited more severe renal damage compared to the control group. Kidney sections from the model group showed diffuse mesangial proliferation in the glomeruli, tubular edema, tubular dilation, significant inflammatory cell infiltration in the interstitium, and increased glycogen staining and blue collagen deposition in the basement membrane. In contrast, the YSJTD and 4-PBA groups showed varying degrees of improvement in renal damage, glycogen staining, and collagen deposition, with the YSJTD group showing more significant improvements. TEM analysis indicated that the model group had extensive cytoplasmic edema, homogeneous thickening of the basement membrane, fewer foot processes, and widening of fused foot processes. In the YSJTD and 4-PBA groups, cytoplasmic swelling of renal tissues was reduced, the basement membrane remained intact and uniform, and foot process fusion improved.Western blot results indicated that compared to the control group, the model group showed upregulation of GRP78, CHOP, GSDMD, NLRP3, ASC, and caspase-1 expression. In contrast, both the YSJTD and 4-PBA groups showed downregulation of these markers compared to the model group. These findings suggest that YSJTD exerts a protective effect against DN by alleviating NLRP3 inflammasome activation through the inhibition of ERS, thereby improving the inflammatory response in db/db DN mice.
Animals
;
Endoplasmic Reticulum Stress/drug effects*
;
Diabetic Nephropathies/metabolism*
;
NLR Family, Pyrin Domain-Containing 3 Protein/genetics*
;
Drugs, Chinese Herbal/administration & dosage*
;
Mice
;
Inflammasomes/drug effects*
;
Male
;
Kidney/pathology*
;
Endoplasmic Reticulum Chaperone BiP
;
Humans
;
Interleukin-18/genetics*
;
Mice, Inbred C57BL
4.Effect and mechanism of Buyang Huanwu Decoction in improving neurological function in ischemic stroke rats based on IRE1α/ASK1/JNK pathway.
Xin-Rong ZHANG ; Tian-Lang WANG ; Jia-Hao ZHANG ; Lu JIN ; Jian-Bo WANG ; Ya-Nan XUE ; Yi QU
China Journal of Chinese Materia Medica 2025;50(14):3857-3867
This study aimed to investigate the effect and mechanism of Buyang Huanwu Decoction in regulating endoplasmic reticulum stress via the inositol-requiring enzyme 1α(IRE1α)/apoptosis signal-regulating kinase 1(ASK1)/c-Jun N-terminal kinase(JNK) pathway to improve neurological function in rats with cerebral ischemia/reperfusion injury(CIRI). SPF-grade male sprague-dawley(SD) rats were randomly divided into Sham group, model group, Buyang Huanwu Decoction group, and edaravone group. Except for the Sham group, the other groups were subjected to the modified suture method to establish a middle cerebral artery occlusion/reperfusion(MCAO/R) model. After treatment, neurological function was assessed using the Zea Longa scoring system. Gait analysis was used to detect the motor function. Detection of relative infarct area in brain tissue using 2,3,5-triphenyltetrazolium chloride(TTC) staining. Nissl staining was used to observe the structure of neuronal cells. Western blot and real-time fluorescence quantitative PCR(RT-qPCR) were used to detect IRE1α, ASK1, JNK, B cell lymphoma-2(Bcl-2), Bcl-2 related X protein(Bax), and Caspase-3 in the brain tissue. Immunohistochemistry was used to detect the positive expression of IRE1α, ASK1, and JNK. Immunofluorescence was used to detect the fluorescence expression levels of Bax, Bcl-2, and Caspase-3. The results showed that compared with the Sham group, the model group exhibited increased neurological scores(P<0.01), increased ratio of ground contact area and strength in both forelimbs(P<0.01), enlarged relative infarct area of brain tissue(P<0.05), and a reduced number of Nissl staining-positive cells(P<0.01). The protein and mRNA expression levels of IRE1α, ASK1, JNK, Bax, and Caspase-3 in brain tissue were significantly elevated, while those of Bcl-2 were decreased(P<0.05). Compared with the model group, both the Buyang Huanwu Decoction group and edaravone group showed reduced neurological scores(P<0.05), decreased ratio of ground contact area and strength in both forelimbs(P<0.05), smaller relative infarct area(P<0.05), alleviated neuronal damage, and increased number of Nissl staining-positive cells(P<0.05). The expression levels of IRE1α, ASK1, JNK, Bax, and Caspase-3 protein and mRNA in brain tissue were significantly reduced, while those of Bcl-2 were significantly increased(P<0.05). The results indicated that Buyang Huanwu Decoction can effectively improve brain injury in CIRI rats, and its mechanism of action may be related to regulating the endoplasmic reticulum stress IRE1α/ASK1/JNK signaling pathway.
