1.Comparson of the immunogenicity of genotypeⅠJapanese encephalitis virus subunit vaccine candidate antigens.
Ruiming YU ; Zhancheng TIAN ; Shandian GAO ; Junzheng DU ; Guangyuan LIU ; Jianxun LUO ; Hong YIN
Chinese Journal of Biotechnology 2020;36(7):1314-1322
To screen the best genotypeⅠJapanese encephalitis virus subunit vaccine candidate antigens, the prMEIII gene, the polytope gene and the prMEIII-polytope fusion gene of the GenotypeⅠJapanese encephalitis virus GS strain were cloned into prokaryotic expression vector pET-30a. The recombinant proteins were obtained after the induction and purification. The prepared recombinant proteins were immunized to mice, and the immunogenicity of the subunit vaccine candidate antigens was evaluated through monitoring the humoral immune response by ELISA, detecting the neutralizing antibody titer by plaque reduction neutralization test, and testing the cell-mediated immune response by lymphocyte proliferation assay and cytokine profiling. The recombinant proteins with the molecular weights of 35 (prMEIII), 28 (polytope antigen) and 57 kDa (prMEIII-polytope) induced strong humoral and cellular immune responses in mice. Compared with prMEIII-polytope and polytope proteins, the prMEIII protein induced a significant expression of IL-2 and IFN-γ (P<0.05) and the significant lymphoproliferation of splenocytes (P<0.05). The neutralizing antibody titer induced by the prMEIII protein was close to that induced by the commercial attenuated vaccine SA14-14-2 (P>0.05). The study suggests that the prMEIII protein can be used for the development of the Japanese encephalitis virus subunit vaccine.
Animals
;
Antibodies, Viral
;
blood
;
Antigens, Viral
;
immunology
;
Encephalitis Virus, Japanese
;
immunology
;
Encephalitis, Japanese
;
immunology
;
prevention & control
;
Immunogenicity, Vaccine
;
Mice
;
Mice, Inbred BALB C
;
Vaccines, Subunit
;
immunology
;
Viral Vaccines
;
immunology
3.Generation of Japanese Encephalitis Virus-like Particle Vaccine and Preliminary Evaluation of Its Protective Efficiency.
Yanfang ZHANG ; Ruikun DU ; Shaomei HUANG ; Tao ZHANG ; Jinliang LIU ; Bibo ZHU ; Hualin WANG ; Fei DENG ; Shengbo CAO
Chinese Journal of Virology 2016;32(2):150-155
The cDNA fragment of JEV prME gene was cloned into the baculovirus shuttle vector (bacmid) to construct a recombinant baculovirus vector, defined as AcBac-prME. Then the recombinant baculovirus Ac-prME was obtained by transfecting Sf9 cells with AcBac-prME. Western blot analysis and immunofluorescence results indicated that both prM and E proteins were efficiently expressed in Sf9 cells. Electron microscopy suggested that prME was assembled into JEV-VLPs. To further evaluate the potential of JEV-VLPs as vaccine, the mice were immunized with JEV-VLPs and then challenged with lethal JEV. The results of mice survival and pathological changes demonstrated that the JEV-VLPs performed complete protection against JEV-P3 strain and relieved pathological changes in the mice brain significant. This study suggest that JEV-VLPs would be a potential vaccine for Japanese encephalitis virus.
Animals
;
Antibodies, Viral
;
immunology
;
Encephalitis Virus, Japanese
;
genetics
;
immunology
;
Encephalitis, Japanese
;
immunology
;
prevention & control
;
virology
;
Humans
;
Japanese Encephalitis Vaccines
;
administration & dosage
;
genetics
;
immunology
;
Mice
;
Mice, Inbred BALB C
;
Sf9 Cells
;
Vaccination
;
Vaccines, Virus-Like Particle
;
administration & dosage
;
genetics
;
immunology
;
Viral Envelope Proteins
;
administration & dosage
;
genetics
;
immunology
4.Detection of serum antibodies against Japanese encephalitis virus in bats in Hainan and Guangdong Provinces of China.
