1.Exploring the mechanism of lncRNA-BC200 in regulating neuronal injury repair based on controlling BACE1 ubiquitination.
Lijun LIU ; Jie DU ; Huan LIU ; Yuan WANG ; Jing ZHANG
Chinese Journal of Cellular and Molecular Immunology 2025;41(2):125-133
Objective To explore the mechanism of lncRNA-BC200 (BC200) targeting the ubiquitination of Beta-site APP cleaving enzyme 1 (BACE1) and regulating the repair of nerve cell injury. Methods Mouse hippocampal neuron cell line HT22 was divided into four groups: control group, oxygen-glucose deprivation/reoxygenation(OGD/R) group, OGD/R+si-NC group and OGD/R+si-BC200 group. In order to further explore the relationship between BC200 and BACE1, HT22 cells were divided into four groups: OGD/R group, OGD/R+si-BC200 group, OGD/R+si-BC200+NC group and OGD/R+si-BC200+ BACE1 group. Twenty male C57BL/6J mice were randomly assigned to the following four groups: control group, middle cerebral artery occlusion (MCAO) group, MCAO+si-BC200 group and MCAO+si-BC200+BACE1 group. The mRNA expression levels of BC200 and BACE1 in cells were measured by real-time quantitative reverse transcription polymerase chain reaction. The expressions of c-caspase-3, B-cell lymphoma 2 (Bcl2), Bcl2 associated X protein(BAX) and BACE1 were detected by western blot, and the apoptotic cells were detected by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) test. Results Compared with the control group, the activity of HT22 cells in OGD/R group decreased significantly, and the percentage of apoptotic cells increased significantly. Compared with OGD/R+si-NC group, the activity of HT22 cells in OGD/R+si-BC200 group increased significantly, and the percentage of apoptotic cells decreased significantly. Compared with the control group, the expression of BACE1 protein in HT22 cells in OGD/R group was significantly enhanced. Compared with OGD/R+si-NC group, the expression of BACE1 protein in HT22 cells in OGD/R+si-BC200 group decreased significantly. It was observed that after OGD/R treatment, the ubiquitination level of BACE1 decreased significantly and the expression of BACE1 protein increased significantly. After transfection with si-BC200, the ubiquitination level of BACE1 protein increased significantly, while the expression of BACE1 protein decreased significantly. Compared with OGD/R+si-BC200+NC group, the percentage of apoptotic cells, the expression of c-caspase-3 and Bax protein in HT22 cells in OGD/R+si-BC200+BACE1 group increased significantly, and the expression of Bcl2 protein decreased significantly. Compared with the control group, the number of cerebral infarction areas and TUNEL positive cells in MCAO group increased significantly, and the survival number of neurons decreased significantly. Compared with the MCAO group, the number of cerebral infarction areas and TUNEL positive cells in MCAO+si-BC200 group decreased significantly, and the survival number of neurons increased significantly, while the addition of BACE1 reversed the improvement of si-BC200 transfection. Conclusion The combination of BC200 and BACE1 inhibit the ubiquitination of BACE1, and participate in mediating the expression enhancement of BACE1 induced by OGD/R. Specific blocking of BC200/BACE1 axis may be a potential therapeutic target to protect neurons from apoptosis induced by cerebral ischemia/reperfusion.
Animals
;
Amyloid Precursor Protein Secretases/genetics*
;
RNA, Long Noncoding/physiology*
;
Aspartic Acid Endopeptidases/genetics*
;
Male
;
Neurons/pathology*
;
Mice
;
Mice, Inbred C57BL
;
Apoptosis/genetics*
;
Ubiquitination
;
Cell Line
;
Hippocampus/metabolism*
;
bcl-2-Associated X Protein/genetics*
;
Caspase 3/genetics*
;
Infarction, Middle Cerebral Artery/metabolism*
2.Pathogenesis and mechanism of serine protease 23 in skin fibrosis of systemic sclerosis.