Animals
;
Male
;
Rats, Sprague-Dawley
;
Protein Serine-Threonine Kinases/genetics*
;
Drugs, Chinese Herbal/administration & dosage*
;
Rats
;
MAP Kinase Kinase Kinase 5/genetics*
;
Ischemic Stroke/physiopathology*
;
Humans
;
MAP Kinase Signaling System/drug effects*
;
Apoptosis/drug effects*
;
Endoribonucleases/genetics*
;
JNK Mitogen-Activated Protein Kinases/genetics*
;
Endoplasmic Reticulum Stress/drug effects*
;
Multienzyme Complexes
5.Ameliorative effects and mechanisms of an integrated endoplasmic reticulum stress inhibitor on lipopolysaccharide-induced cognitive impairment in mice.
Dandan LIU ; Wenjia LIU ; Lihua XIE ; Xiaofan XU ; Xiaolin ZHONG ; Wenyu CAO ; Yang XU ; Ling CHEN
Journal of Central South University(Medical Sciences) 2025;50(6):986-994
OBJECTIVES:
The integrated endoplasmic reticulum stress inhibitor (ISRIB) is a selective inhibitor of the protein kinase R-like endoplasmic reticulum kinase (PERK) signaling pathway within endoplasmic reticulum stress (ERS) and can improve spatial and working memory in aged mice. Although ERS and oxidative stress are tightly interconnected, it remains unclear whether ISRIB alleviates cognitive impairment by restoring the balance between ERS and oxidative stress. This study aims to investigate the effects and mechanisms of ISRIB on lipopolysaccharide (LPS)-induced cognitive impairment in mice.
METHODS:
Eight-week-old male ICR mice were randomly divided into 3 groups: Normal saline (NS) group, LPS group, and ISRIB+LPS group. NS and LPS groups received daily intraperitoneal injections of normal saline for 7 days; on day 7, LPS group mice received intraperitoneal LPS (0.83 mg/kg) to establish a cognitive impairment model. ISRIB+LPS group received ISRIB (0.25 mg/kg) intraperitoneally for 7 days, with LPS injected 30 minutes after ISRIB on day 7. Cognitive ability was evaluated by the novel place recognition test (NPRT). Real-time fluorogenic quantitative PCR (RT-qPCR) was used to detect changes in nitric oxide synthase (NOS), superoxide dismutase-1 (SOD-1), and catalase (CAT) gene expression in the hippocampus and prefrontal cortex. Oxidative stress markers malondialdehyde (MDA), glutathione (GSH), and oxidized glutathione (GSSG), were measured in hippocampal and prefrontal cortex tissues.
RESULTS:
Compared with the NS group, mice in LPS group showed a significant reduction in novel place recognition ratio, upregulation of hippocampal NOS-1 and NOS-2 mRNA, downregulation of SOD-1 and CAT mRNA, increased MDA and GSSG, decreased GSH, and reduced GSH/GSSG ratio (all P<0.05). Compared with the LPS group, mice in ISRIB+LPS group exhibited significantly improved novel place recognition, downregulated NOS-1 and NOS-2 mRNA, upregulated SOD-1 and CAT mRNA, decreased MDA and GSSG, increased GSH, and an elevated GSH/GSSG ratio in the hippocampus (all P<0.05). No significant changes were observed in the prefrontal cortex.
CONCLUSIONS
ISRIB improves LPS-induced cognitive impairment in mice by restoring the oxidative/antioxidant balance in the hippocampus.
