1.Genomic information mining reveals Rehmannia glutinosa growth-promoting mechanism of endophytic bacterium Kocuria rosea.
Lin-Lin WANG ; Gui-Xiao LA ; Xiu-Hong SU ; Lin-Lin YANG ; Lei-Xia CHU ; Jun-Qi GUO ; Cong-Long LIAN ; Bao ZHANG ; Cheng-Ming DONG ; Sui-Qing CHEN ; Chun-Yan WANG
China Journal of Chinese Materia Medica 2024;49(22):6119-6128
This study explored the growth-promoting effect and mechanism of the endophytic bacterium Kocuria rosea on Rehmannia glutinosa, aiming to provide a scientific basis for the development of green bacterial fertilizer. R. glutinosa 'Jinjiu' was treated with K. rosea, and the shoot parameters including leaf length, leaf width, plant width, and stem diameter were measured every 15 days. After 120 days, the shoots and roots were harvested. The root indicators(root number, root length, root diameter, root fresh weight, root dry weight, root volume, and root vitality) and secondary metabolites(catalpol, rehmannioside A, rehmannioside D, verbascoside, and leonuride) were determined. The R. glutinosa growth-promoting mechanism of K. rosea was discussed from the effect of K. rosea on the nutrient element content in R. glutinosa and rhizosphere soil and the genome information of this plant. After application of K. rosea, the maximum increases in leaf length, leaf width, plant width, and stem diameter were 35.67%(60 d), 25.39%(45 d), 40.17%(60 d), and 113.85%(45 d), respectively. The root number, root length, root diameter, root volume, root fresh weight, root dry weight, and root viability increased by 41.71%, 45.10%, 48.61%, 94.34%, 101.55%, 147.61%, and 42.08%, respectively. In addition, the content of rehmannioside A and verbascoside in the root of R. glutinosa increased by 76.67% and 69.54%, respectively. K. rosea promoted the transformation of nitrogen(N), phosphorus(P), and potassium(K) in the rhizosphere soil into the available state. Compared with that in the control, the content of available N(54.60 mg·kg~(-1)), available P(1.83 μmol·g~(-1)), and available K(83.75 mg·kg~(-1)) in the treatment with K. rosea increased by 138.78%, 44.89%, and 14.34%, respectively. The content of N, P, and K in the treatment group increased by 293.22%, 202.63%, and 23.80% in the roots and by 23.60%, 107.23%, and 134.53% in the leaves of R. glutinosa, respectively. K. rosea carried the genes related to colonization(rbsB, efp, bcsA, and gmhC), N, P, and K metabolism(narG, narH, narI, nasA, nasB, GDH2, pyk, aceB, ackA, CS, ppa, ppk, ppk2, pstS, pstA, pstB, and pstC), and indole-3-acetic acid and zeatin synthesis(iaaH and miaA). Further studies showed that K. rosea could colonize the roots of R. glutinosa and secrete indole-3-acetic acid(3.85 μg·mL~(-1)) and zeatin(0.10 μg·mL~(-1)). In summary, K. rosea promotes the growth of R.ehmannia glutinosa by enhancing the nutrient uptake, which provides a theoretical basis for the development of plant growth-promoting microbial products.
Rehmannia/metabolism*
;
Endophytes/metabolism*
;
Plant Roots/growth & development*
;
Micrococcaceae/genetics*
;
Data Mining
;
Plant Leaves/metabolism*
;
Genomics
;
Rhizosphere
2.Investigation on secondary metabolites of endophytic fungus Talaromyces purpurogenus hosted in Tylophora ovate.
Jing-Yi ZHAO ; Zhen LIU ; Sen-Feng SUN ; Yun-Bao LIU
China Journal of Chinese Materia Medica 2020;45(6):1368-1373
Eight compounds,(R)-2-[5-(methoxycarbonyl)-4-methyl-6-oxo-3,6-dihydro-2H-pyran-2-yl]acetic acid(1),(3S,4R)-3,4-dihydro-3,4-epoxy-5-hydroxynaphthalen-1(2H)-one(2),(-)-mitorubrinol(3),(-)-mitorubrin(4),(±)-asperlone A(5), terreusinone(6), verrucisidinol(7) and cerebroside C(8) were isolated from the endophytic fungus Talaromyces purpurogenus by using various column chromatographic techniques. Their structures were identified by NMR, MS, CD and optical rotation. Compounds 1 and 2 were new compounds. Their anti-diabetic activities in vitro were evaluated, and compound 1 showed moderate inhibitory activity toward XOD at 10 μmol·L~(-1) with the inhibition rate of 69.9%.