Xiandun YUAN ; Zhaohua LI ; Dan XU ; Ting LI ; Dan FANG ; Rong MU
Journal of Peking University(Health Sciences) 2025;57(5):903-910
OBJECTIVE:
It has been reported that the mRNA expression of serine protease 23 (PRSS23) was increased in skin fibroblasts from systemic sclerosis patients (SSc). The purpose of this study is to explore the pathogenetic effect and mechanism of PRSS23 in skin fibrosis of SSc.
METHODS:
The expression of PRSS23 in skin tissues from the SSc patients and healthy controls was detected by immunohisto-chemistry. Fibroblasts isolated from fresh skin tissue were used to detect the expression of PRSS23 by real-time quantitative PCR (RT-qPCR) and Western blot. Overexprssion of PRSS23 in BJ, the fibroblasts cell line of skin, was constructed by lentivirus. After stimulation with 400 μmol/L hydrogen peroxide for 12 h, Annexin V/7-AAD staining was used to detect apoptosis of fibroblasts; flow cytometry and Western blot were used to detect the expression of apoptosis-related protein cleaved Caspase-3. The expression of interleukin 6 (IL-6) and tumor necrosis factor alpha (TNF-α) in fibroblasts was detected by RT-qPCR and enzyme linked immunosorbent assay (ELISA).
RESULTS:
Compared with the healthy controls, the expression of PRSS23 in skin tissues of the SSc patients was significantly increased [4.952 (3.806-5.439) vs. 0.806 (0.395-1.173), P < 0.001], and fibroblast was the main cell that expressed PRSS23. The mRNA [27.59 (25.02-30.00) vs. 1.00, P < 0.001] and protein [0.675 (0.587-0.837) vs. 0.451 (0.342-0.502), P=0.029] of PRSS23 in skin fibroblasts isolated from the SSc patients were significantly up-regulated. Compared with the control group, the anti-apoptotic ability of skin fibroblasts overexpressing PRSS23 was enhanced, and the proportion of apoptotic cells was significantly reduced after hydrogen peroxide induction [(5.043±1.097)% vs. (17.480±3.212)%, P=0.022], the expression of apoptosis-related protein cleaved Caspase-3 was also markedly reduced [(0.718±0.022) vs. (1.422±0.105), P=0.003]. In addition, the mRNA [(99.780±1.796) vs. (1.000±0.004), P < 0.001] and protein [(211.600±2.431) ng/L vs. (65.930±1.768) ng/L, P < 0.001] of IL-6 in the fibroblasts overexpressing PRSS23 were significantly up-regulated; the mRNA[(3.555±0.555) vs. (1.000±0.004), P < 0.001] and protein levels [(41.190±0.949) ng/L vs. (31.150±0.360) ng/L, P < 0.001] of TNF-α in the fibroblasts overexpressing PRSS23 were also significantly up-regulated.
CONCLUSION
The expression of PRSS23 is increased in skin fibroblasts of SSc patients. PRSS23 can inhibit cell apoptosis, promote the secretion of inflammatory factors such as IL-6 and TNF-α, and regulate the process that skin fibroblasts transform into pro-inflammatory type. So, PRSS23 is associated with the development of skin fibrosis.
Humans
;
Scleroderma, Systemic/enzymology*
;
Fibroblasts/pathology*
;
Apoptosis
;
Skin/metabolism*
;
Fibrosis
;
Interleukin-6/metabolism*
;
Caspase 3/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Male
;
Female
;
Cells, Cultured
;
RNA, Messenger/metabolism*
;
Middle Aged
;
Adult
;
Serine Endopeptidases/genetics*
3.Role and mechanism of ubiquitin-specific protease 35 in ferroptosis of rheumatoid arthritis-fibroblast like synoviocytes.