Animals
;
Lipopolysaccharides
;
Male
;
Mice, Inbred ICR
;
Cognitive Dysfunction/drug therapy*
;
Mice
;
Oxidative Stress/drug effects*
;
Endoplasmic Reticulum Stress/drug effects*
;
Hippocampus/drug effects*
;
Nitric Oxide Synthase Type II/genetics*
;
Guanidines/pharmacology*
;
eIF-2 Kinase/antagonists & inhibitors*
;
Signal Transduction/drug effects*
;
Superoxide Dismutase/metabolism*
6.Magnolol inhibits appetite and causes visceral fat loss through Growth/differentiation factor-15 (GDF-15) by activating transcription factor 4-CCAAT enhancer binding protein γ-mediated endoplasmic reticulum stress responses.
Keru CHENG ; Yanyun ZHOU ; Yilong HAO ; Shengyun WU ; Nanping WANG ; Peng ZHANG ; Yinfang WANG
Chinese Journal of Natural Medicines (English Ed.) 2025;23(3):334-345
Magnolol, a compound extracted from Magnolia officinalis, demonstrates potential efficacy in addressing metabolic dysfunction and cardiovascular diseases. Its biological activities encompass anti-inflammatory, antioxidant, anticoagulant, and anti-diabetic effects. Growth/differentiation factor-15 (GDF-15), a member of the transforming growth factor β superfamily, is considered a potential therapeutic target for metabolic disorders. This study investigated the impact of magnolol on GDF-15 production and its underlying mechanism. The research examined the pharmacological effect of magnolol on GDF-15 expression in vitro and in vivo, and determined the involvement of endoplasmic reticulum (ER) stress signaling in this process. Luciferase reporter assays, chromatin immunoprecipitation, and in vitro DNA binding assays were employed to examine the regulation of GDF-15 by activating transcription factor 4 (ATF4), CCAAT enhancer binding protein γ (CEBPG), and CCCTC-binding factor (CTCF). The study also investigated the effect of magnolol and ATF4 on the activity of a putative enhancer located in the intron of the GDF-15 gene, as well as the influence of single nucleotide polymorphisms (SNPs) on magnolol and ATF4-induced transcription activity. Results demonstrated that magnolol triggers GDF-15 production in endothelial cells (ECs), hepatoma cell line G2 (HepG2) and hepatoma cell line 3B (Hep3B) cell lines, and primary mouse hepatocytes. The cooperative binding of ATF4 and CEBPG upstream of the GDF-15 gene or the E1944285 enhancer located in the intron led to full-power transcription of the GDF-15 gene. SNP alleles were found to impact the magnolol and ATF4-induced transcription activity of GDF-15. In high-fat diet ApoE-/- mice, administration of magnolol induced GDF-15 production and partially suppressed appetite through GDF-15. These findings suggest that magnolol regulates GDF-15 expression through priming of promoter and enhancer activity, indicating its potential as a drug for the treatment of metabolic disorders.
Lignans/pharmacology*
;
Growth Differentiation Factor 15/metabolism*
;
Animals
;
Biphenyl Compounds/pharmacology*
;
Endoplasmic Reticulum Stress/drug effects*
;
Activating Transcription Factor 4/genetics*
;
Mice
;
Humans
;
Male
;
Magnolia/chemistry*
;
CCAAT-Enhancer-Binding Proteins/genetics*
;
Mice, Inbred C57BL
7.Caerulomycin A disrupts glucose metabolism and triggers ER stress-induced apoptosis in triple-negative breast cancer cells.
Ye ZHANG ; Shanshan SU ; Xiaoyu XU ; Zhixian HE ; Yiyan ZHOU ; Xiangrong LU ; Aiqin JIANG
Chinese Journal of Natural Medicines (English Ed.) 2025;23(9):1080-1091
Triple-negative breast cancer (TNBC) represents an aggressive breast cancer subtype with poor prognosis and limited targeted treatment options. This investigation examined the anti-cancer potential of Caerulomycin A (Cae A), a natural compound derived from marine actinomycetes, against TNBC. Cae A demonstrated selective inhibition of viability and proliferation in TNBC cell lines, including 4T1, MDA-MB-231, and MDA-MB-468, through apoptosis induction. Mechanistic analyses revealed that the compound induced sustained endoplasmic reticulum (ER) stress and subsequent upregulation of C/EBP homologous protein (CHOP) expression, resulting in mitochondrial damage-mediated apoptosis. Inhibition of ER stress or CHOP expression knockdown reversed mitochondrial damage and apoptosis, highlighting the essential role of ER stress and CHOP in Cae A's anti-tumor mechanism. Both oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) decreased in TNBC cells following Cae A treatment, indicating reduced mitochondrial respiratory and glycolytic capacities. This diminished energy metabolism potentially triggers ER stress and subsequent apoptosis. Furthermore, Cae A exhibited significant anti-tumor effects in the 4T1 tumor model in vivo without apparent toxicity. The compound also effectively inhibited human TNBC organoid growth. These results indicate that Cae A may serve as a potential therapeutic agent for TNBC, with its efficacy likely mediated through the disruption of glucose metabolism and the induction of ER stress-associated apoptosis.