Lina JIANG ; Shaowei CHEN ; Xueyan ZHENG ; Shujuan MA ; Junhua ZHOU ; Qionghua ZHANG ; Xing LI ; Yiquan XIONG ; Xueshan ZHONG ; Zhiyun WANG ; Qing CHEN
Journal of Southern Medical University 2015;35(5):720-723
OBJECTIVETo investigate the prevalence of serum antibodies against Japanese encephalitis virus (JEV) in bats.
METHODSBlood samples from the heart were obtained from bats captured in Guangdong and Hainan Provinces in 2013. The anti-JEV antibodies in bat sera were tested using indirect ELISA and virus neutralization test.
RESULTSA total of 201 bat serum samples were tested, in which the total positivity rate of anti-JEV antibodies was 46.27% (93/201). The positive rate of anti-JEV antibodies in bats from Hainan and Guangdong Provinces was 88.89% (48/54) and 30.61% (45/147), respectively. All the samples from Rousettus leschenaultia, Miniopterus schreibersii, Pipistrellus abramus, and Rhinolophus macrotis were positive for anti-JEV antibodies, and up to 95.56% (43/45) of the samples from Miniopterus schreibersii (from Hainan Province) yielded positive results. Of the 28 samples with positive results by indirect ELISA, 15 showed positive results in virus neutralization test (53.57%) with neutralization antibody titers ranging from 1:10 to 1:28.22.
CONCLUSIONBats from different regions and of different species can be naturally infected with JEV and have a high prevalence of anti-JEV antibodies in their sera. The role of bats in the natural cycle of JEV awaits further study.
Animals ; Antibodies, Viral ; blood ; China ; Chiroptera ; immunology ; virology ; Encephalitis Virus, Japanese ; Enzyme-Linked Immunosorbent Assay ; Neutralization Tests
5.Effects of cell-mediated immunity induced by intramuscular chitosan-pJME/ GM-CSF nano-DNA vaccine in BAlb/c mice.
Yong-Zhen ZHAI ; Yan ZHOU ; Li MA ; Guo-He FENG
Chinese Journal of Virology 2014;30(4):423-428
This study aimed to investigate the immune adjuvant effect and mechanism induced by chitosan nanoparticles carrying pJME/GM-CSF. In this study, plasmid DNA (pJME/GM-CSF) was encapsulated in chitosan to prepare chitosan-pJME/GM-CSF nanoparticles using a complex coacervation process. Immunohistochemistry was used to detect the type of infiltrating cells at the site of intramuscular injection. The phenotype and functional changes of splenic DCs were measured by flow cytometry after different immunogens were injected intramuscularly. The killing activity of CTLs was assessed using the lactate dehydrogenase (LDH) release assay. The preparation of chitosan-pJME/GM-CSF nanoparticles matched the expected theoretical results. Our results also found that, after pJME/GM-CSF injection, the incoming cells were a mixture of macrophages, neutrophils, and immature DCs. Meanwhile, pJME/GM-CSF increased the expression of MHC class II molecules on splenic DCs, and enhanced their Ag capture and presentation functions. Cell-mediated immunity was induced by the vaccine. Furthermore, chitosan-pJME/GM-CSF nanoparticles outperformed the administration of standard pJME/GM-CSF in terms of DC recruitment, antigen processing and presentation, and vaccine enhancement. These findings reveal that chitosan could be used as delivery vector for DNA vaccine intramuscular immunizations, and enhance pJME/GM-CSF-induced cellular immune responses.