Lianghua FENG ; Lirong HONG ; Yujia CHEN ; Xueming CAI
Journal of Peking University(Health Sciences) 2025;57(5):919-925
OBJECTIVE:
To elucidate the role and underlying mechanism of ubiquitin-specific protease 35 (USP35) in ferroptosis of rheumatoid arthritis-fibroblast like synoviocytes (RA-FLS), thereby enhancing our comprehension of the pathogenesis of RA and identifying potential therapeutic targets for its treatment.
METHODS:
(1) RA-FLS were cultured in vitro and transduced with lentiviral vectors to establish stable cell lines: A USP35-knockdown line (short hairpin ribonucleic acid of USP35, shUSP35) and its control (negtive control of short hairpin ribonucleic acid, shNC), as well as a overexpression of USP35 line (USP35 OE) and its control (Vector). To investigate the role of USP35 in ferroptosis regulation, a ferroptosis model was induced in RA-FLS by treatment with 1 μmol/L Erastin. The cells were divided into six groups: shNC, shNC + Erastin, shUSP35 + Erastin, Vector, Vector + Erastin, and USP35 OE + Erastin. (2) Cell viability was detected using the cell counting kit-8 (CCK-8). (3) Reactive oxygen species (ROS), malondialdehyde (MDA), glutathione/glutathione disulfide (GSH/GSSG) ratios, and Ferrous ion (Fe2+) levels were measured using specific assay kits to evaluate oxidative stress, lipid peroxidation, and glutathione redox status in the cells. (4) Protein expression levels of solute carrier family 7 member 11 (SLC7A11) and glutathione peroxidase 4 (GPX4) were detected using Western blotting to investigate their potential involvement in USP35-mediated ferroptosis regulation.
RESULTS:
(1) Compared with the shNC +Erastin group, the cell viability of the shUSP35+Erastin group was significantly decreased (P < 0.001), while it was notably increased in the USP35 OE+Erastin group compared with the Vector+Erastin group (P < 0.001). These findings indicated that USP35 could alleviate the inhibitory effect of Erastin on RA-FLS cell viability. (2) In comparison to the shNC+Erastin group, the levels of ROS (P < 0.001), MDA (P < 0.05), and Fe2+ (P < 0.001) were significantly elevated, and the GSH/GSSG ratio was increased (P < 0.05) in the shUSP35+Erastin group. Conversely, the levels of ROS (P < 0.001), MDA (P < 0.05), and Fe2+ (P < 0.05) were significantly decreased, and the GSH/GSSG ratio was decreased (P < 0.05) in the USP35 OE+Erastin group compared with the Vector+Erastin group. These results suggested that USP35 could inhibit Erastin-induced oxidative stress and lipid peroxidation in RA-FLS. (3) In Erastin-induced RA-FLS, the expression of USP35 was positively correlated with the protein levels of SLC7A11 and GPX4, indicating a potential mechanism by which USP35 regulated ferroptosis in these cells.
CONCLUSION
USP35 inhibits ferroptosis in RA-FLS, potentially through the increased expression of SLC7A11 and GPX4.
Ferroptosis
;
Humans
;
Arthritis, Rheumatoid/metabolism*
;
Synoviocytes/pathology*
;
Reactive Oxygen Species/metabolism*
;
Ubiquitin-Specific Proteases/metabolism*
;
Fibroblasts/pathology*
;
Cell Survival
;
Piperazines/pharmacology*
;
Endopeptidases/metabolism*
;
Cells, Cultured
;
Cell Line
;
Amino Acid Transport System y+
4.Pseudogene Lamr1-ps1 Aggravates Early Spatial Learning Memory Deficits in Alzheimer's Disease Model Mice.