Humans
;
Endoplasmic Reticulum Stress/drug effects*
;
Triple Negative Breast Neoplasms/genetics*
;
Apoptosis/drug effects*
;
Cell Line, Tumor
;
Female
;
Animals
;
Glucose/metabolism*
;
Mice
;
Cell Proliferation/drug effects*
;
Transcription Factor CHOP/genetics*
;
Antineoplastic Agents/pharmacology*
;
Mitochondria/metabolism*
;
Mice, Inbred BALB C
8.A novel defined risk signature of endoplasmic reticulum stress-related genes for predicting the prognosis and immune infiltration status of ovarian cancer.
Jiahang MO ; Shunyi RUAN ; Baicai YANG ; Yunfeng JIN ; Keyi LIU ; Xukai LUO ; Hua JIANG
Journal of Zhejiang University. Science. B 2023;24(1):64-77
Endoplasmic reticulum (ER) stress, as an emerging hallmark feature of cancer, has a considerable impact on cell proliferation, metastasis, invasion, and chemotherapy resistance. Ovarian cancer (OvCa) is one of the leading causes of cancer-related mortality across the world due to the late stage of disease at diagnosis. Studies have explored the influence of ER stress on OvCa in recent years, while the predictive role of ER stress-related genes in OvCa prognosis remains unexplored. Here, we enrolled 552 cases of ER stress-related genes involved in OvCa from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) cohorts for the screening of prognosis-related genes. The least absolute shrinkage and selection operator (LASSO) regression was applied to establish an ER stress-related risk signature based on the TCGA cohort. A seven-gene signature revealed a favorable predictive efficacy for the TCGA, International Cancer Genome Consortium (ICGC), and another GEO cohort (P<0.001, P<0.001, and P=0.04, respectively). Moreover, functional annotation indicated that this signature was enriched in cellular response and senescence, cytokines interaction, as well as multiple immune-associated terms. The immune infiltration profiles further delineated an immunologic unresponsive status in the high-risk group. In conclusion, ER stress-related genes are vital factors predicting the prognosis of OvCa, and possess great application potential in the clinic.
Humans
;
Female
;
Ovarian Neoplasms/genetics*
;
Cell Proliferation
;
Cytokines
;
Endoplasmic Reticulum Stress/genetics*
9.Mechanism of Gegen Qinlian Decoction in improving glucose metabolism in vitro and in vivo by alleviating hepatic endoplasmic reticulum stress.