Adjuvants, Immunologic
;
administration & dosage
;
Animals
;
Chitosan
;
administration & dosage
;
immunology
;
Dendritic Cells
;
immunology
;
virology
;
Encephalitis Virus, Japanese
;
genetics
;
immunology
;
Encephalitis, Japanese
;
immunology
;
prevention & control
;
virology
;
Female
;
Granulocyte-Macrophage Colony-Stimulating Factor
;
administration & dosage
;
genetics
;
immunology
;
Humans
;
Immunity, Cellular
;
Japanese Encephalitis Vaccines
;
administration & dosage
;
genetics
;
immunology
;
Mice
;
Mice, Inbred BALB C
;
Nanoparticles
;
administration & dosage
;
Spleen
;
immunology
;
T-Lymphocytes, Cytotoxic
;
immunology
;
virology
;
Vaccines, DNA
;
administration & dosage
;
genetics
;
immunology
6.Study on the genotypic characteristics of Japanese encephalitis virus and serology in the healthy population of Zhejiang province, 2012-2013.
Juying YAN ; Jinren PAN ; Yijian ZHANG ; Jiayue ZHOU ; Hongnian NI ; Yanjun ZHANG
Chinese Journal of Epidemiology 2014;35(10):1146-1150
OBJECTIVETo understand the genotypic characteristics and the neutralizing antibody levels of Japanese encephalitis virus (JEV) and Japanese encephalitis (JE) in both vector mosquitoes and in healthy people of Zhejiang province.
METHODSVirus was isolated from mosquitos sampled from the Monitoring Stations located in Xianju county during 2012 to 2013. Phylogenetic and homological studies were carried out on the E gene. A total of 1 263 blood specimens from 642 healthy people were collected before and after the seasons of JE epidemics. JEV neutralizing antibody was detected by the micro-neutralization test.
RESULTSTwenty-five JEV strains were isolated from a total of 11 650 mosquitoes. The identity of nucleotide appeared as 87.8%-99.7% both from 2012 to 2013 and from 1982 to 2010 while as 87.7%-88.0% with vaccine strain SA14-14-2, in Zhejiang. The phylogeny tree of E gene indicated that the newly isolated virus belonged to genotype I but no mutation of amino acid sequence coding conformational epitope was identified in the envelop protein. Both positive rates and the geometric mean titer (GMT) of neutralizing antibody in healthy people were 31.5%-42.0% and 1 : 2.56-1 : 3.53 in Xianju county, during 2012 and 2013, respectively. Both of the two positive rates (χ(2)≤1.76, P > 0.05) and the two GMTs (u≤0.64, P > 0.5) for antibodies pre or post the epidemic season did not show significant differences.
CONCLUSIONJEV isolated in Xianju during 2012 and 2013 belonged to genotype I. The positive rates of JEV neutralizing antibody from healthy people in Xianju were less than 42.0%, which showed no significant differendes pre or post JE epidemic season.
Amino Acid Sequence ; Animals ; Antibodies, Neutralizing ; blood ; Antibodies, Viral ; blood ; China ; Culicidae ; virology ; Disease Vectors ; Encephalitis Virus, Japanese ; genetics ; immunology ; isolation & purification ; Encephalitis, Japanese ; virology ; Epitopes ; Genotype ; Humans ; Neutralization Tests ; Phylogeny
7.Progress in the research of phenotype and genotype of Japanese encephalitis virus in China.
Chinese Journal of Virology 2013;29(4):457-464
Japanese encephalitis virus(JEV)is one of the leading cause of viral encephalitis in Asia. The phenotypic and genotypic characteristics of isolated virus strains are reviewed in this paper. Studies on the biological characteristics of the isolates showed that different isolates existed apparent differences in virus plaque morphology, neuroinvasive pathogenicity in mice, protective antigenicity and hemagglutination property. In China, only genotype III JEV strains were isolated before 1977. But since 1977, both genotype I and I JEV strains were isolated and the genotype I virus, which was isolated from mosquitoes mostly, has become the dominant strain. Study on the genomic sequence indicated that there was only a few amino acid difference (< or = 43%) between the two genotype isolates. Comparison between both genotype isolates and widely used live vaccine strain SA14-14-2 revealed that there were only < or = 3% amino acid differences, most of which were the SA14-14-2 unique attenuating sites. These results indicate that the SA14-14-2 live vaccine is able to protect people against infection of the both genotype I and Ill JEV strains.