Zhuoze WU ; Xiaojie LIU ; Yuntai WANG ; Zimeng ZENG ; Wei CHEN ; Hao LI
Neuroscience Bulletin 2025;41(4):600-614
Alzheimer's disease (AD), a neurodegenerative disorder with complex etiologies, manifests through a cascade of pathological changes before clinical symptoms become apparent. Among these early changes, alterations in the expression of non-coding RNAs (ncRNAs) have emerged as pivotal events. In this study, we focused on the aberrant expression of ncRNAs and revealed that Lamr1-ps1, a pseudogene of the laminin receptor, significantly exacerbates early spatial learning and memory deficits in APP/PS1 mice. Through a combination of bioinformatics prediction and experimental validation, we identified the miR-29c/Bace1 pathway as a potential regulatory mechanism by which Lamr1-ps1 influences AD pathology. Importantly, augmenting the miR-29c-3p levels in mice ameliorated memory deficits, underscoring the therapeutic potential of targeting miR-29c-3p in early AD intervention. This study not only provides new insights into the role of pseudogenes in AD but also consolidates a foundational basis for considering miR-29c as a viable therapeutic target, offering a novel avenue for AD research and treatment strategies.
Animals
;
Alzheimer Disease/pathology*
;
Pseudogenes/genetics*
;
Mice
;
Memory Disorders/metabolism*
;
MicroRNAs/genetics*
;
Disease Models, Animal
;
Spatial Learning/physiology*
;
Mice, Transgenic
;
Presenilin-1/genetics*
;
Male
;
Amyloid Precursor Protein Secretases/metabolism*
;
Mice, Inbred C57BL
;
Aspartic Acid Endopeptidases/metabolism*
5.Baculovirus expression system-based expression of horseshoe crab factor C and its activity.
Lan LAN ; Huanlei LIU ; Hao NAN ; Sijun HE ; Wangcheng SONG ; Yunlong WANG ; Xinjuan FAN ; Xiangbo WAN ; Xiaodong XU
Chinese Journal of Biotechnology 2025;41(4):1428-1439
Endotoxins are common exogenous pyrogens. Excessive endotoxins in medical devices and injections can lead to serious consequences such as sepsis, septic shock, and even death. Therefore, endotoxin detection plays a crucial role in medical, pharmaceutical, and food sectors. The wide application of Limulus amebocyte lysate (LAL) has led to a sharp decline in the number of horseshoe crabs. Moreover, the LAL assay has limitations such as interbatch variations and difficulty in quantification. The recombinant factor C (rFC) assay is stable between batches, highly sensitive, and capable of quantitation, and thus it can be used as an alternative for the LAL assay. However, the high cost and complex procedures involved in producing recombinant factor C have limited the widespread application of this method. In order to simplify the preparation and reduce the production cost of recombinant factor C, this study focuses on the production of recombinant factor C based on the baculovirus expression system. Multiple measures such as a high-yield and anti-apoptotic vector qBac-IIIG, the optimal signal peptide, and the optimized codon were used to reach the goal of endotoxin detection with cell supernatant. This method simplifies the steps of protein purification. The sensitivity of the supernatant reached 0.05 EU/mL in a 1-L fermentation system, and 500 000 detecting reactions can be supported per liter of fermentation broth. This study increases the yield and activity of recombinant factor C, simplifies the procedures of protein purification, and reduces the cost, laying a foundation for the promotion and application of recombinant factor C in endotoxin detection.
Animals
;
Recombinant Proteins/genetics*
;
Horseshoe Crabs/chemistry*
;
Baculoviridae/metabolism*
;
Endotoxins/analysis*
;
Protein C/biosynthesis*
;
Genetic Vectors/genetics*
;
Arthropod Proteins/genetics*
;
Enzyme Precursors
;
Serine Endopeptidases
6.Dissecting caspase-2-mediated cell death: from intrinsic PIDDosome activation to chemical modulation.