Yue JIANG ; Li-Ke YAN ; Ying WANG ; Jun-Feng DING ; Zhong-Hua XU ; Can CUI ; Jun TU
China Journal of Chinese Materia Medica 2023;48(20):5565-5575
This study investigated the mechanism of Gegen Qinlian Decoction(GQD) in improving glucose metabolism in vitro and in vivo by alleviating endoplasmic reticulum stress(ERS). Molecular docking was used to predict the binding affinity between the main effective plasma components of GQD and ERS-related targets. Liver tissue samples were obtained from normal rats, high-fat-induced diabetic rats, rats treated with metformin, and rats treated with GQD. RNA and protein were extracted. qPCR was used to measure the mRNA expression of ERS marker glucose-regulated protein 78(GRP78), and unfolded protein response(UPR) genes inositol requiring enzyme 1(Ire1), activating transcription factor 6(Atf6), Atf4, C/EBP-homologous protein(Chop), and caspase-12. Western blot was used to detect the protein expression of GRP78, IRE1, protein kinase R-like ER kinase(PERK), ATF6, X-box binding protein 1(XBP1), ATF4, CHOP, caspase-12, caspase-9, and caspase-3. The calcium ion content in liver tissues was determined by the colorimetric assay. The ERS-HepG2 cell model was established in vitro by inducing with tunicamycin for 6 hours, and 2.5%, 5%, and 10% GQD-containing serum were administered for 9 hours. The glucose oxidase method was used to measure extracellular glucose levels, flow cytometry to detect cell apoptosis, glycogen staining to measure cellular glycogen content, and immunofluorescence to detect the expression of GRP78. The intracellular calcium ion content was measured by the colorimetric assay. Whereas Western blot was used to detect GRP78 and ERS-induced IRE1, PERK, ATF6, and eukaryotic translation initiation factor 2α(eIF2α) phosphorylation. Additionally, the phosphorylation levels of insulin receptor substrate 1(IRS1), phosphatidylinositol 3-kinase regulatory subunit p85(PI3Kp85), and protein kinase B(Akt), which were involved in the insulin signaling pathway, were also measured. In addition, the phosphorylation levels of c-Jun N-terminal kinases(JNKs), which were involved in both the ERS and insulin signaling pathways, were measured by Western blot. Molecular docking results showed that GRP78, IRE1, PERK, ATF4, and various compounds such as baicalein, berberine, daidzein, jateorhizine, liquiritin, palmatine, puerarin and wogonoside had strong binding affinities, indicating that GQD might interfere with ERS-induced UPR. In vivo results showed that GQD down-regulated the mRNA transcription of Ire1, Atf6, Atf4, Grp78, caspase-12, and Chop in diabetic rats, and down-regulated GRP78, IRE1, PERK, as well as ERS-induced apoptotic factors ATF4 and CHOP, caspase-12, caspase-9, and caspase-3, while up-regulating XBP1 to enhance adaptive UPR. In addition, GQD increased the calcium ion content in liver tissues, which facilitated correct protein folding. In vitro results showed that GQD increased glucose consumption in ERS-induced HepG2 cells without significantly affecting cell viability, increased liver glycogen synthesis, down-regulated ATF6 and p-eIF2α(Ser51), and down-regulated IRE1, PERK, and GRP78, as well as p-IRS1(Ser312) and p-JNKs(Thr183/Tyr185), while up-regulating p-PI3Kp85(Tyr607) and p-Akt(Ser473). These findings suggested that GQD alleviates excessive ERS in the liver, reduces insulin resistance, and improves hepatic glucose metabolism in vivo and in vitro.
Rats
;
Animals
;
Proto-Oncogene Proteins c-akt
;
Endoplasmic Reticulum Chaperone BiP
;
Caspase 3
;
Caspase 9
;
Diabetes Mellitus, Experimental
;
Caspase 12
;
Calcium/pharmacology*
;
Molecular Docking Simulation
;
Endoplasmic Reticulum Stress
;
Protein Serine-Threonine Kinases/genetics*
;
Liver
;
Apoptosis
;
Insulin
;
Glucose
;
Glycogen/pharmacology*
;
RNA, Messenger
10.Advance of research on endoplasmic reticulum stress and genetic epilepsy.
Xiaohang JIANG ; Yi SUI ; Jiaqi ZHANG ; Tong YI ; Yanyan ZHAO ; Xiaoliang LIU
Chinese Journal of Medical Genetics 2023;40(6):756-761
Epilepsies are a group of chronic neurological disorders characterized by spontaneous recurrent seizures caused by abnormal synchronous firing of neurons and transient brain dysfunction. The underlying mechanisms are complex and not yet fully understood. Endoplasmic reticulum (ER) stress, as a condition of excessive accumulation of unfolded and/or misfolded proteins in the ER lumen, has been considered as a pathophysiological mechanism of epilepsy in recent years. ER stress can enhance the protein processing capacity of the ER to restore protein homeostasis through unfolded protein response, which may inhibit protein translation and promote misfolded protein degradation through the ubiquitin-proteasome system. However, persistent ER stress can also cause neuronal apoptosis and loss, which may aggravate the brain damage and epilepsy. This review has summarized the role of ER stress in the pathogenesis of genetic epilepsy.
Humans
;
Endoplasmic Reticulum Stress/genetics*
;
Unfolded Protein Response
;
Endoplasmic Reticulum/pathology*
;
Apoptosis
;
Epilepsy/genetics*

Result Analysis
Print
Save
E-mail