Endophytes/chemistry*
;
Hypoglycemic Agents/chemistry*
;
Magnetic Resonance Spectroscopy
;
Molecular Structure
;
Secondary Metabolism
;
Talaromyces/chemistry*
;
Tylophora/microbiology*
;
Xanthine Oxidase/antagonists & inhibitors*
3.Isolation and identification of endophytic fungi producing harpagoside and harpagide from Scrophularia ningpoensis.
Zhan-Yun SHEN ; Bo ZHU ; Quan-Long ZHANG ; Lu-Ping QIN
China Journal of Chinese Materia Medica 2019;44(10):2046-2050
The endophytic fungi from root,main stem,branch and leaf of Scrophularia ningpoensis were isolated from Zhejiang,whether these strains could yield harpagide or harpagoside were tested by HPLC and LC-MS. According to the morphological characteristic and the similarity of the nucleotide sequence of internal transcribed spacer( ITS) between r DNAs,the strains producing harpagide or harpagoside were identified. The results showed that 210 strains were isolated from the samples,which were classified into 9 orders,13 families and 17 genera by morphological study. Harpagide was detected in endogenous fungi ZJ17 and harpagoside was detected in endogenous fungi ZJ25 by HPLC coupled with LC-MS. ZJ17 was identified as Alternaria alternate and ZJ25 was identified as A.gaisen by its morphology and authenticated by ITS( ITS4 and ITS5 regions and the intervening 5. 8 S rDNA region).
China
;
DNA, Fungal
;
genetics
;
DNA, Ribosomal Spacer
;
genetics
;
Endophytes
;
classification
;
metabolism
;
Fungi
;
classification
;
metabolism
;
Glycosides
;
biosynthesis
;
Iridoid Glycosides
;
metabolism
;
Pyrans
;
metabolism
;
Scrophularia
;
microbiology
4.Inhibitory effect of endophytic fungi from Dysosma versipellis on HIV-1 IN-LEDGF/p75 interaction.
Ya-Qin ZHOU ; Da-Wei ZHANG ; Li-Ying YU ; Ying WEI ; Hong-Zhen TANG ; Shi-Ling YANG ; Xiao-Ming TAN
China Journal of Chinese Materia Medica 2019;44(9):1808-1813
To determine the inhibitory effect of endophytic fungi from Dysosma versipellis on HIV-1 IN-LEDGF/p75 interaction,the protein-protein interaction between human immunodeficiency virus type 1( HIV-1) integrase and lens epithelial growth factor p75 protein( LEDGF/p75) was used as a target. The homogeneous time-resolved fluorescence( HTRF) technique was used in the inhibitory activity assay. The results showed that eight endophytic fungi with anti-IN-LEDGF/p75 interaction activity were screened out from fifty-three strains with different morphological characteristic. Among them,106 strain showed strong inhibitory activity against HIV-1 IN-LEDGF/p75 interaction with IC50 value of 5. 23 mg·L-1,and was identified as a potential novel species of Magnaporthaceae family by the analyses of ITS-rDNA,LSU and RPB2 sequences data. This study demonstrated that potential natural active ingredients against the HIV-1 IN-LEDGF/p75 interaction exist in the endophytic fungi of D. versipellis. These results may provide available candidate strain resources for the research and development of new anti-acquired immunodeficiency syndrome drugs.
Berberidaceae
;
microbiology
;
Endophytes
;
Fungi
;
chemistry
;
HIV Integrase
;
metabolism
;
HIV-1
;
drug effects
;
Humans
;
Intercellular Signaling Peptides and Proteins
;
metabolism
;
Protein Binding
5.Isolation and identification of endophytic fungi from Huperzia serrata and their metabolites' inhibitory activities against acetylcholinesterase and anti-inflammatory activities.