Animals
;
China
;
Culicidae
;
virology
;
Encephalitis Virus, Japanese
;
classification
;
genetics
;
immunology
;
isolation & purification
;
Encephalitis, Japanese
;
immunology
;
prevention & control
;
virology
;
Genome, Viral
;
genetics
;
Genotype
;
Humans
;
Japanese Encephalitis Vaccines
;
immunology
;
Mice
;
Phenotype
;
Species Specificity
;
Vaccines, Attenuated
;
immunology
8.Epidemic characteristics and viral antibody level among healthy people of Japanese B encephalitis in Henan province in 2010.
Xiao-yan TANG ; Kai KANG ; Si-yuan SHANG ; Chao XU ; Xing-le LI ; Hong-xia MA ; Hao-min CHEN ; Bian-li XU
Chinese Journal of Preventive Medicine 2012;46(10):888-891
OBJECTIVETo understand the epidemic characteristics and viral antibody level among healthy people of Japanese B encephalitis (JE) in Henan province in 2010.
METHODSA total of 433 selected JE cases in Henan province in 2010 were analyzed by descriptive epidemiological method. Xinyang and Luoyang were selected as survey sites in 2010.12 administrative villages were randomly selected from both cities. As the investigation objects, 519 healthy people from the two cities were randomly selected by eight age groups:less than one year old, 1 - 2 years old, 3 - 4 years old, 5 - 6 years old, 7 - 14 years old, 15 - 19 years old, 20 - 59 years old, and above 60 years old. A total of 1008 samples of blood specimens were collected both in May and November, and JE viral antibody was detected by micro-cytopathic effect neutralization test.
RESULTSThe incidence rate of JE was 0.46/100 000 (433/94 130 434) in Henan province in 2010.97.69% (423/433) of the patients were found between July and September, and 81.06% (351/433) were distributed in Nanyang, Xinyang, Luoyang, Zhumadian and Zhoukou city. Children aged 0 to 14 years were the primarily affected group (82.22%, 356/433), the people above 15 years old accounted for 17.78% (77/433) of whole cases in Henan province, but the same group accounted for 65.79% (50/76) of whole cases in Luoyang city, which obviously higher than the percentage in Henan province (χ(2) = 79.57, P < 0.05). Most patients were scattered children in Henan province, accounting for 58.89% (255/433). In Luoyang city, most patients were peasants, accounting for 44.74% (34/76). The antibody positive rate of JE among health people above 15 years old in Luoyang city was 48.94% (46/94), which was lower than it in Xinyang city at 97.78% (88/90). The difference showed statistical significance (χ(2) = 55.42, P < 0.05). The antibody positive rate among healthy people under vaccination was 50.41% (61/121), which was obviously higher than that among people without vaccination, at 16.67% (6/36) in Luoyang city. The difference showed statistical significance (χ(2) = 12.92, P < 0.05). The antibody positive rate among healthy people under vaccination was 67.11% (51/76) in Xinyang city, which was obviously higher than that among people without vaccination, at 46.39% (45/97). The difference showed statistical significance (χ(2) = 7.40, P < 0.05).
CONCLUSIONThe incidence of JE showed seasonal and regional characteristics, there were differences among ages and occupations. The difference was consistent with the difference in viral antibody level among health people in Henan province and Luoyang city.
Adolescent ; Adult ; Antibodies, Viral ; blood ; Case-Control Studies ; Child ; Child, Preschool ; China ; epidemiology ; Encephalitis Virus, Japanese ; immunology ; Encephalitis, Japanese ; blood ; epidemiology ; immunology ; Humans ; Incidence ; Infant ; Middle Aged ; Young Adult
9.Roles of N-glycosylation in immunity of prME and NS1 gene of JEV.