Mengxue ZENG ; Kun WANG ; Qingcui WU ; Jingjin DING ; Dan XIE ; Xiangbing QI ; Feng SHAO
Protein & Cell 2024;15(12):889-905
Caspase-2, a highly conserved member of the caspase family, is considered an initiator caspase that triggers apoptosis in response to some cellular stresses. Previous studies suggest that an intracellular multi-protein complex PIDDosome, induced by genotoxic stress, serves as a platform for caspase-2 activation. Due to caspase-2's inability to process effector caspases, however, the mechanism underlying caspase-2-mediated cell death upon PIDDosome activation remains unclear. Here, we conducted an unbiased genome-wide genetic screen and identified that the Bcl2 family protein BID is required for PIDDosome-induced, caspase-2-mediated apoptosis. PIDDosome-activated caspase-2 directly and functionally processes BID to signal the mitochondrial pathway for apoptosis induction. In addition, a designed chemical screen identified a compound, HUHS015, which specifically activates caspase-2-mediated apoptosis. HUHS015-stimulated apoptosis also requires BID but is independent of the PIDDosome. Through extensive structure-activity relationship efforts, we identified a derivative with a potency of ~60 nmol/L in activating caspase-2-mediated apoptosis. The HUHS015-series of compounds act as efficient agonists that directly target the interdomain linker in caspase-2, representing a new mode of initiator caspase activation. Human and mouse caspase-2 differ in two crucial residues in the linker, rendering a selectivity of the agonists for human caspase-2. The caspase-2 agonists are valuable tools to explore the physiological roles of caspase-2-mediated cell death and a base for developing small-molecule drugs for relevant diseases.
Caspase 2/genetics*
;
Humans
;
BH3 Interacting Domain Death Agonist Protein/metabolism*
;
Apoptosis/drug effects*
;
Death Domain Receptor Signaling Adaptor Proteins/metabolism*
;
Animals
;
Mice
;
Cysteine Endopeptidases
7.Advances in prostate cancer biomarkers.
Zibin CHU ; Ye XU ; Ziqiang YIN ; Jingfeng CAO ; Chengyu JIN ; Xiaoyang CHEN ; Zhao YANG
Chinese Journal of Biotechnology 2024;40(11):3951-3973
Prostate cancer is one of the most common malignant tumors in men and posing a serious threat to men's health. Detection methods such as prostate-specific antigen (PSA), prostate biopsy, and magnetic resonance imaging are widely used for prostate cancer screening, but they have low specificity, high cost, and significant risks. Therefore, there is an urgent need to develop highly specific, low-cost, easily obtained, stable, and reliable biomarkers, and use them as the basis to establish non-invasive screening and diagnostic methods for prostate cancer. This paper reviewed the recent advances in the use of prostate cancer biomarkers and combined detection methods for prostate cancer diagnosis and prognosis assessment and provides an in-depth analysis and comparison of different biomarkers and combined detection methods, as well as points out the directions and challenges for future research. The paper emphasizes the importance of developing efficient, cost-effective and easy-to-implement biomarkers to increase the early diagnosis rate of prostate cancer, improve patient prognosis, and reduce the waste of healthcare resources. This paper provides an important theoretical basis and technical guidance for early diagnosis, precise treatment and prognostic evaluation of prostate cancer, and has important reference value for promoting clinical research and practice of prostate cancer.
Humans
;
Male
;
Prostatic Neoplasms/diagnosis*
;
Biomarkers, Tumor/blood*
;
Early Detection of Cancer/methods*
;
Prognosis
;
Prostate-Specific Antigen/blood*
;
Glutamate Carboxypeptidase II/metabolism*
;
Antigens, Neoplasm/blood*
;
Antigens, Surface
;
Serine Endopeptidases
8.SENP2-mediated SERCA2a deSUMOylation increases calcium overload in cardiomyocytes to aggravate myocardial ischemia/reperfusion injury.