Bo-Wen QI ; Ting MO ; Xin ZHANG ; Ya-Ru YAN ; Xi-Ping XU ; Hong-Yun YANG ; Xiao-Hui WANG ; Jun LI ; She-Po SHI ; Xiao LIU
China Journal of Chinese Materia Medica 2019;44(15):3213-3220
A total of 27 endophytic fungal strains were isolated from Huperzia serrata,which were richly distributed in the stems and leaves while less distributed in roots. The 27 strains were identified by Internal Transcribed Spacer( ITS) r DNA molecular method and one of the strains belongs to Basidiomycota phylum,and other 26 stains belong to 26 species,9 general,6 families,5 orders,3 classes of Ascomycota Phylum. The dominant strains were Colletotrichum genus,belonging to Glomerellaceae family,Glomerellales order,Sordariomycetes class,Ascomycota Phylum,with the percentage of 48. 15%. The inhibitory activities of the crude extracts of 27 endophytic fungal strains against acetylcholinesterase( ACh E) and nitric oxide( NO) production were evaluated by Ellman's method and Griess method,respectively. Crude extracts of four fungi exhibited inhibitory activities against ACh E with an IC50 value of 42. 5-62. 4 mg·L~(-1),and some fungi's crude extracts were found to inhibit nitric oxide( NO) production in lipopolysaccharide( LPS)-activated RAW264. 7 macrophage cells with an IC50 value of 2. 2-51. 3 mg·L~(-1),which indicated that these fungi had potential anti-inflammatory activities.The chemical composition of the Et OAc extract of endophytic fungus HS21 was also analyzed by LCMS-IT-TOF. Seventeen compounds including six polyketides,four diphenyl ether derivatives and seven meroterpenoids were putatively identified.
Acetylcholinesterase
;
Animals
;
Anti-Inflammatory Agents
;
isolation & purification
;
pharmacology
;
Ascomycota
;
chemistry
;
classification
;
isolation & purification
;
Cholinesterase Inhibitors
;
isolation & purification
;
metabolism
;
Endophytes
;
classification
;
isolation & purification
;
Huperzia
;
microbiology
;
Mice
;
RAW 264.7 Cells
6.Secondary metabolites from Epicoccum nigrum 14one,an endophytic fungus isolated from plant Leptogium masiaticum.
Chao YUAN ; Yu-Hua GUO ; Ying-Bo ZHANG ; Xuan HU ; Dan WANG ; Fu-Lai YU ; Gang LI
China Journal of Chinese Materia Medica 2019;44(18):4021-4025
Phytochemical investigation of the culture of Epicoccum nigrum,an endolichenic fungus inhabiting Leptogium masiaticum,led to the isolation of 11 compounds. Based on NMR spectroscopy and HRESIMS data,their structures were determined as one alkaloid fusaricide( 1),and seven benzofuran derivatives including epicoccone( 2),4,6-dihydroxy-5-methoxy-7-methyl-1,3-dihydro isobenzofuran( 3),5-methyl-epicoccone B( 4),3,6,7-trihydroxy-5-methoxy-4-methylisobenzo furan-1( 3 H)-one( 5),3-methoxyepicoccone B( 6),2,3,4-trihydroxy-6-( hydroxymethyl)-5-methylbenzyl-alcohol( 7),and isoochracinic acid( 8),together with three epicoccolide analogs epicocconigrones A( 9),epicoccolide B( 10),and epicocconigrones B( 11). Compounds 1,9 and 10 showed potent microorganism inhibitory effects. These results indicated the potential perspective of this endophytic fungus as an eco-friendly biocide.
Ascomycota/chemistry*
;
Endophytes/chemistry*
;
Magnetic Resonance Spectroscopy
;
Microbial Sensitivity Tests
;
Secondary Metabolism
7.Ecological distribution and diversity of medical Ferula species produced in Xinjiang.
Jun ZHU ; Xiao-Jin LI ; Li SUN ; Shun-xing GUO ; Juan CHEN
China Journal of Chinese Materia Medica 2015;40(2):356-361
To study the ecological distribution and diversity of endophytic fungi associated with Ferula of medicinal plants in Xinjiang. The endophytic fungi were isolated from roots, stems and leaves of Ferula by microbiology research methods and technology. The endophytic fungi were identified using ITS rDNA sequence analysis and morphology analysis. The composition, diversity and preference of endophytic fungal community were analyzed with Shannon-Wiener biodiversity index (H') and Sorensen coefficient (Cs). A total of 337 strains endophytic fungi were isolated and classified into 38 genera, Alternaria, Aureobasidium and Fusarium were the dominant genera. Among the 337 isolates, the endophytic fungi of F. sinkiangensis were the most, The Shannon-Wiener biodiversity index (H') associated with roots of F. fukanensis was the highest, reached 1.85. The highest Sorensen coefficient ( Cs) was between leaf of F. sinkiangensis and leaf of F. ovina, reached 0.75. From the result, endophytic fungi were widely distributed in six Ferula, there are some notable differences between distribution and composition of the endophytic fungi isolated from different issues and different species of Ferula, show a certain degree of species and tissue preference. The results obtained in this study will provide realistic basis and theoretical basis for further study the secondary metabolites of endophytic fungi associated with Ferula, and the relationship between endophytic fungi and their host plants.