Zi-Zhong ZHANG ; Xue WANG ; Jun-Jie ZAI ; Le-Qiang SUN ; Yun-Feng SONG ; Huan-Chun CHEN
Chinese Journal of Virology 2012;28(3):213-218
PrME and NS1 gene were the two main immuneprotect proteins of Japanese encephalitis virus (JEV), and they were also N-linked glycosylation proteins. To clear the effect of N-glycosylation on JEV immunity, the N-glycosylation site of prME and NS1 gene were eliminated by site-directed mutant PCR, subtituting the N to Q. And the the mutant genes were subcloned into eukaryotic expression plasmid. Four-weeks female mice were immuned with the wildtype and mutant gene by twice. The antibodies against prME were detected by ELISA and the neutralization antibodies were tested by viral neutralizing assay. The immunoprotection were determined by attack with JEV virulent strain. Compare with the wild-type gene immuned-groups, one N-glycan eliminated prME gene could induce a little higher ELISA antibody, neutralization antibody and immunoprotection, but the immunity of gene with both N-glycan absence was decreased. The similar status were observed in the wildtype and mutant NS1 groups. Thus these results show that the N-linked glycosylation in the prME and NS1 gene were correlated with the immunity, one glycan absent would enhance the immunity but both two loss would impair it.
Animals
;
Antibodies, Viral
;
immunology
;
Encephalitis Virus, Japanese
;
genetics
;
immunology
;
metabolism
;
Encephalitis, Japanese
;
immunology
;
virology
;
Female
;
Glycosylation
;
Humans
;
Mice
;
Mice, Inbred BALB C
;
Viral Nonstructural Proteins
;
genetics
;
immunology
;
metabolism
10.Immunogenicity and antigenicity of Japanese encephalitis virus envelope protein domain III.
Ying HUANG ; Shan LIU ; Peng YANG ; Yun DU ; Zhiwei SUN ; Weiyuan YU
Chinese Journal of Biotechnology 2009;25(10):1532-1537
To express the domain III gene of Japanese encephalitis virus (JEV) and to learn the possibility of developing the Dil protein as a subunit vaccine, we amplified the JEV DIII gene by PCR and constructed the expression plasmid pET-JE DIII by inserting JEV DIII gene into the prokaryotic expression vector pET-32a(+). The domain III protein of the attenuated strain SA14-14-2 was expressed as a thioredoxin (Trx) fusion protein, which was unique in forming a large fraction of the soluble recombinant protein. We immunized the rabbits and mice with the purified protein, tested the antigenicity and immunogenicity of JEV DIII protein by ELISA, Western blotting, plaque reduction test and observed the protective efficacy on challenged weanling mice with JEV. Rabbits immunized with the purified JEV DIII protein generated 1: 7 x 10(5) anti-JEV specific antibody titers. BALB/c mice immunized with the purified JEV E DIII protein generated 1: 8.2 x 10(4) anti-JEV specific antibody titers. And the neutralized antibody titer can reach 1:256, the survival rate of the immunized weanling mice was approximately 75%. Overall, this study highlighted that recombinant JEV E DIII protein delivered in mice and rabbits can generate high antibody titers against JEV, and protect some mice challenged with JEV. These studies can provide useful information for further developing the domain III recombinant protein as subunit vaccine against JEV.
Animals
;
Antibodies, Viral
;
blood
;
Encephalitis Virus, Japanese
;
immunology
;
Epitopes
;
immunology
;
Escherichia coli
;
genetics
;
metabolism
;
Immunization
;
Japanese Encephalitis Vaccines
;
biosynthesis
;
immunology
;
Mice
;
Mice, Inbred BALB C
;
Protein Structure, Tertiary
;
Rabbits
;
Recombinant Fusion Proteins
;
biosynthesis
;
genetics
;
immunology
;
Viral Envelope Proteins
;
biosynthesis
;
genetics
;
immunology

Result Analysis
Print
Save
E-mail