Yuanyuan LUO ; Shuaishuai ZHOU ; Tao XU ; Wanling WU ; Pingping SHANG ; Shuai WANG ; Defeng PAN ; Dongye LI
Chinese Medical Journal 2023;136(20):2496-2507
BACKGROUND:
Sarcoplasmic reticulum calcium ATPase 2a (SERCA2a) is a key protein that maintains myocardial Ca 2+ homeostasis. The present study aimed to investigate the mechanism underlying the SERCA2a-SUMOylation (small ubiquitin-like modifier) process after ischemia/reperfusion injury (I/RI) in vitro and in vivo .
METHODS:
Calcium transient and systolic/diastolic function of cardiomyocytes isolated from Serca2a knockout (KO) and wild-type mice with I/RI were compared. SUMO-relevant protein expression and localization were detected by quantitative real-time PCR (RT-qPCR), Western blotting, and immunofluorescence in vitro and in vivo . Serca2a-SUMOylation, infarct size, and cardiac function of Senp1 or Senp2 overexpressed/suppressed adenovirus infected cardiomyocytes, were detected by immunoprecipitation, triphenyltetrazolium chloride (TTC)-Evans blue staining, and echocardiography respectively.
RESULTS:
The results showed that the changes of Fura-2 fluorescence intensity and contraction amplitude of cardiomyocytes decreased in the I/RI groups and were further reduced in the Serca2a KO + I/RI groups. Senp1 and Senp2 messenger ribose nucleic acid (mRNA) and protein expression levels in vivo and in cardiomyocytes were highest at 6 h and declined at 12 h after I/RI. However, the highest levels in HL-1 cells were recorded at 12 h. Senp2 expression increased in the cytoplasm, unlike that of Senp1. Inhibition of Senp2 protein reversed the I/RI-induced Serca2a-SUMOylation decline, reduced the infarction area, and improved cardiac function, while inhibition of Senp1 protein could not restore the above indicators.
CONCLUSION
I/RI activated Senp1 and Senp2 protein expression, which promoted Serca2a-deSUMOylation, while inhibition of Senp2 expression reversed Serca2a-SUMOylation and improved cardiac function.
Animals
;
Mice
;
Calcium/metabolism*
;
Cysteine Endopeptidases/metabolism*
;
Myocardial Reperfusion Injury/metabolism*
;
Myocardium/metabolism*
;
Myocytes, Cardiac/metabolism*
;
Proteins/metabolism*
;
Sarcoplasmic Reticulum Calcium-Transporting ATPases/genetics*
9.Porphyromonas gingivalis bacteremia increases the permeability of the blood-brain barrier via the Mfsd2a/Caveolin-1 mediated transcytosis pathway.
Shuang LEI ; Jian LI ; Jingjun YU ; Fulong LI ; Yaping PAN ; Xu CHEN ; Chunliang MA ; Weidong ZHAO ; Xiaolin TANG
International Journal of Oral Science 2023;15(1):3-3
Bacteremia induced by periodontal infection is an important factor for periodontitis to threaten general health. P. gingivalis DNA/virulence factors have been found in the brain tissues from patients with Alzheimer's disease (AD). The blood-brain barrier (BBB) is essential for keeping toxic substances from entering brain tissues. However, the effect of P. gingivalis bacteremia on BBB permeability and its underlying mechanism remains unclear. In the present study, rats were injected by tail vein with P. gingivalis three times a week for eight weeks to induce bacteremia. An in vitro BBB model infected with P. gingivalis was also established. We found that the infiltration of Evans blue dye and Albumin protein deposition in the rat brain tissues were increased in the rat brain tissues with P. gingivalis bacteremia and P. gingivalis could pass through the in vitro BBB model. Caveolae were detected after P. gingivalis infection in BMECs both in vivo and in vitro. Caveolin-1 (Cav-1) expression was enhanced after P. gingivalis infection. Downregulation of Cav-1 rescued P. gingivalis-enhanced BMECs permeability. We further found P. gingivalis-gingipain could be colocalized with Cav-1 and the strong hydrogen bonding between Cav-1 and arg-specific-gingipain (RgpA) were detected. Moreover, P. gingivalis significantly inhibited the major facilitator superfamily domain containing 2a (Mfsd2a) expression. Mfsd2a overexpression reversed P. gingivalis-increased BMECs permeability and Cav-1 expression. These results revealed that Mfsd2a/Cav-1 mediated transcytosis is a key pathway governing BBB BMECs permeability induced by P. gingivalis, which may contribute to P. gingivalis/virulence factors entrance and the subsequent neurological impairments.