Biodiversity
;
Ecology
;
Endophytes
;
isolation & purification
;
Ferula
;
microbiology
;
Fungi
;
classification
;
isolation & purification
;
metabolism
8.Screening and identification of indoleacetic acid producing endophytic bacterium in Panax ginseng.
Yun JIANG ; Lei TIAN ; Chang-qing CHEN ; Guan-jun ZHANG ; Tong LI ; Jing-xiu CHEN ; Xue WANG
China Journal of Chinese Materia Medica 2015;40(2):213-217
Endophytic bacteria which was producing indoleacetic acid was screened from Panax ginseng by using the Salkowski method. The active strain was also tested for its ability of nitrogen fixation by using the Ashby agar plates, the PKV plates and quantitative analysis of Mo-Sb-Ascrobiology acid colorimetry was used to measure its ability of phosphate solubilization, for its ability of potassium solubilization the silicate medium and flame spectrophotometry was used, for its ability of producing siderophores the method detecting CAS was used, for its ability of producing ACC deaminase the Alpha ketone butyric acid method was applied. And the effect on promoting growth of seed by active strain was tested. The results showed that the indoleacetic acid producing strain of JJ5-2 was obtained from 118 endophytes, which the content of indoleacetic acid was 10.2 mg x L(-1). The JJ5-2 strain also had characteristics of phosphate and potassium solubilization, nitrogen fixation, producing siderophores traits, and the promoting germination of ginseng seeds. The JJ5-2 strain was identified as Bacillus thuringiensis by analyzing morphology, physiological and biochemical properties and 16S rRNA gene sequences.
Bacteria
;
isolation & purification
;
metabolism
;
Endophytes
;
isolation & purification
;
metabolism
;
Indoleacetic Acids
;
metabolism
;
Panax
;
microbiology
9.A new lactone derivative from plant endophytic fungus Periconia sp. F-31.
De-wu ZHANG ; Ji-mei LIU ; Ri-dao CHEN ; Min ZHANG ; Li-yan YU ; Jun WU ; Jun-gui DAI
China Journal of Chinese Materia Medica 2015;40(12):2349-2351
To investigate the secondary metabolites of endophytic fungi Pericinia sp. F-31. Column chromatography on silica gel, Sephadex LH-20 and semi-preparative HPLC were used to separate and purify the compounds. Two compounds were isolated from the fermentation broth of Periconia sp. Their structures were identified as 5-(1-hydroxyhexyl) -6-methyl-2H-pyran-2-one (1) and 2-(3-hydroxy-4-methylphenyl) -propanoic acid (2). Compound 1 was a new lactone compound, compound 2 was new natural product, and the NMR data of compound 2 was reported for the first time.
Annona
;
microbiology
;
Ascomycota
;
chemistry
;
genetics
;
isolation & purification
;
metabolism
;
Drugs, Chinese Herbal
;
chemistry
;
isolation & purification
;
metabolism
;
Endophytes
;
chemistry
;
genetics
;
isolation & purification
;
metabolism
;
Lactones
;
chemistry
;
isolation & purification
;
metabolism
;
Mass Spectrometry
;
Molecular Structure
10.Study on secondary metabolites of endophytic fungi Penicillium dangeardii.
Hai-ning LV ; Guang-zhi DING ; Yun-bao LIU ; Jing QU
China Journal of Chinese Materia Medica 2015;40(9):1759-1761
Endophytic fungi Penicillium dangeardii, isolated from Lysidice rhodostegia Hance root, was fermented and the secondary metabolites were studied. By means of Sephadex LH-20 column chromatography, ODS column chromatography and PHPLC over the fermented culture, 5 compounds were isolated. By using ESI-MS and NMR, the structures of the compounds were determined as N-[9-(β- D-ribofuranosyl)-9H-purin-6-yl]-L-aspartic acid (1), 3-caffeoylquinic acid (2), 4-caffeoylquinic acid (3), and 5-caffeoylquinic acid (4), 3-hydroxy-benzoic acid-4-O-β-D-glucopyranoside (5).
Biological Factors
;
chemistry
;
isolation & purification
;
metabolism
;
Endophytes
;
chemistry
;
metabolism
;
Fabaceae
;
microbiology
;
Fermentation
;
Molecular Structure
;
Penicillium
;
chemistry
;
metabolism
;
Secondary Metabolism

Result Analysis
Print
Save
E-mail