Animals
;
Rats
;
Bacteremia/metabolism*
;
Blood-Brain Barrier/microbiology*
;
Caveolin 1/metabolism*
;
Gingipain Cysteine Endopeptidases/metabolism*
;
Permeability
;
Porphyromonas gingivalis/pathogenicity*
;
Transcytosis
;
Virulence Factors/metabolism*
10.Expression, purification, and characterization of cell-permeable fusion antioxidant enzyme sensitive to matrix metalloproteinases-2/9.
Huocong HE ; Lixiang LIN ; Lingling LI ; Lunqiao WU ; Haiying LIN ; Jianru PAN
Chinese Journal of Biotechnology 2022;38(9):3515-3527
Antioxidant enzymes fused with cell-penetrating peptides could enter cells and protect cells from irradiation damage. However, the unselective transmembrane ability of cell-penetrating peptide may also bring antioxidant enzymes into tumor cells, thus protecting tumor cells and consequently reducing the efficacy of radiotherapy. There are active matrix metalloproteinase (MMP)-2 or MMP-9 in most tumor cellular microenvironments. Therefore, a fusion protein containing an MMP-2/9 cleavable substrate peptide X, a cell-penetrating peptide R9, a glutathione S-transferase (GST), and a human Cu, Zn superoxide dismutase (SOD1), was designed and named GST-SOD1-X-R9. In the tumor microenvironment, GST-SOD1-X-R9 would lose its cell-penetrating peptide and could not enter tumor cells due to the cleavage of substrate X by active MMP-2/9, thereby achieving selected entering normal cells. The complete nucleotide sequence of SOD1-X-R9 was synthesized and inserted into the prokaryotic expression vector pGEX-4T-1. The pGEX4T-1-SOD1-X-R9 recombinant plasmid was obtained, and soluble expression of the fusion protein was achieved. GST-SOD1-X-R9 was purified by ammonium sulfate precipitation and GST affinity chromatography. The molecular weight of the fusion protein was approximately 47 kDa, consistent with the theoretical value. The SOD and GST activities were 2 954 U/mg and 328 U/mg, respectively. Stability test suggested that almost no change in either SOD activity or GST activity of GST-SOD1-X-R9 was observed under physiological conditions. The fusion protein could be partially digested by collagenase Ⅳ in solution. Subsequently, the effect of MMP-2/9 activity on transmembrane ability of the fusion protein was tested using 2D and 3D cultured HepG2 cells. Little extracellular MMP-2 activity of HepG2 cells was observed under 2D culture condition. While under the 3D culture model, the size and the MMP-2 activity of the HepG2 tumor spheroid increased daily. GST-SOD1-R9 proteins showed the same transmembrane efficiency in 2D cultured HepG2 cells, but the transmembrane efficiency of GST-SOD1-X-R9 in 3D cultured HepG2 spheres was reduced remarkably. This study provided a basis for further investigating the selectively protective effect of GST-SOD1-X-R9 against oxidative damage in normal cells.
Ammonium Sulfate
;
Antioxidants
;
Cell-Penetrating Peptides/pharmacology*
;
Endopeptidases
;
Glutathione Transferase/metabolism*
;
Humans
;
Matrix Metalloproteinase 2/genetics*
;
Matrix Metalloproteinase 9/genetics*
;
Recombinant Fusion Proteins
;
Recombinant Proteins
;
Superoxide Dismutase/metabolism*
;
Superoxide Dismutase-1

Result Analysis
Print
Save
E-mail